Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Oncol ; 2022: 3577928, 2022.
Article in English | MEDLINE | ID: mdl-35035479

ABSTRACT

Surgical resection of the tumor is the primary treatment of colorectal cancer patients. However, we previously demonstrated that abdominal surgery promotes the adherence of circulating tumor cells (CTC) in the liver and subsequent liver metastasis development. Importantly, preoperative treatment with specific tumor-targeting monoclonal antibodies (mAb) prevented surgery-induced liver metastasis development in rats. This study investigated whether the epidermal growth factor receptor (EGFR) represents a suitable target for preoperative antibody treatment of colorectal cancer patients undergoing surgery. The majority of patients with resectable colorectal liver metastases were shown to have EGFR + CTCs. Three different anti-EGFR mAbs (cetuximab, zalutumumab, and panitumumab) were equally efficient in the opsonization of tumor cell lines. Additionally, all three mAbs induced antibody-dependent cellular phagocytosis (ADCP) of tumor cells by macrophages at low antibody concentrations in vitro, independent of mutations in EGFR signaling pathways. The plasma of cetuximab-treated patients efficiently opsonized tumor cells ex vivo and induced phagocytosis. Furthermore, neither proliferation nor migration of epithelial cells was affected in vitro, supporting that wound healing will not be hampered by treatment with low anti-EGFR mAb concentrations. These data support the use of a low dose of anti-EGFR mAbs prior to resection of the tumor to eliminate CTCs without interfering with the healing of the anastomosis. Ultimately, this may reduce the risk of metastasis development, consequently improving long-term patient outcome significantly.

2.
Cancers (Basel) ; 13(10)2021 May 14.
Article in English | MEDLINE | ID: mdl-34069226

ABSTRACT

Promising strategies for maximizing IgG effector functions rely on the introduction of natural and non-immunogenic modifications. The Fc domain of IgG antibodies contains an N-linked oligosaccharide at position 297. Human IgG antibodies lacking the core fucose in this glycan have enhanced binding to human (FcγR) IIIa/b, resulting in enhanced antibody dependent cell cytotoxicity and phagocytosis through these receptors. However, it is not yet clear if glycan-enhancing modifications of human IgG translate into more effective treatment in mouse models. We generated humanized hIgG1-TA99 antibodies with and without core-fucose. C57Bl/6 mice that were injected intraperitoneally with B16F10-gp75 mouse melanoma developed significantly less metastasis outgrowth after treatment with afucosylated hIgG1-TA99 compared to mice treated with wildtype hhIgG1-TA99. Afucosylated human IgG1 showed stronger interaction with the murine FcγRIV, the mouse orthologue of human FcγRIIIa, indicating that this glycan change is functionally conserved between the species. In agreement with this, no significant differences were observed in tumor outgrowth in FcγRIV-/- mice treated with human hIgG1-TA99 with or without the core fucose. These results confirm the potential of using afucosylated therapeutic IgG to increase their efficacy. Moreover, we show that afucosylated human IgG1 antibodies act across species, supporting that mouse models can be suitable to test afucosylated antibodies.

3.
J Clin Invest ; 131(6)2021 03 15.
Article in English | MEDLINE | ID: mdl-33561014

ABSTRACT

Most clinically used anticancer mAbs are of the IgG isotype, which can eliminate tumor cells through NK cell-mediated antibody-dependent cellular cytotoxicity and macrophage-mediated antibody-dependent phagocytosis. IgG, however, ineffectively recruits neutrophils as effector cells. IgA mAbs induce migration and activation of neutrophils through the IgA Fc receptor (FcαRI) but are unable to activate NK cells and have poorer half-life. Here, we combined the agonistic activity of IgG mAbs and FcαRI targeting in a therapeutic bispecific antibody format. The resulting TrisomAb molecules recruited NK cells, macrophages, and neutrophils as effector cells for eradication of tumor cells in vitro and in vivo. Moreover, TrisomAb had long in vivo half-life and strongly decreased B16F10gp75 tumor outgrowth in mice. Importantly, neutrophils of colorectal cancer patients effectively eliminated tumor cells in the presence of anti-EGFR TrisomAb but were less efficient in mediating killing in the presence of IgG anti-EGFR mAb (cetuximab). The clinical application of TrisomAb may provide potential alternatives for cancer patients who do not benefit from current IgG mAb therapy.


Subject(s)
Antibody-Dependent Cell Cytotoxicity/immunology , Antineoplastic Agents, Immunological/pharmacology , Neutrophils/immunology , Animals , Antibodies, Bispecific/pharmacology , Antibodies, Monoclonal/pharmacology , Antigens, CD/immunology , Cell Line, Tumor , Cetuximab/pharmacology , Female , HCT116 Cells , Humans , Immunoglobulin G/immunology , Killer Cells, Natural/immunology , Macrophages/immunology , Male , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Melanoma, Experimental/therapy , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Immunological , Receptors, Fc/immunology
4.
J Immunol ; 202(1): 171-182, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30504420

ABSTRACT

Innate lymphoid cells (ILCs) guard epithelial tissue integrity during homeostasis, but can be potent immune effector cells during inflammation. Precursors to all ILC subsets (ILC precursors [ILCP]) have been identified in human peripheral blood (PB). We found that during homeostasis, ILCP in PB of mouse and human expressed homing receptors for secondary lymphoid organs, mainly CD62L. These ILCP entered mouse lymph nodes in a CD62L-dependent way and relied on S1P receptors for their exit. Importantly, CD62L expression was absent on human ILCs expressing NKp44 in tonsils and PB of Crohn disease patients, and relatively fewer CD62L+ ILCP were present in PB of Crohn disease patients. These data are in agreement with selective expression of CD62L on nonactivated ILCP. As such, we conclude that CD62L not only serves as a functional marker of ILCP, but has potential to be used in the clinic as a diagnostic marker in inflammatory disorders.


Subject(s)
Blood Cells/immunology , Crohn Disease/immunology , L-Selectin/metabolism , Lymph Nodes/immunology , Lymphocytes/immunology , Lymphoid Progenitor Cells/physiology , Animals , Cells, Cultured , Female , Homeostasis , Humans , Immunity, Innate , L-Selectin/genetics , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Natural Cytotoxicity Triggering Receptor 2/metabolism , Receptors, Lysosphingolipid/metabolism
5.
Oncoimmunology ; 7(9): e1461302, 2018.
Article in English | MEDLINE | ID: mdl-30228930

ABSTRACT

Surgical resection of the primary tumor provides the best chance of cure for patients with colorectal carcinoma (CRC). However, bacterial translocation during intestinal surgery has been correlated with poor long-term oncological outcome. Therefore, we investigated the influence of bacterial contamination during colon surgery on CRC liver metastases development. Blood and liver samples of patients undergoing resection of primary CRC or liver metastases were collected. Cell numbers, activation markers and inflammatory mediators were determined. Tumor cell adhesion and outgrowth after sham- or colectomy operations were determined in a rat model, in which tumor cells had been injected into the portal vein. White blood cells and granulocytes were increased in per- and post-operative patient blood samples. IL-6 was also increased post-operatively compared to the preoperative level. Expression of NOX-2, NOX-4 and polymorphonuclear cells (PMNs) numbers were elevated in post-operative human liver samples. In vitro stimulation of macrophages with plasma of rats after colectomy resulted in production of reactive oxygen species (ROS). Colectomy in rats increased D-lactate levels in plasma, supporting bacterial translocation. Decreased expression of tight junction molecules and increased tumor cell adhesion and outgrowth was observed. Treatment with a selective decontamination of the digestive tract (SDD) cocktail decreased tumor cell adherence after colectomy. In conclusion, postoperative bacterial translocation may activate liver macrophages and PMNs, resulting in ROS production. As we previously showed that ROS release led to liver vasculature damage, circulating tumor cells may adhere to exposed extracellular matrix and grow out into liver metastases. This knowledge is pivotal for development of therapeutic strategies to prevent surgery-induced liver metastases development.

