Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Vaccine ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38880693

ABSTRACT

BACKGROUND: The rVSVΔG-ZEBOV-GP Ebola vaccine (rVSV-ZEBOV) has been used in response to Ebola disease outbreaks caused by Ebola virus (EBOV). Understanding Ebola knowledge, attitudes, and practices (KAP) and the long-term immune response following rVSV-ZEBOV are critical to inform recommendations on future use. METHODS: We administered surveys and collected blood samples from healthcare workers (HCWs) from seven Ugandan healthcare facilities. Questionnaires collected information on demographic characteristics and KAP related to Ebola and vaccination. IgG ELISA, virus neutralization, and interferon gamma ELISpot measured immunological responses against EBOV glycoprotein (GP). RESULTS: Overall, 37 % (210/565) of HCWs reported receiving any Ebola vaccination. Knowledge that rVSV-ZEBOV only protects against EBOV was low among vaccinated (32 %; 62/192) and unvaccinated (7 %; 14/200) HCWs. Most vaccinated (91 %; 192/210) and unvaccinated (92 %; 326/355) HCWs wanted to receive a booster or initial dose of rVSV-ZEBOV, respectively. Median time from rVSV-ZEBOV vaccination to sample collection was 37.7 months (IQR: 30.5, 38.3). IgG antibodies against EBOV GP were detected in 95 % (61/64) of HCWs with vaccination cards and in 84 % (162/194) of HCWs who reported receiving a vaccination. Geometric mean titer among seropositive vaccinees was 0.066 IU/mL (95 % CI: 0.058-0.076). CONCLUSION: As Uganda has experienced outbreaks of Sudan virus and Bundibugyo virus, for which rVSV-ZEBOV does not protect against, our findings underscore the importance of continued education and risk communication to HCWs on Ebola and other viral hemorrhagic fevers. IgG antibodies against EBOV GP were detected in most vaccinated HCWs in Uganda 2─4 years after vaccination; however, the duration and correlates of protection warrant further investigation.

2.
Virol J ; 21(1): 104, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702807

ABSTRACT

BACKGROUND: Rift Valley fever (RVF) is a zoonotic viral disease of increasing intensity among humans in Africa and the Arabian Peninsula. In Uganda, cases reported prior to 2016 were mild or not fully documented. We report in this paper on the severe morbidity and hospital-based mortality of human cases in Uganda. METHODS: Between November 2017 and March 2020 human cases reported to the Uganda Virus Research Institute (UVRI) were confirmed by polymerase chain reaction (PCR). Ethical and regulatory approvals were obtained to enrol survivors into a one-year follow-up study. Data were collected on socio-demographics, medical history, laboratory tests, potential risk factors, and analysed using Stata software. RESULTS: Overall, 40 cases were confirmed with acute RVF during this period. Cases were not geographically clustered and nearly all were male (39/40; 98%), median age 32 (range 11-63). The median definitive diagnosis time was 7 days and a delay of three days between presumptive and definitive diagnosis. Most patients (31/40; 78%) presented with fever and bleeding at case detection. Twenty-eight (70%) cases were hospitalised, out of whom 18 (64%) died. Mortality was highest among admissions in regional referral (11/16; 69%) and district (4/5; 80%) hospitals, hospitalized patients with bleeding at case detection (17/27; 63%), and patients older than 44 years (9/9; 100%). Survivors mostly manifested a mild gastro-intestinal syndrome with nausea (83%), anorexia (75%), vomiting (75%), abdominal pain (50%), and diarrhoea (42%), and prolonged symptoms of severe disease including jaundice (67%), visual difficulties (67%), epistaxis (50%), haemoptysis (42%), and dysentery (25%). Symptom duration varied between two to 120 days. CONCLUSION: RVF is associated with high hospital-based mortality, severe and prolonged morbidity among humans that present to the health care system and are confirmed by PCR. One-health composite interventions should be developed to improve environmental and livestock surveillance, prevent infections, promptly detect outbreaks, and improve patient outcomes.


