Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
J Med Chem ; 67(12): 10306-10320, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38872300

ABSTRACT

Selective inhibition of the RGD (Arg-Gly-Asp) integrin αvß1 has been recently identified as an attractive therapeutic approach for the treatment of liver fibrosis given its function, target expression, and safety profile. Our identification of a non-RGD small molecule lead followed by focused, systematic changes to the core structure utilizing a crystal structure, in silico modeling, and a tractable synthetic approach resulted in the identification of a potent small molecule exhibiting a remarkable affinity for αvß1 relative to several other integrin isoforms measured. Azabenzimidazolone 25 demonstrated antifibrotic efficacy in an in vivo rat liver fibrosis model and represents a tool compound capable of further exploring the biological consequences of selective αvß1 inhibition.


Subject(s)
Drug Design , Receptors, Vitronectin , Animals , Rats , Humans , Receptors, Vitronectin/antagonists & inhibitors , Receptors, Vitronectin/metabolism , Structure-Activity Relationship , Liver Cirrhosis/drug therapy , Models, Molecular , Drug Discovery , Rats, Sprague-Dawley , Male , Crystallography, X-Ray , Benzimidazoles/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/chemical synthesis
3.
J Med Chem ; 64(17): 12893-12902, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34448571

ABSTRACT

This publication details the successful use of FBDD (fragment-based drug discovery) principles in the invention of a novel covalent Bruton's tyrosine kinase inhibitor, which ultimately became the Takeda Pharmaceuticals clinical candidate TAK-020. Described herein are the discovery of the fragment 5-phenyl-2,4-dihydro-3H-1,2,4-triazol-3-one, the subsequent optimization of this hit molecule to the candidate, and synthesis and performance in pharmacodynamic and efficacy models along with direct biophysical comparison of TAK-020 with other clinical-level assets and the marketed drug Ibrutinib.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Arthritis, Experimental/drug therapy , Drug Design , Drug Discovery/methods , Enzyme Inhibitors/pharmacology , Animals , Collagen/toxicity , Drug Delivery Systems , Enzyme Inhibitors/chemistry , Humans , Rats
4.
J Pharmacol Exp Ther ; 371(2): 299-308, 2019 11.
Article in English | MEDLINE | ID: mdl-31537613

ABSTRACT

Target-engagement pharmacodynamic (PD) biomarkers are valuable tools in the prioritization of drug candidates, especially for novel, first-in-class mechanisms whose robustness to alter disease outcome is unknown. Methionine aminopeptidase 2 (MetAP2) is a cytosolic metalloenzyme that cleaves the N-terminal methionine from nascent proteins. Inhibition of MetAP2 leads to weight loss in obese rodents, dogs and humans. However, there is a need to develop efficacious compounds that specifically inhibit MetAP2 with an improved safety profile. The objective of this study was to identify a PD biomarker for selecting potent, efficacious compounds and for predicting clinical efficacy that would result from inhibition of MetAP2. Here we report the use of NMet14-3-3γ for this purpose. Treatment of primary human cells with MetAP2 inhibitors resulted in an approx. 10-fold increase in NMet14-3-3γ levels. Furthermore, treatment of diet-induced obese mice with these compounds reduced body weight (approx. 20%) and increased NMet14-3-3γ (approx. 15-fold) in adipose tissues. The effects on target engagement and body weight increased over time and were dependent on dose and administration frequency of compound. The relationship between compound concentration in plasma, NMet14-3-3γ in tissue, and reduction of body weight in obese mice was used to generate a pharmacokinetic-pharmacodynamic-efficacy model for predicting efficacy of MetAP2 inhibitors in mice. We also developed a model for predicting weight loss in humans using a target engagement PD assay that measures inhibitor-bound MetAP2 in blood. In summary, MetAP2 target engagement biomarkers can be used to select efficacious compounds and predict weight loss in humans. SIGNIFICANCE STATEMENT: The application of target engagement pharmacodynamic biomarkers during drug development provides a means to determine the dose required to fully engage the intended target and an approach to connect the drug target to physiological effects. This work exemplifies the process of using target engagement biomarkers during preclinical research to select new drug candidates and predict clinical efficacy. We determine concentration of MetAP2 antiobesity compounds needed to produce pharmacological activity in primary human cells and in target tissues from an appropriate animal model and establish key relationships between pharmacokinetics, pharmacodynamics, and efficacy, including the duration of effects after drug administration. The biomarkers described here can aid decision-making in early clinical trials of MetAP2 inhibitors for the treatment of obesity.


