Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters











Publication year range
1.
Nat Immunol ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198631

ABSTRACT

CD8+ T cells control tumors but inevitably become dysfunctional in the tumor microenvironment. Here, we show that sodium chloride (NaCl) counteracts T cell dysfunction to promote cancer regression. NaCl supplementation during CD8+ T cell culture induced effector differentiation, IFN-γ production and cytotoxicity while maintaining the gene networks responsible for stem-like plasticity. Accordingly, adoptive transfer of tumor-specific T cells resulted in superior anti-tumor immunity in a humanized mouse model. In mice, a high-salt diet reduced the growth of experimental tumors in a CD8+ T cell-dependent manner by inhibiting terminal differentiation and enhancing the effector potency of CD8+ T cells. Mechanistically, NaCl enhanced glutamine consumption, which was critical for transcriptional, epigenetic and functional reprogramming. In humans, CD8+ T cells undergoing antigen recognition in tumors and predicting favorable responses to checkpoint blockade immunotherapy resembled those induced by NaCl. Thus, NaCl metabolism is a regulator of CD8+ T cell effector function, with potential implications for cancer immunotherapy.

2.
Semin Cancer Biol ; 104-105: 18-31, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39074601

ABSTRACT

Extracellular vesicles (EVs) are a promising source of early biomarkers for cancer diagnosis. They are enriched with diverse molecular content, such as proteins, DNA, mRNA, miRNA, lipids, and metabolites. EV proteins have been widely investigated as potential biomarkers since they reflect specific patient conditions. However, although many markers have been validated and confirmed using external cohorts of patients and different analytical approaches, no EV protein markers are approved for diagnostic use. This review presents the primary strategies adopted using mass spectrometry and immune-based techniques to identify and validate EV protein biomarkers. We report and discuss recent scientific research focusing on cancer biomarker discovery through EVs, emphasizing their significant potential for the tempestive diagnosis of several cancer typologies. Finally, recent advancements in the standardization of EV isolation and quantitation through the development of easy-to-use and high-throughput kits for sample preparation-that should make protein EV biomarkers more reliable and accessible-are presented. The data reported here showed that there are still several challenges to be addressed before a protein vesicle marker becomes an essential tool in diagnosing cancer.


Subject(s)
Biomarkers, Tumor , Early Detection of Cancer , Extracellular Vesicles , Neoplasms , Proteomics , Humans , Extracellular Vesicles/metabolism , Biomarkers, Tumor/analysis , Early Detection of Cancer/methods , Neoplasms/diagnosis , Neoplasms/metabolism , Proteomics/methods , Animals , Mass Spectrometry/methods
3.
Int J Mol Sci ; 25(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338789

ABSTRACT

Fish freshness consists of complex endogenous and exogenous processes; therefore, the use of a few parameters to unravel illicit practices could be insufficient. Moreover, the development of strategies for the identification of such practices based on additives known to prevent and/or delay fish spoilage is still limited. The paper deals with the identification of the effect played by a Cafodos solution on the conservation state of sea bass at both short-term (3 h) and long-term (24 h). Controls and treated samples were characterized by a multi-omic approach involving proteomics, lipidomics, metabolomics, and metagenomics. Different parts of the fish samples were studied (muscle, skin, eye, and gills) and sampled through a non-invasive procedure based on EVA strips functionalized by ionic exchange resins. Data fusion methods were then applied to build models able to discriminate between controls and treated samples and identify the possible markers of the applied treatment. The approach was effective in the identification of the effect played by Cafodos that proved to be different in the short- and long-term and complex, involving proteins, lipids, and small molecules to a different extent.


Subject(s)
Bass , Animals , Multiomics
4.
Int J Mol Sci ; 24(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38139004

ABSTRACT

The ex vivo treatment of a limited volume of blood with gaseous oxygen-ozone (O2-O3) mixtures and its rapid reinfusion into the patient is a widespread medical procedure. O3 instantly reacts with the blood's antioxidant systems, disappearing before reinfusion, although the molecules formed act as messengers in the organism, inducing multiple antioxidant and anti-inflammatory responses. An appropriate dose of O3 is obviously essential to ensure both safety and therapeutic efficacy, and in recent years, the low-dose O3 concept has led to a significant reduction in the administered O3 concentrations. However, the molecular events triggered by such low concentrations in the blood still need to be fully elucidated. In this basic study, we analysed the molecular modifications induced ex vivo in sheep blood by 5 and 10 µg O3/mL O2 by means of a powerful metabolomics analysis in association with haemogas, light microscopy and bioanalytical assays. This combined approach revealed increased oxygenation and an increased antioxidant capacity in the O3-treated blood, which accorded with the literature. Moreover, original information was obtained on the impact of these low O3 concentrations on the metabolic pathways of amino acids, carbohydrates, lipids and nucleotides, with the modified metabolites being mostly involved in the preservation of the oxidant-antioxidant balance and in energy production.


Subject(s)
Antioxidants , Ozone , Humans , Animals , Sheep , Antioxidants/metabolism , Ozone/therapeutic use , Oxidants , Carbohydrates
5.
Cancers (Basel) ; 15(12)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37370676

ABSTRACT

According to the driver-passenger model for colorectal cancer (CRC), the tumor-associated microbiota is a dynamic ecosystem of bacterial species where bacteria with carcinogenic features linked to CRC initiation are defined as "drivers", while opportunistic bacteria colonizing more advanced tumor stages are known as "passengers". We reasoned that also gut microbiota-associated metabolites may be differentially enriched according to tumor stage, and be potential determinants of CRC development. Thus, we characterized the mucosa- and lumen-associated microbiota (MAM and LAM, respectively) and mucosa-associated metabolites in low- vs. high-grade dysplastic colon polyps from 78 patients. We show that MAM, obtained with a new biopsy-preserving approach, and LAM differ in composition and α/ß-diversity. By stratifying patients for polyp histology, we found that bacteria proposed as passengers by previous studies colonized high-grade dysplastic adenomas, whereas driver taxa were enriched in low-grade polyps. Furthermore, we report altered "mucosa-associated metabolite" levels in low- vs. high-grade groups. Integrated microbiota-metabolome analysis suggests the involvement of the gut microbiota in the production and consumption of these metabolites. Altogether, our findings support the involvement of bacterial species and associated metabolites in CRC mucosal homeostasis in a tumor-stage-specific manner. These distinct signatures may be used to distinguish low-grade from high-grade dysplastic polyps.

6.
Front Endocrinol (Lausanne) ; 14: 1096441, 2023.
Article in English | MEDLINE | ID: mdl-37223008

ABSTRACT

Background: Urinary extracellular vesicles (uEVs) can be released by different cell types facing the urogenital tract and are involved in cellular trafficking, differentiation and survival. UEVs can be easily detected in urine and provide pathophysiological information "in vivo" without the need of a biopsy. Based on these premises, we hypothesized that uEVs proteomic profile may serve as a valuable tool in the differential characterization between Essential Hypertension (EH) and primary aldosteronism (PA). Methods: Patients with essential hypertension (EH) and PA were enrolled in the study (EH= 12, PA=24: 11 Bilateral Primary Aldosteronism subtype (BPA) and 13 Aldosterone Producing Adenoma (APA)). Clinical and biochemical parameters were available for all the subjects. UEVs were isolated from urine by ultracentrifugation and analysed by Transmission Electron Microscopy (TEM) and nanotrack particle analysis (NTA). UEVs protein content was investigated through an untargeted MS-based approach. Statistical and network analysis was performed to identify potential candidates for the identification and classification of PA. Results: MS analysis provided more than 300 protein identifications. Exosomal markers CD9 and CD63 were detected in all samples. Several molecules characterizing EH vs PA patients as well as BPA and APA subtypes were identified after statistical elaboration and filtering of the results. In particular, some key proteins involved in water reabsorption mechanisms, such as AQP1 and AQP2, were among the best candidates for discriminating EH vs PA, as well as A1AG1 (AGP1). Conclusion: Through this proteomic approach, we identified uEVs molecular indicators that can improve PA characterization and help in the gain of insights of the pathophysiological features of this disease. In particular, PA was characterized by a reduction of AQP1 and AQP2 expression as compared with EH.