6.
PLoS One ; 12(5): e0177736, 2017.
Article in English | MEDLINE | ID: mdl-28542406

ABSTRACT

BACKGROUND: Current anti-cancer therapeutic antibodies that are used in the clinic are predominantly humanized or fully human immunoglobulin G1 (IgG1). These antibodies bind with high affinity to the target antigen and are efficient in activating the immune system via IgG Fc receptors and/or complement. In addition to IgG1, three more isotypes are present in humans, of which IgG3 has been found to be superior compared to human IgG1 in inducing antibody dependent cell cytotoxicity (ADCC), phagocytosis or activation of complement in some models. Nonetheless, no therapeutic human IgG3 mAbs have been developed due to the short in vivo half-life of most known IgG3 allotypes. In this manuscript, we compared the efficacy of V-gene matched IgG1 and IgG3 anti-tumour mAb (TA99) in mice, using natural variants of human IgG3 with short- or long half-life, differing only at position 435 with an arginine or histidine, respectively. RESULTS: In vitro human IgG1 and IgG3 did not show any differences in opsonisation ability of B16F10-gp75 mouse melanoma cells. IgG1, however, was superior in inducing phagocytosis of tumour cells by mouse macrophages. Similarly, in a mouse peritoneal metastasis model we did not detect an improved effect of IgG3 in preventing tumour outgrowth. Moreover, replacing the arginine at position 435 for a histidine in IgG3 to enhance half-life did not result in better suppression of tumour outgrowth compared to wild type IgG3 when injected prior to tumour cell injection. CONCLUSION: In conclusion, human IgG3 does not have improved therapeutic efficacy compared to human IgG1 in a mouse tumour model.


Subject(s)
Antibodies, Monoclonal/immunology , Immunoglobulin G/immunology , Melanoma, Experimental/immunology , Monocytes/immunology , Peritoneal Neoplasms/immunology , Receptors, IgG/immunology , Animals , Antibodies, Monoclonal/therapeutic use , Antibody-Dependent Cell Cytotoxicity , Half-Life , Humans , Male , Melanoma, Experimental/pathology , Melanoma, Experimental/therapy , Mice , Mice, Inbred C57BL , Monocytes/pathology , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/therapy , Phagocytosis , Radioimmunotherapy
7.
MAbs ; 7(2): 311-21, 2015.
Article in English | MEDLINE | ID: mdl-25760767

ABSTRACT

Daratumumab (DARA) is a human CD38-specific IgG1 antibody that is in clinical development for the treatment of multiple myeloma (MM). The potential for IgG1 antibodies to induce macrophage-mediated phagocytosis, in combination with the known presence of macrophages in the tumor microenvironment in MM and other hematological tumors, led us to investigate the contribution of antibody-dependent, macrophage-mediated phagocytosis to DARA's mechanism of action. Live cell imaging revealed that DARA efficiently induced macrophage-mediated phagocytosis, in which individual macrophages rapidly and sequentially engulfed multiple tumor cells. DARA-dependent phagocytosis by mouse and human macrophages was also observed in an in vitro flow cytometry assay, using a range of MM and Burkitt's lymphoma cell lines. Phagocytosis contributed to DARA's anti-tumor activity in vivo, in both a subcutaneous and an intravenous leukemic xenograft mouse model. Finally, DARA was shown to induce macrophage-mediated phagocytosis of MM cells isolated from 11 of 12 MM patients that showed variable levels of CD38 expression. In summary, we demonstrate that phagocytosis is a fast, potent and clinically relevant mechanism of action that may contribute to the therapeutic activity of DARA in multiple myeloma and potentially other hematological tumors.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Neoplasm/pharmacology , Cytophagocytosis/drug effects , Lymphoma/drug therapy , Macrophages/immunology , Multiple Myeloma/drug therapy , Animals , Cell Line, Tumor , Humans , Lymphoma/immunology , Lymphoma/pathology , Mice , Multiple Myeloma/immunology , Multiple Myeloma/pathology , Xenograft Model Antitumor Assays
8.
J Clin Invest ; 124(2): 812-23, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24430180