Subject(s)
Chlorobenzenes/pharmacology , Cinnamates/pharmacology , Cyclohexanes/pharmacology , Epoxy Compounds/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Methionyl Aminopeptidases/antagonists & inhibitors , Methionyl Aminopeptidases/metabolism , Sesquiterpenes/pharmacology , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacology , Animals , Biomarkers/metabolism , Chlorobenzenes/chemistry , Cinnamates/chemistry , Cyclohexanes/chemistry , Dose-Response Relationship, Drug , Epoxy Compounds/chemistry , HeLa Cells , Humans , Male , Mice , Mice, Inbred C57BL , Predictive Value of Tests , Sesquiterpenes/chemistry , Treatment Outcome
5.
Mol Metab ; 20: 89-101, 2019 02.
Article in English | MEDLINE | ID: mdl-30553772

ABSTRACT

OBJECTIVE: Atherosclerosis is a major cause of cardiovascular disease. Monocyte-endothelial cell interactions are partly mediated by expression of monocyte CX3CR1 and endothelial cell fractalkine (CX3CL1). Interrupting the interaction between this ligand-receptor pair should reduce monocyte binding to the endothelial wall and reduce atherosclerosis. We sought to reduce atherosclerosis by preventing monocyte-endothelial cell interactions through use of a long-acting CX3CR1 agonist. METHODS: In this study, the chemokine domain of CX3CL1 was fused to the mouse Fc region to generate a long-acting soluble form of CX3CL1 suitable for chronic studies. CX3CL1-Fc or saline was injected twice a week (30 mg/kg) for 4 months into Ldlr knockout (KO) mice on an atherogenic western diet. RESULTS: CX3CL1-Fc-treated Ldlr KO mice showed decreased en face aortic lesion surface area and reduced aortic root lesion size with decreased necrotic core area. Flow cytometry analyses of CX3CL1-Fc-treated aortic wall cell digests revealed a decrease in M1-like polarized macrophages and T cells. Moreover, CX3CL1-Fc administration reduced diet-induced atherosclerosis after switching from an atherogenic to a normal chow diet. In vitro monocyte adhesion studies revealed that CX3CL1-Fc treatment caused fewer monocytes to adhere to a human umbilical vein endothelial cell monolayer. Furthermore, a dorsal window chamber model demonstrated that CX3CL1-Fc treatment decreased in vivo leukocyte adhesion and rolling in live capillaries after short-term ischemia-reperfusion. CONCLUSION: These results indicate that CX3CL1-Fc can inhibit monocyte/endothelial cell adhesion as well as reduce atherosclerosis.


Subject(s)
Atherosclerosis/drug therapy , Chemokine CX3CL1/therapeutic use , Plaque, Atherosclerotic/drug therapy , Animals , Aorta/pathology , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Cells, Cultured , Chemokine CX3CL1/genetics , Immunoglobulin Fc Fragments/genetics , Male , Mice , Mice, Inbred C57BL , Plaque, Atherosclerotic/prevention & control , Receptors, LDL/genetics , Recombinant Proteins/genetics , Recombinant Proteins/therapeutic use
6.
J Clin Invest ; 128(4): 1458-1470, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29504946