Subject(s)
Rift Valley Fever , Humans , Uganda/epidemiology , Rift Valley Fever/mortality , Rift Valley Fever/epidemiology , Male , Adult , Middle Aged , Adolescent , Female , Young Adult , Child , Rift Valley fever virus/genetics , Hospital Mortality , Morbidity , Risk Factors
3.
bioRxiv ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38496658

ABSTRACT

Crimean-Congo hemorrhagic fever virus can cause lethal disease in humans yet there are no approved medical countermeasures. Viral glycoprotein GP38, unique to Nairoviridae, is a target of protective antibodies, but extensive mapping of the human antibody response to GP38 has not been previously performed. Here, we isolated 188 GP38-specific antibodies from human survivors of infection. Competition experiments showed that these antibodies bind across five distinct antigenic sites, encompassing eleven overlapping regions. Additionally, we reveal structures of GP38 bound with nine of these antibodies targeting different antigenic sites. Although GP38-specific antibodies were non-neutralizing, several antibodies were found to have protection equal to or better than murine antibody 13G8 in two highly stringent rodent models of infection. Together, these data expand our understanding regarding this important viral protein and inform the development of broadly effective CCHFV antibody therapeutics.

4.
PLoS One ; 19(1): e0287272, 2024.
Article in English | MEDLINE | ID: mdl-38265993

ABSTRACT

BACKGROUND: Significant milestones have been made in the development of COVID19 diagnostics Technologies. Government of the republic of Uganda and the line Ministry of Health mandated Uganda Virus Research Institute to ensure quality of COVID19 diagnostics. Re-testing was one of the methods initiated by the UVRI to implement External Quality assessment of COVID19 molecular diagnostics. METHOD: participating laboratories were required by UVRI to submit their already tested and archived nasopharyngeal samples and corresponding meta data. These were then re-tested at UVRI using the WHO Berlin protocol, the UVRI results were compared to those of the primary testing laboratories in order to ascertain performance agreement for the qualitative & quantitative results obtained. Ms Excel window 12 and GraphPad prism ver 15 was used in the analysis. Bar graphs, pie charts and line graphs were used to compare performance agreement between the reference Laboratory and primary testing Laboratories. RESULTS: Eleven (11) Ministry of Health/Uganda Virus Research Institute COVID19 accredited laboratories participated in the re-testing of quality control samples. 5/11 (45%) of the primary testing laboratories had 100% performance agreement with that of the National Reference Laboratory for the final test result. Even where there was concordance in the final test outcome (negative or positive) between UVRI and primary testing laboratories, there were still differences in CT values. The differences in the Cycle Threshold (CT) values were insignificant except for Tenna & Pharma Laboratory and the UVRI(p = 0.0296). The difference in the CT values were not skewed to either the National reference Laboratory(UVRI) or the primary testing laboratory but varied from one laboratory to another. In the remaining 6/11 (55%) laboratories where there were discrepancies in the aggregate test results, only samples initially tested and reported as positive by the primary laboratories were tested and found to be false positives by the UVRI COVID19 National Reference Laboratory. CONCLUSION: False positives were detected from public, private not for profit and private testing laboratories in almost equal proportion. There is need for standardization of molecular testing platforms in Uganda. There is also urgent need to improve on the Laboratory quality management systems of the molecular testing laboratories in order to minimize such discrepancies.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , Uganda , Real-Time Polymerase Chain Reaction , COVID-19 Testing , Academies and Institutes
6.
One Health Outlook ; 5(1): 16, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012800

ABSTRACT

BACKGROUND: Rift Valley Fever (RVF) is a viral zoonosis that can cause severe haemorrhagic fevers in humans and high mortality rates and abortions in livestock. On 10 December 2020, the Uganda Ministry of Health was notified of the death of a 25-year-old male who tested RVF-positive by reverse-transcription polymerase chain reaction (RT-PCR) at the Uganda Virus Research Institute. We investigated to determine the scope of the outbreak, identify exposure factors, and institute control measures. METHODS: A suspected case was acute-onset fever (or axillary temperature > 37.5 °C) and ≥ 2 of: headache, muscle or joint pain, unexpected bleeding, and any gastroenteritis symptom in a resident of Sembabule District from 1 November to 31 December 2020. A confirmed case was the detection of RVF virus nucleic acid by RT-PCR or serum IgM antibodies detected by enzyme-linked immunosorbent assay (ELISA). A suspected animal case was livestock (cattle, sheep, goats) with any history of abortion. A confirmed animal case was the detection of anti-RVF IgM antibodies by ELISA. We took blood samples from herdsmen who worked with the index case for RVF testing and conducted interviews to understand more about exposures and clinical characteristics. We reviewed medical records and conducted an active community search to identify additional suspects. Blood samples from animals on the index case's farm and two neighbouring farms were taken for RVF testing. RESULTS: The index case regularly drank raw cow milk. None of the seven herdsmen who worked with him nor his brother's wife had symptoms; however, a blood sample from one herdsman was positive for anti-RVF-specific IgM and IgG. Neither the index case nor the additional confirmed case-patient slaughtered or butchered any sick/dead animals nor handled abortus; however, some of the other herdsmen did report high-risk exposures to animal body fluids and drinking raw milk. Among 55 animal samples collected (2 males and 53 females), 29 (53%) were positive for anti-RVF-IgG. CONCLUSIONS: Two human RVF cases occurred in Sembabule District during December 2020, likely caused by close interaction between infected cattle and humans. A district-wide animal serosurvey, animal vaccination, and community education on infection prevention practices campaign could inform RVF exposures and reduce disease burden.

7.
PLoS One ; 18(11): e0288587, 2023.
Article in English | MEDLINE | ID: mdl-37943886

ABSTRACT

Crimean-Congo Hemorrhagic fever (CCHF) is an important zoonotic disease transmitted to humans both by tick vectors and contact with fluids from an infected animal or human. Although animals are not symptomatic when infected, they are the main source of human infection. Uganda has reported sporadic human outbreaks of CCHF in various parts of the country since 2013. We designed a nationwide epidemiological study to investigate the burden of CCHF in livestock. A total of 3181 animals were sampled; 1732 cattle (54.4%), 1091 goats (34.3%), and 358 sheep (11.3%) resulting in overall livestock seropositivity of IgG antibodies against CCHF virus (CCHFV) of 31.4% (999/3181). Seropositivity in cattle was 16.9% and in sheep and goats was 48.8%. Adult and juvenile animals had higher seropositivity compared to recently born animals, and seropositivity was higher in female animals (33.5%) compared to male animals (24.1%). Local breeds had higher (36.8%) compared to exotic (2.8%) and cross breeds (19.3%). Animals that had a history of abortion or stillbirth had higher seropositivity compared to those without a history of abortion or stillbirth. CCHFV seropositivity appeared to be generally higher in northern districts of the country, though spatial trends among sampled districts were not examined. A multivariate regression analysis using a generalized linear mixed model showed that animal species, age, sex, region, and elevation were all significantly associated with CCHFV seropositivity after adjusting for the effects of other model predictors. This study shows that CCHFV is actively circulating in Uganda, posing a serious risk for human infection. The results from this study can be used to help target surveillance efforts for early case detection in animals and limit subsequent spillover into humans.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Adult , Pregnancy , Male , Female , Animals , Humans , Cattle , Sheep , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/veterinary , Hemorrhagic Fever, Crimean/diagnosis , Livestock , Uganda/epidemiology , Stillbirth , Seroepidemiologic Studies , Goats , Antibodies, Viral
8.
Emerg Infect Dis ; 29(11): 2238-2245, 2023 11.
Article in English | MEDLINE | ID: mdl-37877537

ABSTRACT

Marburg virus disease, caused by Marburg and Ravn orthomarburgviruses, emerges sporadically in sub-Saharan Africa and is often fatal in humans. The natural reservoir is the Egyptian rousette bat (ERB), which sheds virus in saliva, urine, and feces. Frugivorous ERBs discard test-bitten and partially eaten fruit, potentially leaving infectious virus behind that could be consumed by other susceptible animals or humans. Historically, 8 of 17 known Marburg virus disease outbreaks have been linked to human encroachment on ERB habitats, but no linkage exists for the other 9 outbreaks, raising the question of how bats and humans might intersect, leading to virus spillover. We used micro‒global positioning systems to identify nightly ERB foraging locations. ERBs from a known Marburg virus‒infected population traveled long distances to feed in cultivated fruit trees near homes. Our results show that ERB foraging behavior represents a Marburg virus spillover risk to humans and plausibly explains the origins of some past outbreaks.


Subject(s)
Chiroptera , Marburg Virus Disease , Marburgvirus , Animals , Humans , Marburg Virus Disease/epidemiology , Geographic Information Systems , Disease Outbreaks
9.
J Virol ; 97(10): e0059023, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37750724

ABSTRACT

IMPORTANCE: Ebola disease (EBOD) is a public health threat with a high case fatality rate. Most EBOD outbreaks have occurred in remote locations, but the 2013-2016 Western Africa outbreak demonstrated how devastating EBOD can be when it reaches an urban population. Here, the 2022 Sudan virus disease (SVD) outbreak in Mubende District, Uganda, is summarized, and the genetic relatedness of the new variant is evaluated. The Mubende variant exhibited 96% amino acid similarity with historic SUDV sequences from the 1970s and a high degree of conservation throughout the outbreak, which was important for ongoing diagnostics and highly promising for future therapy development. Genetic differences between viruses identified during the Mubende SVD outbreak were linked with epidemiological data to better interpret viral spread and contact tracing chains. This methodology should be used to better integrate discrete epidemiological and sequence data for future viral outbreaks.


Subject(s)
Disease Outbreaks , Ebolavirus , Genetic Variation , Hemorrhagic Fever, Ebola , Humans , Disease Outbreaks/statistics & numerical data , Ebolavirus/chemistry , Ebolavirus/classification , Ebolavirus/genetics , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/transmission , Hemorrhagic Fever, Ebola/virology , Uganda/epidemiology , Contact Tracing
10.
Am J Trop Med Hyg ; 109(3): 548-553, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37524326

ABSTRACT

In 2016, an outbreak of Rift Valley fever was reported in the Kabale District in Uganda for the first time in 48 years. Three human cases were confirmed by polymerase chain reaction, and subsequent serological investigations revealed an overall IgG seropositivity of 13% in humans and 13% in animals. In response to this reemergence, we designed a countrywide survey to determine the seropositivity of anti-Rift Valley fever virus (RVFV) IgG antibodies in livestock. Samples were collected from 27 districts and tested for RVFV anti-IgG antibodies. A total of 3,181 livestock samples were tested, of which 54.4% were cattle (1,732 of 3,181), 34.3% were goats (1,091 of 3,181), and 11.3% were sheep (358 of 3,181). Overall RVFV seropositivity was 6.9% (221 of 3,181). Seroprevalence was greater in cattle (10.7%) compared with goats (2.6%) and sheep (2.0%), among females (7.5%) compared with males (5.2%), and among adults (7.6%) compared with juveniles (4.9%) and nurslings (6.4%). Exotic breeds and animals with a history of abortion or stillbirth also had greater odds of RVFV seropositivity. Animals grazed under tethering and paddocking had greater RVFV seropositivity compared with animals that grazed communally, and livestock in the western and eastern regions had the greatest seroprevalence. In a multivariate regression model, animal species (odds ratio [OR], 6.4; 95% CI, 3.5-11.4) and age (OR, 2.3; 95% CI, 1.4-3.6) were associated significantly with RVFV seropositivity. This study could be important in developing risk-based surveillance for early outbreak detection to limit the spread of RVFV in both human and animal populations.


Subject(s)
Coccidioidomycosis , Rift Valley Fever , Rift Valley fever virus , Male , Adult , Pregnancy , Female , Animals , Humans , Cattle , Sheep , Livestock , Uganda/epidemiology , Seroepidemiologic Studies , Goats , Antibodies, Viral , Immunoglobulin G
12.
PLOS Glob Public Health ; 3(2): e0001402, 2023.
Article in English | MEDLINE | ID: mdl-36962840

ABSTRACT

Uganda has implemented several interventions that have contributed to prevention, early detection, and effective response to Public Health Emergencies (PHEs). However, there are gaps in collecting and documenting data on the overall response to these PHEs. We set out to establish a comprehensive electronic database of PHEs that occurred in Uganda since 2000. We constituted a core development team, developed a data dictionary, and worked with Health Information Systems Program (HISP)-Uganda to develop and customize a compendium of PHEs using the electronic Integrated Disease Surveillance and Response (eIDSR) module on the District Health Information Software version 2 (DHIS2) platform. We reviewed literature for retrospective data on PHEs for the compendium. Working with the Uganda Public Health Emergency Operations Center (PHEOC), we prospectively updated the compendium with real-time data on reported PHEs. We developed a user's guide to support future data entry teams. An operational compendium was developed within the eIDSR module of the DHIS2 platform. The variables for PHEs data collection include those that identify the type, location, nature and time to response of each PHE. The compendium has been updated with retrospective PHE data and real-time prospective data collection is ongoing. Data within this compendium is being used to generate information that can guide future outbreak response and management. The compendium development highlights the importance of documenting outbreak detection and response data in a central location for future reference. This data provides an opportunity to evaluate and inform improvements in PHEs response.

13.
Am J Trop Med Hyg ; 108(5): 995-1002, 2023 05 03.
Article in English | MEDLINE | ID: mdl-36913925

ABSTRACT

Rift Valley fever (RVF) is a zoonotic disease of public health and economic importance. Uganda has reported sporadic outbreaks of RVF in both humans and animals across the country, especially in the southwestern part of the "cattle corridor" through an established viral hemorrhagic fever surveillance system. We report 52 human cases of laboratory-confirmed RVF from 2017 to 2020. The case fatality rate was 42%. Among those infected, 92% were males and 90% were adults (≥ 18 years). Clinical symptoms were characterized by fever (69%), unexplained bleeding (69%), headache (51%), abdominal pain (49%), and nausea and vomiting (46%). Most of the cases (95%) originated from central and western districts that are part of the cattle corridor of Uganda, where the main risk factor was direct contact with livestock (P = 0.009). Other predictors of RVF positivity were determined to be male gender (P = 0.001) and being a butcher (P = 0.04). Next-generation sequencing identified the predominant Ugandan clade as Kenya-2, observed previously across East Africa. There is need for further investigation and research into the effect and spread of this neglected tropical disease in Uganda and the rest of Africa. Control measures such as promoting vaccination and limiting animal-human transmission could be explored to reduce the impact of RVF in Uganda and globally.


Subject(s)
Rift Valley Fever , Rift Valley fever virus , Adult , Animals , Humans , Male , Cattle , Female , Rift Valley Fever/epidemiology , Rift Valley fever virus/genetics , Uganda/epidemiology , Zoonoses/epidemiology , Disease Outbreaks/prevention & control
14.
Parasit Vectors ; 16(1): 7, 2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36611216

ABSTRACT

BACKGROUND: Crimean-Congo haemorrhagic fever (CCHF) is a tick-borne viral infection, characterized by haemorrhagic fever in humans and transient asymptomatic infection in animals. It is an emerging human health threat causing sporadic outbreaks in Uganda. We conducted a detailed outbreak investigation in the animal population following the death from CCHF of a 42-year-old male cattle trader in Lyantonde district, Uganda. This was to ascertain the extent of CCHF virus (CCHFV) circulation among cattle and goats and to identify affected farms and ongoing increased environmental risk for future human infections. METHODS: We collected blood and tick samples from 117 cattle and 93 goats, and tested these for anti-CCHFV antibodies and antigen using an enzyme-linked immunosorbent assay (ELISA), quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and target enrichment next generation sequencing. RESULTS: CCHFV-specific IgG antibodies were detected in 110/117 (94.0%) cattle and 83/93 (89.3%) goats. Animal seropositivity was independently associated with female animals (AOR = 9.42, P = 0.002), and animals reared under a pastoral animal production system (AOR = 6.02, P = 0.019] were more likely to be seropositive than tethered or communally grazed animals. CCHFV was detected by sequencing in Rhipicephalus appendiculatus ticks but not in domestic animals. CONCLUSION: This investigation demonstrated very high seroprevalence of CCHFV antibodies in both cattle and goats in farms associated with a human case of CCHF in Lyantonde. Therefore, building surveillance programs for CCHF around farms in this area and the Ugandan cattle corridor is indicated, in order to identify opportunities for case prevention and control.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Rhipicephalus , Tick-Borne Diseases , Male , Humans , Animals , Female , Cattle , Adult , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/veterinary , Livestock , Uganda/epidemiology , Prevalence , Seroepidemiologic Studies , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Goats , Antibodies, Viral
15.
Emerg Infect Dis ; 28(11): 2326-2329, 2022 11.
Article in English | MEDLINE | ID: mdl-36198315

ABSTRACT

Crimean-Congo hemorrhagic fever (CCHF) was detected in 2 refugees living in a refugee settlement in Kikuube district, Uganda. Investigations revealed a CCHF IgG seroprevalence of 71.3% (37/52) in goats within the refugee settlement. This finding highlights the need for a multisectoral approach to controlling CCHF in humans and animals in Uganda.


Subject(s)
COVID-19 , Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Refugees , Animals , Humans , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/veterinary , Seroepidemiologic Studies , Uganda/epidemiology , Pandemics , Disease Outbreaks , Goats , Immunoglobulin G , Antibodies, Viral
16.
J Infect ; 85(6): 693-701, 2022 12.
Article in English | MEDLINE | ID: mdl-36108783

ABSTRACT

BACKGROUND: Crimean-Congo Haemorrhagic Fever (CCHF) is an emerging human-health threat causing sporadic outbreaks in livestock farming communities. However, the full extent and the risks associated with exposure of such communities has not previously been well-described. METHODS: We collected blood samples from 800 humans, 666 cattle, 549 goats and 32 dogs in districts within and outside Ugandan cattle corridor in a cross-sectional survey, and tested for CCHFV-specific IgG antibodies using Enzyme-Linked Immunosorbent Assays. Sociodemographic and epidemiological data were recorded using structured questionnaire. Ticks were collected to identify circulating nairoviruses by metagenomic sequencing. RESULTS: CCHFV seropositivity was in 221/800 (27·6%) in humans, 612/666 (91·8%) in cattle, 413/549 (75·2%) in goats and 18/32 (56·2%) in dogs. Human seropositivity was associated with livestock farming (AOR=5·68, p<0·0001), age (AOR=2·99, p=0·002) and collecting/eating engorged ticks (AOR=2·13, p=0·004). In animals, seropositivity was higher in cattle versus goats (AOR=2·58, p<0·0001), female sex (AOR=2·13, p=0·002) and heavy tick infestation (>50 ticks: AOR=3·52, p=0·004). CCHFV was identified in multiple tick pools of Rhipicephalus appendiculatus. INTERPRETATION: The very high CCHF seropositivity especially among livestock farmers and multiple regional risk factors associated exposures, including collecting/eating engorged ticks previously unrecognised, highlights need for further surveillance and sensitisation and control policies against the disease.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Ticks , Female , Animals , Humans , Cattle , Dogs , Hemorrhagic Fever, Crimean/epidemiology , Uganda/epidemiology , Cross-Sectional Studies , Goats , Risk Factors , Agriculture
17.
Emerg Infect Dis ; 28(11): 2290-2293, 2022 11.
Article in English | MEDLINE | ID: mdl-36150455

ABSTRACT

Rift Valley fever, endemic or emerging throughout most of Africa, causes considerable risk to human and animal health. We report 7 confirmed Rift Valley fever cases, 1 fatal, in Kiruhura District, Uganda, during 2021. Our findings highlight the importance of continued viral hemorrhagic fever surveillance, despite challenges associated with the COVID-19 pandemic.


Subject(s)
COVID-19 , Rift Valley Fever , Rift Valley fever virus , Animals , Humans , Rift Valley Fever/epidemiology , COVID-19/epidemiology , Uganda/epidemiology , Pandemics , Disease Outbreaks
18.
J Infect ; 85(6): 683-692, 2022 12.
Article in English | MEDLINE | ID: mdl-36152736

ABSTRACT

BACKGROUND: Crimean-Congo haemorrhagic fever (CCHF) is a widespread tick-borne viral infection, present across Africa and Eurasia, which might pose a cryptic public health problem in Uganda. We aimed to understand the magnitude and distribution of CCHF risk in humans, livestock and ticks across Uganda by synthesising epidemiological (cross-sectional) and ecological (modelling) studies. METHODS: We conducted a cross-sectional study at three urban abattoirs receiving cattle from across Uganda. We sampled humans (n = 478), livestock (n = 419) and ticks (n = 1065) and used commercially-available kits to detect human and livestock CCHF virus (CCHFV) antibodies and antigen in tick pools. We developed boosted regression tree models to evaluate the correlates and geographical distribution of expected tick and wildlife hosts, and of human CCHF exposures, drawing on continent-wide data. FINDINGS: The cross-sectional study found CCHFV IgG/IgM seroprevalence in humans of 10·3% (7·8-13·3), with antibody detection positively associated with reported history of tick bite (age-adjusted odds ratio = 2·09 (1·09-3·98)). Cattle had a seroprevalence of 69·7% (65·1-73·4). Only one Hyalomma tick (CCHFV-negative) was found. However, CCHFV antigen was detected in Rhipicephalus (5·9% of 304 pools) and Amblyomma (2·9% of 34 pools) species. Modelling predicted high human CCHF risk across much of Uganda, low environmental suitability for Hyalomma, and high suitability for Rhipicephalus and Amblyomma. INTERPRETATION: Our epidemiological and ecological studies provide complementary evidence that CCHF exposure risk is widespread across Uganda. We challenge the idea that Hyalomma ticks are consistently the principal reservoir and vector for CCHFV, and postulate that Rhipicephalus might be important for CCHFV transmission in Uganda, due to high frequency of infected ticks and predicted environmental suitability. FUNDING: UCL Global Challenges Research Fund (GCRF) and Pan-African Network on Emerging and Re-Emerging Infections (PANDORA-ID-NET) funded by the European and Developing Countries Clinical Trials Partnership (EDCTP) under the EU Horizon 2020 Framework Programme for Research and Innovation.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Ixodidae , Rhipicephalus , Humans , Animals , Cattle , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/diagnosis , Cross-Sectional Studies , Seroepidemiologic Studies , Uganda/epidemiology
19.
Virus Res ; 313: 198739, 2022 05.
Article in English | MEDLINE | ID: mdl-35271887

ABSTRACT

The risk for the emergence of novel viral zoonotic diseases in animals and humans in Uganda is high given its geographical location with high biodiversity. We aimed to identify and characterize viruses in 175 blood samples from cattle selected in Uganda using molecular approaches. We identified 8 viral species belonging to 4 families (Flaviviridae, Peribunyaviridae, Reoviridae and Rhabdoviridae) and 6 genera (Hepacivirus, Pestivirus, Orthobunyavirus, Coltivirus, Dinovernavirus and Ephemerovirus). Four viruses were highly divergent and tetantively named Zikole virus (Family: Flaviviridae), Zeboroti virus (Family: Reoviridae), Zebtine virus (Family: Rhabdoviridae) and Kokolu virus (Family: Rhabdoviridae). In addition, Bovine Hepacivirus, Obodhiang virus, Aedes pseudoscutellaris reovirus and Schmallenberg virus were identified for the first time in Ugandan cattle. We report 8 viral species belonging to 4 viral families including divergent ones in the blood of cattle in Uganda. Hence, cattle may be reservoir hosts for likely emergence of novel viruses with pathogenic potential to cause zoonotic diseases in different species with serious public health implications.


Subject(s)
Cattle Diseases , Coltivirus , Flaviviridae , RNA Viruses , Reoviridae , Animals , Cattle , Cattle Diseases/epidemiology , Humans , Phylogeny , RNA Viruses/genetics , Reoviridae/genetics , Uganda/epidemiology
20.
PLoS Negl Trop Dis ; 16(2): e0010205, 2022 02.
Article in English | MEDLINE | ID: mdl-35192613

ABSTRACT

Uganda established a domestic Viral Hemorrhagic Fever (VHF) testing capacity in 2010 in response to the increasing occurrence of filovirus outbreaks. In July 2018, the neighboring Democratic Republic of Congo (DRC) experienced its 10th Ebola Virus Disease (EVD) outbreak and for the duration of the outbreak, the Ugandan Ministry of Health (MOH) initiated a national EVD preparedness stance. Almost one year later, on 10th June 2019, three family members who had contracted EVD in the DRC crossed into Uganda to seek medical treatment. Samples were collected from all the suspected cases using internationally established biosafety protocols and submitted for VHF diagnostic testing at Uganda Virus Research Institute. All samples were initially tested by RT-PCR for ebolaviruses, marburgviruses, Rift Valley fever (RVF) virus and Crimean-Congo hemorrhagic fever (CCHF) virus. Four people were identified as being positive for Zaire ebolavirus, marking the first report of Zaire ebolavirus in Uganda. In-country Next Generation Sequencing (NGS) and phylogenetic analysis was performed for the first time in Uganda, confirming the outbreak as imported from DRC at two different time point from different clades. This rapid response by the MoH, UVRI and partners led to the control of the outbreak and prevention of secondary virus transmission.


Subject(s)
Ebolavirus , Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Hemorrhagic Fever, Ebola , Animals , Democratic Republic of the Congo/epidemiology , Disease Outbreaks/prevention & control , Ebolavirus/genetics , Hemorrhagic Fever, Crimean/epidemiology , Humans , Phylogeny , Uganda/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...