ABSTRACT

The use of monoclonal antibodies (mAbs) as therapeutic tools has increased dramatically in the last decade and is now one of the mainstream strategies to treat cancer. Nonetheless, it is still not completely understood how mAbs mediate tumor cell elimination or the effector cells that are involved. Using intravital microscopy, we found that antibody-dependent phagocytosis (ADPh) by macrophages is a prominent mechanism for removal of tumor cells from the circulation in a murine tumor cell opsonization model. Tumor cells were rapidly recognized and arrested by liver macrophages (Kupffer cells). In the absence of mAbs, Kupffer cells sampled tumor cells; however, this sampling was not sufficient for elimination. By contrast, antitumor mAb treatment resulted in rapid phagocytosis of tumor cells by Kupffer cells that was dependent on the high-affinity IgG-binding Fc receptor (FcγRI) and the low-affinity IgG-binding Fc receptor (FcγRIV). Uptake and intracellular degradation were independent of reactive oxygen or nitrogen species production. Importantly, ADPh prevented the development of liver metastases. Tumor cell capture and therapeutic efficacy were lost after Kupffer cell depletion. Our data indicate that macrophages play a prominent role in mAb-mediated eradication of tumor cells. These findings may help to optimize mAb therapeutic strategies for patients with cancer by helping us to aim to enhance macrophage recruitment and activity.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Macrophages/metabolism , Neoplastic Cells, Circulating/metabolism , Animals , Antibodies, Monoclonal/chemistry , Bone Marrow Cells/cytology , Cell Line, Tumor , Humans , Immunoglobulin G/chemistry , Kupffer Cells/cytology , Liver/metabolism , Liver/pathology , Melanoma, Experimental , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microscopy, Fluorescence , Neoplasm Metastasis , Neoplasm Transplantation , Neoplasms/immunology , Phagocytosis , Reactive Nitrogen Species , Reactive Oxygen Species
9.
Oncoimmunology ; 1(9): 1517-1526, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23264898

ABSTRACT

The surgical resection of primary colorectal cancer is associated with an enhanced risk of liver metastases. Moreover, bacterial translocation or anastomic leakage during resection has been shown to correlate with a poor long-term surgical outcome, suggesting that bacterial products may contribute to the formation of metastases. Driven by these premises, we investigated the role of the bacterial product lipopolysaccharide (LPS) in the generation of liver metastases. Intraperitoneal injection of LPS led to enhanced tumor-cell adhesion to the rat liver as early as 1.5 h post-administration. Furthermore, a rapid loss of the expression of the tight junction protein zonula occludens-1 (ZO-1) was observed, suggesting that LPS disrupts the integrity of the microvasculature. LPS addition to endothelial-macrophage co-cultures damaged endothelial monolayers and caused the formation of intercellular gaps, which was accompanied by increased tumor-cell adhesion. These results suggest that macrophages are involved in the endothelial damage resulting from exposure to LPS. Interestingly, the expression levels of of ZO-1 were not affected by LPS treatment in rats in which liver macrophages had been depleted as well as in rats that had been treated with a reactive oxygen species (ROS) scavenger. In both settings, decreased tumor-cell adhesion was observed. Taken together, our findings indicate that LPS induces ROS release by macrophages, resulting in the damage of the vascular lining of the liver and hence allowing increased tumor-cell adherence. Thus, peri-operative treatments that prevent the activation of macrophages and-as a consequence-limit endothelial damage and tumor-cell adhesion may significantly improve the long-term outcome of cancer patients undergoing surgical tumor resection.

10.
Oncoimmunology ; 1(6): 798-809, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-23162747

ABSTRACT

Macrophages are versatile cells, which phenotype is profoundly influenced by their environment. Pro-inflammatory classically activated or M1 macrophages, and anti-inflammatory alternatively-activated or M2 macrophages represent two extremes of a continuum of functional states. Consequently, macrophages that are present in tumors can exert tumor-promoting and tumor-suppressing activity, depending on the tumor milieu. In this study we investigated how human monocytes-the precursors of macrophages-are influenced by carcinoma cells of different origin. We demonstrate that monocytes, stimulated with breast cancer supernatant, showed increased expression of interleukin (IL)-10, IL-8 and chemokines CCL17 and CCL22, which are associated with an alternatively-activated phenotype. By contrast, monocytes that were cultured in supernatants of colon cancer cells produced more pro-inflammatory cytokines (e.g., IL-12 and TNFα) and reactive oxygen species. Secretome analysis revealed differential secretion of proteins by colon and breast cancer cell lines, of which the proteoglycan versican was exclusively secreted by colon carcinoma cell lines. Reducing active versican by blocking with monoclonal antibodies or shRNA diminished pro-inflammatory cytokine production by monocytes. Thus, colon carcinoma cells polarize monocytes toward a more classically-activated anti-tumorigenic phenotype, whereas breast carcinomas predispose monocytes toward an alternatively activated phenotype. Interestingly, presence of macrophages in breast or colon carcinomas correlates with poor or good prognosis in patients, respectively. The observed discrepancy in macrophage activation by either colon or breast carcinoma cells may therefore explain the dichotomy between patient prognosis and macrophage presence in these different tumors. Designing new therapies, directing development of monocytes toward M1 activated tumor macrophages in cancer patients, may have great clinical benefits.

11.
Gut ; 60(8): 1076-86, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21278144

ABSTRACT

OBJECTIVE: Resection of primary colorectal cancer is associated with enhanced risk of development of liver metastases. It was previously demonstrated that surgery initiated an early inflammatory response resulting in elevated tumour cell adhesion in the liver. Because reactive oxygen species (ROS) are shown to be produced and released during surgery, the effects of ROS on the liver vascular lining and tumour cell adhesion were investigated. METHODS: Human endothelial cell monolayers (human umbilical vein endothelial cells (HUVECs) and human microvascular endothelial cells of the lung (HMEC-1s)) were exposed to ROS production, after which electrical impedance, cellular integrity and tumour cell adhesion were investigated. Furthermore, surgery-induced tumour cell adhesion as well as the role of ROS and liver macrophages (Kupffer cells) in this process were studied in vivo. RESULTS: Production of ROS decreased cellular impedance of endothelial monolayers dramatically. Moreover, formation of intercellular gaps in endothelial monolayers was observed, exposing subendothelial extracellular matrix (ECM) on which colon carcinoma cells adhered via integrin molecules. Endothelial damage was, however, prevented in the presence of ROS-scavenging enzymes. Additionally, surgery induced downregulation of both rat and human liver tight junction molecules. Treatment of rats with the ROS scavenger edaravone prevented surgery-induced tumour cell adhesion and downregulation of tight junction proteins in the liver. Interestingly, depletion of Kupffer cells prior to surgery significantly reduced the numbers of adhered tumour cells and prevented disruption of expression of tight junction proteins. CONCLUSIONS: In this study it is shown that surgery-induced ROS production by macrophages damages the vascular lining by downregulating tight junction proteins. This leads to exposure of ECM, to which circulating tumour cells bind. In light of this, perioperative therapeutic intervention, preventing surgery-induced inflammatory reactions, may reduce the risk of developing liver metastases, thereby improving the clinical outcome of patients with colorectal cancer.


Subject(s)
Carcinoma/secondary , Colectomy/adverse effects , Colorectal Neoplasms/pathology , Liver Neoplasms/secondary , Neoplasms, Experimental/pathology , Reactive Oxygen Species/pharmacology , Animals , Biopsy , Carcinoma/etiology , Carcinoma/metabolism , Cell Aggregation , Cell Line, Tumor , Colorectal Neoplasms/etiology , Colorectal Neoplasms/metabolism , Disease Progression , Humans , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver Neoplasms/metabolism , Macrophages/drug effects , Macrophages/metabolism , Macrophages/ultrastructure , Male , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Neoplasms, Experimental/etiology , Neoplasms, Experimental/metabolism , Rats , Rats, Inbred Strains
12.
J Hepatol ; 53(4): 677-85, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20619916

ABSTRACT

BACKGROUND & AIMS: Development of liver metastases is a frequent complication in patients with colorectal cancer (CRC), even after successful resection of the primary tumor. As such, post-operative adjuvant therapies that aim to eliminate residual disease after surgery may improve patient outcome. METHODS: We used a colon carcinoma liver metastases model, in which CC531s colon carcinoma cells are injected into the portal circulation by a surgical procedure. As injected tumor cells are arrested in the liver, this model is suitable for investigating the interaction of tumor cells with the liver microenvironment. By administering tumor specific monoclonal antibodies (mAb) directly post-operatively, we were able to determine the effect of antibody therapy on eradication of arrested tumor cells and subsequent liver metastases outgrowth. RESULTS: We showed that post-operative treatment with tumor specific monoclonal antibodies (mAb) prevents liver metastases outgrowth. Antibody-dependent phagocytosis (ADPh) was the main mechanism involved, as enhanced uptake of tumor cells by innate mononuclear phagocytes in the liver was observed after mAb therapy. Furthermore, Kupffer cells (KC) were identified as the most prominent effector cells, as depletion of KC abolished therapeutic efficacy. This was partly compensated by monocytes when animals were treated with a high mAb dose, but monocytes were unable to phagocytose tumor cells when rats were treated with low mAb doses. CONCLUSIONS: The finding that KC and monocytes can eliminate tumor cells through ADPh has important and promising clinical implications for designing new adjuvant therapies for patients undergoing CRC resection.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Colorectal Neoplasms/drug therapy , Liver Neoplasms/drug therapy , Animals , Colorectal Neoplasms/pathology , Colorectal Neoplasms/surgery , Combined Modality Therapy , Humans , Leukocytes, Mononuclear , Liver Neoplasms/prevention & control , Liver Neoplasms/secondary , Liver Neoplasms/surgery , Liver Neoplasms, Experimental , Mice , Phagocytes , Phagocytosis , Treatment Outcome
13.
Cancer Lett ; 262(1): 77-86, 2008 Apr 08.
Article in English | MEDLINE | ID: mdl-18187256

ABSTRACT

Macrophages generally constitute a major component of tumor stroma, and possess either tumor growth promoting or inhibiting capabilities. Classically activated macrophages exert cytotoxicity and produce inflammatory cytokines, which limits tumor growth. By contrast, alternatively activated or M2 macrophages induce tumor progression by stimulating angiogenesis and proliferation. Previously we showed that resident macrophages control metastatic spread of coloncarcinoma cells in liver and peritoneal tumor models. However, it is proposed that newly recruited macrophages develop into tumor-associated M2 macrophages, as they are exposed to a microenvironment that favors alternative activation. Previously we showed that monocyte migration was diminished after flavonoid treatment in an experimental autoimmune encephalomyelitis animal model. In the present study, we investigated the role of newly recruited macrophages in colon carcinoma development, by using the flavonoids rutin and luteolin to reduce monocyte migration into peritoneal tumors. Increased tumor development was observed in animals that were treated with rutin and luteolin. Immunohistochemical analyses showed that the number of ED2(+) resident macrophages was normal in tumors of animals that received rutin and luteolin treatment. However, the number of ED1(+) cells (marker immature macrophages) was reduced, indicating decreased macrophage recruitment. Thus, inhibition of monocyte migration promotes tumor growth, supporting that not only resident, but also newly recruited macrophages limit peritoneal colon carcinoma metastases development.


Subject(s)
Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Macrophages/immunology , Peritoneal Neoplasms/secondary , Animals , Cell Movement , Cell Proliferation/drug effects , Luteolin/pharmacology , Male , Rats , Rats, Inbred Strains , Rutin/pharmacology , Stromal Cells , Tumor Microenvironment
14.
Hepatology ; 47(2): 532-43, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18098323

ABSTRACT

UNLABELLED: Currently, an operation is the only curative option for patients with colorectal cancer. Unfortunately, many patients will develop liver metastases even after successful resection of the primary tumor. Removal of primary colorectal carcinoma may paradoxically increase the risk of metastases development, because accumulating evidence suggests that surgical trauma can stimulate tumor growth. In the present study, we investigated the effects of abdominal trauma on liver metastases development. Surgical trauma dramatically increased adhesion of tumor cells in the liver, leading to enhanced outgrowth of metastases. Endothelial stress was observed rapidly after an operation, suggesting that abdominal trauma resulted in impairment of blood vessel integrity. Tumor cells preferentially adhered to extracellular matrix (ECM). Furthermore, preincubation of tumor cells with anti-alpha2 integrin antibodies completely reverted operation-induced augmentation of CC531s adhesion and liver metastases outgrowth. As such, we postulate that blood vessel integrity in the liver is compromised after abdominal trauma, resulting in enhanced ECM exposure, which enables tumor cell adhesion and metastases outgrowth. CONCLUSION: Perioperative treatments that either aim to reduce endothelial stress or block the interaction between tumor cells and ECM represent promising new therapeutic strategies for the prevention of liver metastases development after resection of the primary tumor.


Subject(s)
Antibodies, Monoclonal/pharmacology , Colonic Neoplasms/pathology , Colonic Neoplasms/physiopathology , Integrin alpha2/immunology , Liver Neoplasms/secondary , Neoplasm Metastasis/prevention & control , Animals , Cell Line , Flow Cytometry , Liver Neoplasms/pathology , Liver Neoplasms/prevention & control , Microscopy, Confocal , Neoplasm Metastasis/pathology , Rats
15.
Ann Surg ; 247(1): 85-94, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18156927

ABSTRACT

OBJECTIVE: To study the mechanisms behind surgery-induced augmentation of tumor outgrowth. SUMMARY BACKGROUND DATA: Surgery provides the best chance of cure for most primary intra-abdominal carcinomas. Effective treatment is however relatively frequent complicated by peritoneal recurrences, which often originate from free-floating intraperitoneal tumor cells that implant on peritoneal surfaces. We previously reported that surgical trauma promotes development of peritoneal metastases. METHODS: Evaluation of adhesion of CC531s rat colon carcinoma cell line intraperitoneally after laparotomy using in vivo, ex vivo, and in vitro models. Also, human ex vivo models were used to study peritoneal tumor cell adhesion. RESULTS: Peritoneal imprints of operated rats showed that direct damaging of the peritoneum resulted in enhanced adhesion of rat CC531 colon carcinoma cells to submesothelial extracellular matrix (ECM) proteins in vivo, which was confirmed by electron microscopy. Additionally, the inflammatory reaction of the peritoneal cavity led to retraction of mesothelial cells, hereby also exposing ECM at peritoneal surfaces that had not been traumatized directly. Furthermore, we demonstrated that beta1 integrin subunits represented the primary mediators involved in adherence to either isolated ECM components or excised traumatized rat and human peritoneum. Importantly, incubation of CC531s cells with anti-beta1 integrin antibodies resulted in a significant decrease of tumor cell adhesion in vivo. CONCLUSIONS: Surgical trauma results in exposure of ECM at directly and nondirectly damaged peritoneal surfaces, leading to increased beta1 integrin-dependent tumor cell adhesion. Perioperative therapies, which aim to block beta1 integrin subunits, might therefore serve as new clinical tools for the prevention of peritoneal recurrences.


Subject(s)
Antibodies/pharmacology , Colonic Neoplasms/surgery , Integrin beta1/physiology , Peritoneum/injuries , Animals , Cell Adhesion/physiology , Cell Line, Tumor , Flow Cytometry , Humans , Male , Microscopy, Electron, Scanning , Rats , Rats, Inbred Strains
SELECTION OF CITATIONS
SEARCH DETAIL