ABSTRACT

We have previously reported that the fractalkine (FKN)/CX3CR1 system represents a novel regulatory mechanism for insulin secretion and ß cell function. Here, we demonstrate that chronic administration of a long-acting form of FKN, FKN-Fc, can exert durable effects to improve glucose tolerance with increased glucose-stimulated insulin secretion and decreased ß cell apoptosis in obese rodent models. Unexpectedly, chronic FKN-Fc administration also led to decreased α cell glucagon secretion. In islet cells, FKN inhibited ATP-sensitive potassium channel conductance by an ERK-dependent mechanism, which triggered ß cell action potential (AP) firing and decreased α cell AP amplitude. This results in increased glucose-stimulated insulin secretion and decreased glucagon secretion. Beyond its islet effects, FKN-Fc also exerted peripheral effects to enhance hepatic insulin sensitivity due to inhibition of glucagon action. In hepatocytes, FKN treatment reduced glucagon-stimulated cAMP production and CREB phosphorylation in a pertussis toxin-sensitive manner. Together, these results raise the possibility of use of FKN-based therapy to improve type 2 diabetes by increasing both insulin secretion and insulin sensitivity.


Subject(s)
Blood Glucose/metabolism , Chemokine CX3CL1/pharmacology , Immunoglobulin Fc Fragments/pharmacology , Insulin Secretion/drug effects , Insulin-Secreting Cells/metabolism , Recombinant Fusion Proteins/pharmacology , Animals , Blood Glucose/genetics , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Chemokine CX3CL1/genetics , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Hepatocytes/metabolism , Hepatocytes/pathology , Immunoglobulin Fc Fragments/genetics , Insulin Secretion/genetics , Insulin-Secreting Cells/pathology , Mice , Mice, Transgenic , Recombinant Fusion Proteins/genetics
7.
Mol Cancer Ther ; 16(7): 1269-1278, 2017 07.
Article in English | MEDLINE | ID: mdl-28341789

ABSTRACT

Receptor tyrosine kinase therapies have proven to be efficacious in specific cancer patient populations; however, a significant limitation of tyrosine kinase inhibitor (TKI) treatment is the emergence of resistance mechanisms leading to a transient, partial, or complete lack of response. Combination therapies using agents with synergistic activity have potential to improve response and reduce acquired resistance. Chemoreagent or TKI treatment can lead to increased expression of hepatocyte growth factor (HGF) and/or MET, and this effect correlates with increased metastasis and poor prognosis. Despite MET's role in resistance and cancer biology, MET TKI monotherapy has yielded disappointing clinical responses. In this study, we describe the biological activity of a selective, oral MET TKI with slow off-rate and its synergistic antitumor effects when combined with an anti-HGF antibody. We evaluated the combined action of simultaneously neutralizing HGF ligand and inhibiting MET kinase activity in two cancer xenograft models that exhibit autocrine HGF/MET activation. The combination therapy results in additive antitumor activity in KP4 pancreatic tumors and synergistic activity in U-87MG glioblastoma tumors. Pharmacodynamic characterization of biomarkers that correlate with combination synergy reveal that monotherapies induce an increase in the total MET protein, whereas combination therapy significantly reduces total MET protein levels and phosphorylation of 4E-BP1. These results hold promise that dual targeting of HGF and MET by combining extracellular ligand inhibitors with intracellular MET TKIs could be an effective intervention strategy for cancer patients who have acquired resistance that is dependent on total MET protein. Mol Cancer Ther; 16(7); 1269-78. ©2017 AACR.


Subject(s)
Glioblastoma/drug therapy , Hepatocyte Growth Factor/genetics , Protein Kinase Inhibitors/administration & dosage , Proto-Oncogene Proteins c-met/genetics , Small Molecule Libraries/administration & dosage , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Cycle Proteins , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Drug Synergism , Glioblastoma/genetics , Hepatocyte Growth Factor/antagonists & inhibitors , Humans , Mice , Phosphoproteins/genetics , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Xenograft Model Antitumor Assays
8.
Bioorg Med Chem Lett ; 27(4): 1099-1104, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28082036

ABSTRACT

Axl has been a target of interest in the oncology field for several years based on its role in various oncogenic processes. To date, no wild-type Axl crystal structure has been reported. Herein, we describe the structure-based optimization of a novel chemotype of Axl inhibitors, 1H-imidazole-2-carboxamide, using a mutated kinase homolog, Mer(I650M), as a crystallographic surrogate. Iterative optimization of the initial lead compound (1) led to compound (21), a selective and potent inhibitor of wild-type Axl. Compound (21) will serve as a useful compound for further in vivo studies.