Subject(s)
Extracellular Vesicles , Hyperaldosteronism , Humans , Aquaporin 2 , Proteomics , Essential Hypertension , Hyperaldosteronism/diagnosis
7.
Front Immunol ; 14: 1168455, 2023.
Article in English | MEDLINE | ID: mdl-37063865

ABSTRACT

Even though cancer patients are generally considered more susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the mechanisms driving their predisposition to severe forms of coronavirus disease 2019 (COVID-19) have not yet been deciphered. Since metabolic disorders are associated with homeostatic frailty, which increases the risk of infection and cancer, we asked whether we could identify immunometabolic pathways intersecting with cancer and SARS-CoV-2 infection. Thanks to a combined flow cytometry and multiomics approach, here we show that the immunometabolic traits of COVID-19 cancer patients encompass alterations in the frequency and activation status of circulating myeloid and lymphoid subsets, and that these changes are associated with i) depletion of tryptophan and its related neuromediator tryptamine, ii) accumulation of immunosuppressive tryptophan metabolites (i.e., kynurenines), and iii) low nicotinamide adenine dinucleotide (NAD+) availability. This metabolic imbalance is accompanied by altered expression of inflammatory cytokines in peripheral blood mononuclear cells (PBMCs), with a distinctive downregulation of IL-6 and upregulation of IFNγ mRNA expression levels. Altogether, our findings indicate that cancer not only attenuates the inflammatory state in COVID-19 patients but also contributes to weakening their precarious metabolic state by interfering with NAD+-dependent immune homeostasis.


Subject(s)
COVID-19 , Neoplasms , Humans , COVID-19/metabolism , SARS-CoV-2 , Leukocytes, Mononuclear , NAD/metabolism , Tryptophan/metabolism , Neoplasms/metabolism
8.
Methods Mol Biol ; 2628: 279-289, 2023.
Article in English | MEDLINE | ID: mdl-36781792

ABSTRACT

Circulating small extracellular vesicles (sEVs), also called exosomes, are key players in the investigation of cell-cell communication mechanisms and in the identification of new potential biomarkers. These particles can carry proteins, DNA, mRNA, miRNA, lipids and metabolites that are transported all over the human body, potentially reaching all the cells. In particular, proteins, which are well-known biological actors in cell signalling, will be discussed in this context. In this article, we present a mass spectrometry approach for the in-depth characterization of the sEVs proteome. The protocols include strategies for the isolation and purification of sEVs, for the extraction of proteins and the purification of sEVs proteins by the immunodepletion of the most abundant plasmatic proteins. Finally, bioinformatic analysis for the extraction of the most important biological features associated with the proteomic content of sEVs is reported.


Subject(s)
Exosomes , Extracellular Vesicles , Humans , Proteomics/methods , Extracellular Vesicles/metabolism , Exosomes/genetics , Biomarkers/metabolism , Proteome/metabolism
9.
Molecules ; 27(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36364034

ABSTRACT

Biochemical investigations were carried out on the embalmed head of Nebiri (Museo Egizio, Turin; S-5109)-an 18th Dynasty Ancient Egyptian dignitary-and on the canopic jar containing his lungs (Museo Egizio, Turin; S. 5111/02) with the aim of characterizing the organ's (lung) specific paleo-proteins and of identifying the compounds used in his embalming "recipe". The application of a functionalized film method allowed us to perform a non-invasive sampling. Paleo-proteomics confirmed the presence of lung tissue-specific proteins (organ specific) as well as the presence of proteins linked to severe inflammation. Paleoproteomics and paleometabolomics further allowed the identification of the main components of Nebiri's embalming recipe: animal fats and glue, balms, essential oils, aromatic plants, heated Pistacia, and coniferous resins. Both the use of Pistacia and coniferous resins in an early 18th Dynasty individual confirm Nebiri's high social status. The technique applied offers a targeted approach to the chemical characterization of human tissues, embalming compounds, and organic materials layering in pottery. The ability of the functionalized film method to harvest all types of compounds, from macromolecules (i.e., proteins) to small molecules (i.e., organic acids) opens a new path in the study of ancient material culture; furthermore, it allows to perform untargeted analysis, which is necessary when no a priori information is available.


Subject(s)
Mummies , Pistacia , Animals , Humans , History, Ancient , Proteomics , Embalming/methods , Metabolomics , Resins, Plant
10.
Cell Death Dis ; 13(10): 878, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36257957

ABSTRACT

Deregulation of protein synthesis and ER stress/unfolded protein response (ER stress/UPR) have been reported in astrocytes. However, the relationships between protein synthesis deregulation and ER stress/UPR, as well as their role in the altered homeostatic support of Alzheimer's disease (AD) astrocytes remain poorly understood. Previously, we reported that in astrocytic cell lines from 3xTg-AD mice (3Tg-iAstro) protein synthesis was impaired and ER-mitochondria distance was reduced. Here we show that impaired protein synthesis in 3Tg-iAstro is associated with an increase of p-eIF2α and downregulation of GADD34. Although mRNA levels of ER stress/UPR markers were increased two-three-fold, we found neither activation of PERK nor downstream induction of ATF4 protein. Strikingly, the overexpression of a synthetic ER-mitochondrial linker (EML) resulted in a reduced protein synthesis and augmented p-eIF2α without any effect on ER stress/UPR marker genes. In vivo, in hippocampi of 3xTg-AD mice, reduced protein synthesis, increased p-eIF2α and downregulated GADD34 protein were found, while no increase of p-PERK or ATF4 proteins was observed, suggesting that in AD astrocytes, both in vitro and in vivo, phosphorylation of eIF2α and impairment of protein synthesis are PERK-independent. Next, we investigated the ability of 3xTg-AD astrocytes to support metabolism and function of other cells of the central nervous system. Astrocyte-conditioned medium (ACM) from 3Tg-iAstro cells significantly reduced protein synthesis rate in primary hippocampal neurons. When added as a part of pericyte/endothelial cell (EC)/astrocyte 3D co-culture, 3Tg-iAstro, but not WT-iAstro, severely impaired formation and ramification of tubules, the effect, replicated by EML overexpression in WT-iAstro cells. Finally, a chemical chaperone 4-phenylbutyric acid (4-PBA) rescued protein synthesis, p-eIF2α levels in 3Tg-iAstro cells and tubulogenesis in pericyte/EC/3Tg-iAstro co-culture. Collectively, our results suggest that a PERK-independent, p-eIF2α-associated impairment of protein synthesis compromises astrocytic homeostatic functions, and this may be caused by the altered ER-mitochondria interaction.


Subject(s)
Alzheimer Disease , Astrocytes , Animals , Mice , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Astrocytes/metabolism , Culture Media, Conditioned/pharmacology , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism , Endoplasmic Reticulum Stress , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Mitochondria/metabolism , RNA, Messenger/metabolism , Unfolded Protein Response , Endoplasmic Reticulum
11.
Int J Mol Sci ; 23(19)2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36232571

ABSTRACT

Recent technological innovations in the field of mass spectrometry have supported the use of metabolomics analysis for precision medicine. This growth has been allowed also by the application of algorithms to data analysis, including multivariate and machine learning methods, which are fundamental to managing large number of variables and samples. In the present review, we reported and discussed the application of artificial intelligence (AI) strategies for metabolomics data analysis. Particularly, we focused on widely used non-linear machine learning classifiers, such as ANN, random forest, and support vector machine (SVM) algorithms. A discussion of recent studies and research focused on disease classification, biomarker identification and early diagnosis is presented. Challenges in the implementation of metabolomics-AI systems, limitations thereof and recent tools were also discussed.


Subject(s)
Artificial Intelligence , Precision Medicine , Algorithms , Machine Learning , Precision Medicine/methods , Support Vector Machine
12.
PLoS One ; 17(8): e0273036, 2022.
Article in English | MEDLINE | ID: mdl-36001607

ABSTRACT

The key role played by host-microbiota interactions on human health, disease onset and progression, and on host response to treatments has increasingly emerged in the latest decades. Indeed, dysbiosis has been associated to several human diseases such as obesity, diabetes, cancer and also neurodegenerative disease, such as Parkinson, Huntington and Alzheimer's disease (AD), although whether causative, consequence or merely an epiphenomenon is still under investigation. In the present study, we performed a metabologenomic analysis of stool samples from a mouse model of AD, the 3xTgAD. We found a significant change in the microbiota of AD mice compared to WT, with a longitudinal divergence of the F/B ratio, a parameter suggesting a gut dysbiosis. Moreover, AD mice showed a significant decrease of some amino acids, while data integration revealed a dysregulated production of desaminotyrosine (DAT) and dihydro-3-coumaric acid. Collectively, our data show a dysregulated gut microbiota associated to the onset and progression of AD, also indicating that a dysbiosis can occur prior to significant clinical signs, evidenced by early SCFA alterations, compatible with gut inflammation.


Subject(s)
Alzheimer Disease , Gastrointestinal Microbiome , Neurodegenerative Diseases , Animals , Disease Models, Animal , Dysbiosis , Gastrointestinal Microbiome/physiology , Humans , Mice
13.
Food Chem ; 395: 133579, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-35780666

ABSTRACT

Fortification of human milk (HM) is often necessary to meet the nutritional requirements of preterm infants. This study sought to establish whether HM supplemented with an experimental donkey milk-derived fortifier (DMF) or a commercial bovine milk-derived fortifier (BMF) affected digestion, using an in vitro dynamic system at the preterm stage. Particle size in gastric phase was higher in DMF than in BMF, due to protein aggregates surrounding lipid globules. Before digestion, BMF, with its extensively hydrolysed proteins, had a higher degree of proteolysis (30%) than DMF (11%), which contained intact proteins. After digestion, this difference was reduced concomitantly to a similar net degree of proteolysis (33%). DMF, with a higher proportion of ω3, resulted in a lower ω6/ω3 free PUFA ratio than BMF throughout digestion, although the final degree of lipolysis was similar (54%). In summary, DMF could represent a better source of proteins and lipids for the preterm infant.


Subject(s)
Infant, Premature , Milk, Human , Animals , Digestion , Equidae , Food, Fortified , Humans , Infant , Infant, Newborn , Lipolysis , Milk, Human/chemistry , Proteolysis
14.
Sci Rep ; 12(1): 8666, 2022 05 23.
Article in English | MEDLINE | ID: mdl-35606510

ABSTRACT

The spread of multidrug-resistant bacteria, such as the skin commensal Staphylococcus aureus, is a worldwide health challenge; new methods to counteract opportunistic pathogen growth and virulence are urgent. We compared the activity of Lacticaseibacillus rhamnosus LR06 (DSM 21981) and Lactobacillus johnsonii LJO02 (DSM 33828) cell-free supernatants (CFSs) produced in the conventional animal derivative-based MRS medium and an innovative animal derivative-free broth (TIL) versus the MDR S. aureus (ATCC 43300). CFS influence was assessed towards the viability, metabolic activity, and ability to form biofilm of the MDR strain through optical density, alamarBlue assay, and crystal violet staining; their content in short-chain fatty acids, lactic acid, and proteins was analysed via high-resolution mass spectrometry and gas chromatography. All CFSs reduce viable and metabolically active S. aureus, being TIL more efficient compared to MRS in stimulating lactic acid bacteria metabolism and decreasing S. aureus biofilm formation. Particularly, the CFS from LJO02 grown in TIL has the best efficacy, revealing a high amount of lactic acid and 59 peculiar proteins; its effectiveness is partially maintained upon trypsin and proteinase K treatments, but not by pepsin and pH basification. Therefore, antagonistic CFSs may represent a strategic prevention approach, with bacteriotherapeutic and bio-repair potential.


Subject(s)
Lactobacillus johnsonii , Methicillin-Resistant Staphylococcus aureus , Animals , Anti-Bacterial Agents/pharmacology , Biofilms , Lactic Acid , Methicillin , Microbial Sensitivity Tests , Oxacillin , Staphylococcus aureus , Virulence
15.
Cell Mol Life Sci ; 79(5): 226, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35391557

ABSTRACT

BACKGROUND: The impact of the absence of gravity on cancer cells is of great interest, especially today that space is more accessible than ever. Despite advances, few and contradictory data are available mainly due to different setup, experimental design and time point analyzed. METHODS: Exploiting a Random Positioning Machine, we dissected the effects of long-term exposure to simulated microgravity (SMG) on pancreatic cancer cells performing proteomic, lipidomic and transcriptomic analysis at 1, 7 and 9 days. RESULTS: Our results indicated that SMG affects cellular morphology through a time-dependent activation of Actin-based motility via Rho and Cdc42 pathways leading to actin rearrangement, formation of 3D spheroids and enhancement of epithelial-to-mesenchymal transition. Bioinformatic analysis reveals that SMG may activates ERK5/NF-κB/IL-8 axis that triggers the expansion of cancer stem cells with an increased migratory capability. These cells, to remediate energy stress and apoptosis activation, undergo a metabolic reprogramming orchestrated by HIF-1α and PI3K/Akt pathways that upregulate glycolysis and impair ß-oxidation, suggesting a de novo synthesis of triglycerides for the membrane lipid bilayer formation. CONCLUSIONS: SMG revolutionizes tumor cell behavior and metabolism leading to the acquisition of an aggressive and metastatic stem cell-like phenotype. These results dissect the time-dependent cellular alterations induced by SMG and pave the base for altered gravity conditions as new anti-cancer technology.


Subject(s)
Pancreatic Neoplasms , Weightlessness , Actins , Humans , Lipidomics , Pancreatic Neoplasms/genetics , Phosphatidylinositol 3-Kinases , Proteomics , Transcriptome , Weightlessness Simulation/methods
16.
Biomolecules ; 12(2)2022 02 13.
Article in English | MEDLINE | ID: mdl-35204804

ABSTRACT

The study of the cancer secretome is gaining even more importance in cancers such as pancreatic ductal adenocarcinoma (PDAC), whose lack of recognizable symptoms and early detection assays make this type of cancer highly lethal. The wild-type p53 protein, frequently mutated in PDAC, prevents tumorigenesis by regulating a plethora of signaling pathways. The importance of the p53 tumor suppressive activity is not only primarily involved within cells to limit tumor cell proliferation but also in the extracellular space. Thus, loss of p53 has a profound impact on the secretome composition of cancer cells and marks the transition to invasiveness. Here, we demonstrate the tumor suppressive role of wild-type p53 on cancer cell secretome, showing the anti-proliferative, apoptotic and chemosensitivity effects of wild-type p53 driven conditioned medium. By using high-resolution SWATH-MS technology, we characterized the secretomes of p53-deficient and p53-expressing PDAC cells. We found a great number of secreted proteins that have known roles in cancer-related processes, 30 of which showed enhanced and 17 reduced secretion in response to p53 silencing. These results are important to advance our understanding on the link between wt-p53 and cancer microenvironment. In conclusion, this approach may detect a secreted signature specifically driven by wild-type p53 in PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Cell Proliferation , Humans , Pancreatic Neoplasms/metabolism , Proteomics , Secretome , Tumor Microenvironment , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Pancreatic Neoplasms
17.
Metabolites ; 11(12)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34940605

ABSTRACT

Infection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to severe respiratory tract damage and acute lung injury. Therefore, it is crucial to study breath-associated biofluids not only to investigate the breath's biochemical changes caused by SARS-CoV-2 infection, but also to discover potential biomarkers for the development of new diagnostic tools. In the present study, we performed an untargeted metabolomics approach using a bidimensional gas chromatography mass spectrometer (GCxGC-TOFMS) on exhaled breath condensate (EBC) from COVID-19 patients and negative healthy subjects to identify new potential biomarkers for the noninvasive diagnosis and monitoring of the COVID-19 disease. The EBC analysis was further performed in patients with acute or acute-on-chronic cardiopulmonary edema (CPE) to assess the reliability of the identified biomarkers. Our findings demonstrated that an abundance of EBC fatty acids can be used to discriminate COVID-19 patients and that they may have a protective effect, thus suggesting their potential use as a preventive strategy against the infection.

18.
Cell Calcium ; 100: 102480, 2021 12.
Article in English | MEDLINE | ID: mdl-34607180

ABSTRACT

Calcineurin (CaN), acting downstream of intracellular calcium signals, orchestrates cellular remodeling in many cellular types. In astrocytes, major homeostatic players in the central nervous system (CNS), CaN is involved in neuroinflammation and gliosis, while its role in healthy CNS or in early neuro-pathogenesis is poorly understood. Here we report that in mice with conditional deletion of CaN in GFAP-expressing astrocytes (astroglial calcineurin KO, ACN-KO), at 1 month of age, transcription was largely unchanged, while the proteome was deranged in the hippocampus and cerebellum. Gene ontology analysis revealed overrepresentation of annotations related to myelin sheath, mitochondria, ribosome and cytoskeleton. Over-represented pathways were related to protein synthesis, oxidative phosphorylation, mTOR and neurological disorders, including Alzheimer's disease (AD) and seizure disorder. Comparison with published proteomic datasets showed significant overlap with the proteome of a familial AD mouse model and of human subjects with drug-resistant seizures. ACN-KO mice showed no alterations of motor activity, equilibrium, anxiety or depressive state. However, in Barnes maze ACN-KO mice learned the task but adopted serial search strategy. Strikingly, beginning from about 5 months of age ACN-KO mice developed spontaneous tonic-clonic seizures with an inflammatory signature of epileptic brains. Altogether, our data suggest that the deletion of astroglial CaN produces features of neurological disorders and predisposes mice to seizures. We suggest that calcineurin in astrocytes may serve as a novel Ca2+-sensitive switch which regulates protein expression and homeostasis in the central nervous system.


Subject(s)
Alzheimer Disease , Epilepsy , Alzheimer Disease/genetics , Animals , Astrocytes , Calcineurin , Epilepsy/genetics , Mice , Neuroinflammatory Diseases , Proteome , Proteomics , Seizures/genetics
19.
J Agric Food Chem ; 69(38): 11512-11522, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34523341

ABSTRACT

To study proteomic changes involved in tenderization of Longissimus dorsi, Charolais heifers and bulls muscles were sampled after early and long aging (12 or 26 days). Sensory evaluation and instrumental tenderness measurement were performed. Proteins were analyzed by gel-free proteomics. By pattern recognition (principal component analysis and Kohonen's self-organizing maps) and classification (partial least squares-discriminant analysis) tools, 58 and 86 dysregulated proteins were detected after 12 and 26 days of aging, respectively. Tenderness was positively correlated mainly with metabolic enzymes (PYGM, PGAM2, TPI1, PGK1, and PFKM) and negatively with keratins. Downregulation in hemoglobin subunits and carbonic anhydrase 3 levels was relevant after 12 days of aging, while mimecan and collagen chains levels were reduced after 26 days of aging. Bioinformatics indicated that aging involves a prevalence of metabolic pathways after late and long periods. These findings provide a deeper understanding of changes involved in aging of beef and indicate a powerful method for future proteomics studies.


Subject(s)
Proteome , Proteomics , Animals , Cattle , Female , Male , Mass Spectrometry , Meat/analysis , Multivariate Analysis , Muscle, Skeletal , Neural Networks, Computer
20.
Anal Chim Acta ; 1179: 338841, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34535255

ABSTRACT

The intestinal microbiota is composed of a large number of different bacteria that produce a variety of metabolites. Colorectal cancer, which typically develops from adenomatous polyps, is highly influenced by microbiota. Since a variety of molecular changes may occur as these polyps transform from benign tumor to malignant carcinoma, the ability to study the microbiota-produced metabolites can lead to new discoveries about the development and progression of this cancer. However, to address the complexity of the microbiota-produced molecules, novel methods are needed. To this aim, in the present work, we developed a high-throughput metabolomics method to capture the metabolic complexity of the microbiota metabolome adherent to adenomatous polyps and adenocarcinoma. For the first time, the method enables the simultaneous quantification of almost 300 metabolites, while preserving the integrity of the original sample. The metabolomics approach was analytically validated and had excellent performances in terms of recovery, linearity, specificity, intra- and inter-day precision, limits of detection, and quantification. Furthermore, the clinical potential of the method was demonstrated in adenoma collected for a colorectal adenoma study.


Subject(s)
Adenomatous Polyps , Colorectal Neoplasms , Gastrointestinal Microbiome , Microbiota , Humans , Metabolome
SELECTION OF CITATIONS
SEARCH DETAIL