Subject(s)
Imidazoles/chemistry , Imidazoles/pharmacology , Mutation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/genetics , Crystallography, X-Ray , Molecular Structure , c-Mer Tyrosine Kinase , Axl Receptor Tyrosine Kinase
9.
Mol Cancer Ther ; 12(4): 460-70, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23358665

ABSTRACT

Protein kinases Aurora A, B, and C play essential roles during mitosis and cell division, are frequently elevated in cancer, and represent attractive targets for therapeutic intervention. TAK-901 is an investigational, multitargeted Aurora B kinase inhibitor derived from a novel azacarboline kinase hinge-binder chemotype. TAK-901 exhibited time-dependent, tight-binding inhibition of Aurora B, but not Aurora A. Consistent with Aurora B inhibition, TAK-901 suppressed cellular histone H3 phosphorylation and induced polyploidy. In various human cancer cell lines, TAK-901 inhibited cell proliferation with effective concentration values from 40 to 500 nmol/L. Examination of a broad panel of kinases in biochemical assays revealed inhibition of multiple kinases. However, TAK-901 potently inhibited only a few kinases other than Aurora B in intact cells, including FLT3 and FGFR2. In rodent xenografts, TAK-901 exhibited potent activity against multiple human solid tumor types, and complete regression was observed in the ovarian cancer A2780 model. TAK-901 also displayed potent activity against several leukemia models. In vivo biomarker studies showed that TAK-901 induced pharmacodynamic responses consistent with Aurora B inhibition and correlating with retention of TAK-901 in tumor tissue. These preclinical data highlight the therapeutic potential of TAK-901, which has entered phase I clinical trials in patients within a diverse range of cancers.


Subject(s)
Carbolines/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Sulfones/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Aurora Kinase A , Aurora Kinase B , Aurora Kinases , Biomarkers , Carbolines/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Histones/metabolism , Humans , Kinetics , Mice , Phosphorylation/drug effects , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Rats , Sulfones/chemistry , Xenograft Model Antitumor Assays
10.
Nat Immunol ; 3(4): 373-82, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11919579

ABSTRACT

The mechanisms that regulate susceptibility to virus-induced autoimmunity remain undefined. We establish here a fundamental link between the responsiveness of target pancreatic beta cells to interferons (IFNs) and prevention of coxsackievirus B4 (CVB4)-induced diabetes. We found that an intact beta cell response to IFNs was critical in preventing disease in infected hosts. The antiviral defense, raised by beta cells in response to IFNs, resulted in a reduced permissiveness to infection and subsequent natural killer (NK) cell-dependent death. These results show that beta cell defenses are critical for beta cell survival during CVB4 infection and suggest an important role for IFNs in preserving NK cell tolerance to beta cells during viral infection. Thus, alterations in target cell defenses can critically influence susceptibility to disease.


Subject(s)
Diabetes Mellitus, Type 1/immunology , Enterovirus B, Human/immunology , Enterovirus Infections/immunology , Intracellular Signaling Peptides and Proteins , Islets of Langerhans/immunology , Repressor Proteins , Animals , CD8-Positive T-Lymphocytes/immunology , Carrier Proteins/genetics , Carrier Proteins/physiology , Cell Line , DNA-Binding Proteins/immunology , Diabetes Mellitus, Type 1/virology , Drug Resistance , Humans , Interferon-alpha/pharmacology , Interferon-gamma/pharmacology , Islets of Langerhans/virology , Killer Cells, Natural/immunology , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Transgenic , STAT1 Transcription Factor , Signal Transduction/immunology , Suppressor of Cytokine Signaling 1 Protein , Suppressor of Cytokine Signaling Proteins , Trans-Activators/immunology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL