Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 169
Filter
1.
Article in English | MEDLINE | ID: mdl-38968961

ABSTRACT

The widespread use of marijuana in the context of increasing legalization has both short- and long-term health implications. Although various modes of marijuana use-smoked, vaped, or ingested-may lead to a wide scope of potential systemic effects, we focus here on inhalational use of marijuana as the most common mode with the lung as the organ that is most directly exposed to its effects. Smoked marijuana has been associated with symptoms of chronic bronchitis and histopathologic changes in airway epithelium, but without consistent evidence of long-term decline in pulmonary function. Its role in immunomodulation, both for risk of infection and protection against a hyperinflammatory host response to infection, has been suggested in animal models and in vitro without conclusive extrapolation to humans. Marijuana smoke contains carcinogens like those found in tobacco, raising concern about its role in lung cancer, but evidence is mixed and made challenging by concurrent tobacco use. Vaping may offer a potential degree of harm reduction when compared with smoking marijuana with reduction of exposure to several toxins, including carbon monoxide, and reduction in chronic respiratory symptoms. However, these potential benefits are counterbalanced by risks including vaping-associated lung injury, potentially more intense drug exposure, and other yet not well-understood toxicities. As more states legalize marijuana and the federal government considers changing this from a Schedule I to a Schedule III controlled substance, we anticipate an increase in prospective medical studies concerning the risks related to marijuana use. This review is based on currently available data concerning the impact of inhaled marijuana on lung health.

2.
Gastroenterology ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964420

ABSTRACT

BACKGROUND & AIMS: Homozygous ZZ alpha-1 antitrypsin (AAT) deficiency produces mutant AAT (Z-AAT) proteins in hepatocytes, leading to progressive liver fibrosis. We evaluated the safety and efficacy of an investigational RNA interference therapeutic, fazirsiran, that degrades Z-AAT mRNA, reducing deleterious protein synthesis. METHODS: This ongoing, phase 2 study randomized 40 patients to subcutaneous placebo or fazirsiran 25/100/200 mg. The primary endpoint was percentage change in serum Z-AAT concentration from baseline to Week 16. Patients with fibrosis on baseline liver biopsy received treatment on Day 1, Week 4, and then every 12 weeks, and had a second liver biopsy at or after Weeks 48, 72, or 96. Patients without fibrosis received two doses on Day 1 and Week 4. RESULTS: At Week 16, least-squares mean percent declines in serum Z-AAT concentration were -61%, -83% and -94% with fazirsiran 25/100/200 mg, respectively, versus placebo (all P< .0001). Efficacy was sustained through Week 52. At post-dose liver biopsy, fazirsiran reduced median liver Z-AAT concentration by 93% compared with an increase of 26% with placebo. All fazirsiran-treated patients had histological reduction from baseline in hepatic globule burden. Portal inflammation improved in 5/12 and 0/8 patients with baseline score >0 in the fazirsiran and placebo groups, respectively. Histological METAVIR score improved by >1 point in 7/14 and 3/8 patients with fibrosis >F0 at baseline in the fazirsiran and placebo groups, respectively. No adverse events led to discontinuation and pulmonary function tests remained stable. CONCLUSIONS: Fazirsiran reduced serum and liver concentrations of Z-AAT in a dose dependent manner and reduced hepatic globule burden (NCT03945292).

3.
Environ Res ; : 119512, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964581

ABSTRACT

BACKGROUND: Valid, high-resolution estimates of population-level exposure to air pollutants are necessary for accurate estimation of the association between air pollution and the occurrence or exacerbation of adverse health outcomes such as Chronic Obstructive Pulmonary Disease (COPD). OBJECTIVES: We produced fine-scale individual-level estimates of ambient concentrations of multiple air pollutants (fine particulate matter [PM2.5], NOX, NO2, and O3) at residences of participants in the Subpopulations and Intermediate Outcomes in COPD Air Pollution (SPIROMICS Air) study, located in seven regions in the US. For PM2.5, we additionally integrated modeled estimates of particulate infiltration based on home characteristics and measured total indoor concentrations to provide comprehensive estimates of exposure levels. METHODS: To estimate ambient concentrations, we used a hierarchical high-resolution spatiotemporal model that integrates hundreds of geographic covariates and pollutant measurements from regulatory and study-specific monitors, including ones located at participant residences. We modeled infiltration efficiency based on data on house characteristics, home heating and cooling practices, indoor smoke and combustion sources, meteorological factors, and paired indoor-outdoor pollutant measurements, among other indicators. RESULTS: Cross-validated prediction accuracy (R2) for models of ambient concentrations was above 0.80 for most regions and pollutants. Particulate matter infiltration efficiency varied by region, from 0.51 in Winston-Salem to 0.72 in Los Angeles, and ambient-source particles constituted a substantial fraction of total indoor PM2.5. CONCLUSION: Leveraging well-validated fine-scale approaches for estimating outdoor, ambient-source indoor, and total indoor pollutant concentrations, we can provide comprehensive estimates of short and long-term exposure levels for cohorts undergoing follow-up in multiple different regions.

5.
Article in English | MEDLINE | ID: mdl-38843116

ABSTRACT

RATIONAL: Ground glass opacities (GGO) in the absence of interstitial lung disease are understudied. OBJECTIVE: To assess the association of GGO with white blood cells (WBCs) and progression of quantified chest CT emphysema. METHODS: We analyzed data of participants in the Subpopulations and Intermediate Outcome Measures In COPD Study (SPIROMICS). Chest radiologists and pulmonologists labeled regions of the lung as GGO and adaptive multiple feature method (AMFM) trained the computer to assign those labels to image voxels and quantify the volume of the lung with GGO (%GGOAMFM). We used multivariable linear regression, zero-inflated negative binomial, and proportional hazards regression models to assess the association of %GGOAMFM with WBC, changes in %emphysema, and clinical outcomes. MEASUREMENTS AND MAIN RESULTS: Among 2,714 participants, 1,680 had COPD and 1,034 had normal spirometry. Among COPD participants, based on the multivariable analysis, current smoking and chronic productive cough was associated with higher %GGOAMFM. Higher %GGOAMFM was cross-sectionally associated with higher WBCs and neutrophils levels. Higher %GGOAMFM per interquartile range at visit 1 (baseline) was associated with an increase in emphysema at one-year follow visit by 11.7% (Relative increase; 95%CI 7.5-16.1%;P<0.001). We found no association between %GGOAMFM and one-year FEV1 decline but %GGOAMFM was associated with exacerbations and all-cause mortality during a median follow-up time of 1,544 days (Interquartile Interval=1,118-2,059). Among normal spirometry participants, we found similar results except that %GGOAMFM was associated with progression to COPD at one-year follow-up. CONCLUSIONS: Our findings suggest that GGOAMFM is associated with increased systemic inflammation and emphysema progression.

6.
Article in English | MEDLINE | ID: mdl-38813999

ABSTRACT

Background: Chronic obstructive pulmonary disease (COPD) is a preventable, progressive disease and the third leading cause of death worldwide. The epidemiological data of COPD from Gulf countries are very limited, as it remains underdiagnosed and underestimated. Risk factors for COPD include tobacco cigarette smoking, water pipe smoking (Shisha), exposure to air pollutants, occupational dusts, fumes, and chemicals. Inadequate treatment of COPD leads to worsening of disease. The 2024 GOLD guidelines recommend use of inhaled bronchodilators, corticosteroids, and adjunct therapies for treatment and management of COPD patients based on an individual assessment of the severity of symptoms and risk of exacerbations. This article reviews COPD pharmacotherapy in the Gulf countries and explores the role of nebulization in the management of COPD in this region. Methods: To review the COPD pharmacotherapy in the Gulf Countries, literature search was conducted using PubMed, Medline, Cochrane Systematic Reviews, and Google Scholar databases (before December 2022), using search terms such as COPD, nebulization, inhalers/inhalation, aerosols, and Gulf countries. Relevant articles from the reference list of identified studies were reviewed. Consensus statements, expert opinion, and other published review articles were included. Results: In the Gulf countries, pressurized metered-dose inhalers (pMDIs), dry powder inhalers (DPIs), soft mist inhalers, and nebulizers are used for drug delivery to COPD patients. pMDIs and DPIs are most prone to errors in technique and other common device handling errors. Nebulization is another mode of inhalation drug delivery, which is beneficial in certain patient populations such as the elderly and patients with cognitive impairment, motor or neuromuscular disorders, and other comorbidities. Conclusion: There is no major difference between Gulf countries and rest of the world in the approach to management of COPD. Nebulizers should be considered for patients who have difficulties in accessing or using MDIs and DPIs, irrespective of geographical location.

7.
Ann Am Thorac Soc ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568439

ABSTRACT

RATIONALE: It is unknown whether air pollution is associated with radiographic features of interstitial lung disease in individuals with chronic obstructive pulmonary disease (COPD). OBJECTIVES: To determine whether air pollution increases prevalence of interstitial lung abnormalities (ILA) or percent high-attenuation area (HAA) on computed tomography (CT) in individuals with a heavy smoking history and COPD. METHODS: We performed a cross-sectional study of SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study), focused on current or former smokers with COPD. 10-year exposure to particulate matter < 2.5 µm (PM2.5), nitrogen oxides (NOx), nitrogen dioxide (NO2), and ozone (O3) prior to enrollment CTs (completed between 2010-2015) were estimated with validated spatiotemporal models at residential addresses. We applied adjusted multivariable modified Poisson regression and linear regression to investigate associations between pollution exposure and relative risk of ILA or increased percent HAA (between -600 and -250 Hounsfield units) respectively. We assessed for effect modification by MUC5B-promoter polymorphism (GT/TT vs GG at rs3705950), smoking status, sex, and percent emphysema. RESULTS: Among 1272 participants with COPD assessed for HAA, 424 were current smokers, 249 were carriers of the variant MUC5B allele (GT/TT). 519 participants were assessed for ILA. We found no association between pollution exposure and ILA or HAA. Associations between pollutant exposures and risk of ILA were modified by the presence of MUC5B polymorphism (p-value interaction term for NOx = 0.04 and PM2.5 = 0.05) and smoking status (p-value interaction term for NOx = 0.05, NO2 = 0.01, and O3 = 0.05). With higher exposure to NOx and PM2.5, MUC5B variant carriers had increased risk of ILA (Relative Risk [RR] per 26ppb NOx 2.41; 95% Confidence Interval [CI] 0.97 to 6.0) and RR per 4 µg·m-3 PM2.5 1.43; 95% CI 0.93 to 2.2). With higher exposure to NO2, former smokers had increased risk of ILA (RR per 10ppb 1.64; 95% CI 1.0 to 2.7). CONCLUSIONS: Exposure to ambient air pollution was not associated with interstitial features on CT in this population of heavy smokers with COPD. MUC5B modified the association between pollution and ILA, suggesting that gene-environment interactions may influence prevalence of interstitial lung features in COPD.

8.
Article in English | MEDLINE | ID: mdl-38507607

ABSTRACT

RATIONALE: Individuals with COPD have airflow obstruction and maldistribution of ventilation. For those living at high altitude, any gas exchange abnormality is compounded by reduced partial pressures of inspired oxygen. OBJECTIVES: Does residence at higher-altitude exposure affect COPD outcomes, including lung function, imaging characteristics, symptoms, health status, functional exercise capacity, exacerbations, or mortality? METHODS: From the SPIROMICS cohort, we identified individuals with COPD living below 1,000 ft (305 m) elevation (n= 1,367) versus above 4,000 ft (1,219 m) elevation (n= 288). Multivariable regression models were used to evaluate associations of exposure to high altitude with COPD-related outcomes. MEASUREMENTS AND MAIN RESULTS: Living at higher altitude was associated with reduced functional exercise capacity as defined by 6MWD (-32.3 m, (-55.7 to -28.6)). There were no differences in patient-reported outcomes as defined by symptoms (CAT, mMRC), or health status (SGRQ). Higher altitude was not associated with a different rate of FEV1 decline. Higher altitude was associated with lower odds of severe exacerbations (IRR 0.65, (0.46 to 0.90)). There were no differences in small airway disease, air trapping, or emphysema. In longitudinal analyses, higher altitude was associated with increased mortality (HR 1.25, (1.0 to 1.55)); however, this association was no longer significant when accounting for air pollution. CONCLUSIONS: Chronic altitude exposure is associated with reduced functional exercise capacity in individuals with COPD, but this did not translate into differences in symptoms or health status. Additionally, chronic high-altitude exposure did not affect progression of disease as defined by longitudinal changes in spirometry.

9.
Phys Med Biol ; 69(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38452385

ABSTRACT

Objective. To combat the motion artifacts present in traditional 4D-CBCT reconstruction, an iterative technique known as the motion-compensated simultaneous algebraic reconstruction technique (MC-SART) was previously developed. MC-SART employs a 4D-CBCT reconstruction to obtain an initial model, which suffers from a lack of sufficient projections in each bin. The purpose of this study is to demonstrate the feasibility of introducing a motion model acquired during CT simulation to MC-SART, coined model-based CBCT (MB-CBCT).Approach. For each of 5 patients, we acquired 5DCTs during simulation and pre-treatment CBCTs with a simultaneous breathing surrogate. We cross-calibrated the 5DCT and CBCT breathing waveforms by matching the diaphragms and employed the 5DCT motion model parameters for MC-SART. We introduced the Amplitude Reassignment Motion Modeling technique, which measures the ability of the model to control diaphragm sharpness by reassigning projection amplitudes with varying resolution. We evaluated the sharpness of tumors and compared them between MB-CBCT and 4D-CBCT. We quantified sharpness by fitting an error function across anatomical boundaries. Furthermore, we compared our MB-CBCT approach to the traditional MC-SART approach. We evaluated MB-CBCT's robustness over time by reconstructing multiple fractions for each patient and measuring consistency in tumor centroid locations between 4D-CBCT and MB-CBCT.Main results. We found that the diaphragm sharpness rose consistently with increasing amplitude resolution for 4/5 patients. We observed consistently high image quality across multiple fractions, and observed stable tumor centroids with an average 0.74 ± 0.31 mm difference between the 4D-CBCT and MB-CBCT. Overall, vast improvements over 3D-CBCT and 4D-CBCT were demonstrated by our MB-CBCT technique in terms of both diaphragm sharpness and overall image quality.Significance. This work is an important extension of the MC-SART technique. We demonstrated the ability ofa priori5DCT models to provide motion compensation for CBCT reconstruction. We showed improvements in image quality over both 4D-CBCT and the traditional MC-SART approach.


Subject(s)
Four-Dimensional Computed Tomography , Lung Neoplasms , Humans , Pilot Projects , Four-Dimensional Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Motion , Cone-Beam Computed Tomography/methods , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Phantoms, Imaging , Algorithms
11.
PLoS One ; 19(1): e0296434, 2024.
Article in English | MEDLINE | ID: mdl-38166066

ABSTRACT

BACKGROUND: Alpha-1 antitrypsin deficiency (AATD) is related to developing lung and liver disease, but no large-scale studies examine its association with birth outcomes. OBJECTIVE: We investigated the risk of pregnancy complications and adverse birth outcomes in mothers and children with AATD. METHODS: Using a large cohort data of Danish mothers and children with AATD from 1973 to 2013 (n = 2,027,229), with 559 cases (305 mothers and 254 children). We conducted Poisson regression to examine associations between alpha-1 antitrypsin deficiency, adverse birth outcomes, and pregnancy complications in mothers and children. RESULTS: AATD was related to term low birth weight [<2500g; Risk Ratio(RR) = 2.04, 95% confidence interval (CI): 1.50-2.79], lowest quartile of abdominal circumference at birth in children of non-smoking mothers (RR = 1.55, 95% CI: 1.14-2.11), delivery via Cesarean-section (RR = 1.59, 95% CI: 1.05-2.40), preterm birth (RR = 1.54, 95% CI: 1.19-2.00) and preeclampsia (RR = 2.64, 95% CI: 1.76-3.94). CONCLUSIONS: This emphasizes the need for mothers with AATD to be monitored closely during pregnancy to reduce the risk of adverse birth outcomes. Routine screening for alpha-1 antitrypsin in pregnancy may be considered among mothers with a pulmonary and liver disease history.


Subject(s)
Pregnancy Complications , Premature Birth , alpha 1-Antitrypsin Deficiency , Female , Humans , Infant, Newborn , Pregnancy , alpha 1-Antitrypsin , alpha 1-Antitrypsin Deficiency/complications , alpha 1-Antitrypsin Deficiency/epidemiology , alpha 1-Antitrypsin Deficiency/diagnosis , Cohort Studies , Denmark/epidemiology , Pregnancy Complications/epidemiology
12.
Article in English | MEDLINE | ID: mdl-38261629

ABSTRACT

RATIONALE: The airway microbiome has the potential to shape COPD pathogenesis, but its relationship to outcomes in milder disease is unestablished. OBJECTIVES: Identify sputum microbiome characteristics associated with markers of COPD in participants of the SubPopulations and InteRmediate Outcome Measures of COPD Study (SPIROMICS). METHODS: Sputum DNA from 877 participants were analyzed using 16S rRNA gene sequencing. Relationships between baseline airway microbiota composition and clinical, radiographic and muco-inflammatory markers, including longitudinal lung function trajectory, were examined. MEASUREMENTS AND MAIN RESULTS: Participant data represented predominantly milder disease (GOLD 0-2: N=732/877). Phylogenetic diversity (range of different species within a sample) correlated positively with baseline lung function, declined with higher GOLD stage, and correlated negatively with symptom burden, radiographic markers of airway disease, and total mucin concentrations (p<0.001). In co-variate adjusted regression models, organisms robustly associated with better lung function included members of Alloprevotella, Oribacterium, and Veillonella. Conversely, lower lung function, greater symptoms and radiographic measures of small airway disease associated with enrichment in members of Streptococcus, Actinobacillus, Actinomyces, and other genera. Baseline sputum microbiota features also associated with lung function trajectory during SPIROMICS follow up (stable/improved, decliner, or rapid decliner). The 'stable/improved' group (slope of FEV1 regression ≥ 66th percentile) had higher bacterial diversity at baseline, associated with enrichment in Prevotella, Leptotrichia, and Neisseria. In contrast, the 'rapid decliner' group (FEV1 slope ≤ 33rd percentile) had significantly lower baseline diversity, associated with enrichment in Streptococcus. CONCLUSIONS: In SPIROMICS baseline airway microbiota features demonstrate divergent associations with better or worse COPD-related outcomes.

13.
Chest ; 165(3): 653-668, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37977263

ABSTRACT

BACKGROUND: Nebulizers are used commonly for inhaled drug delivery. Because they deliver medication through aerosol generation, clarification is needed on what constitutes safe aerosol delivery in infectious respiratory disease settings. The COVID-19 pandemic highlighted the importance of understanding the safety and potential risks of aerosol-generating procedures. However, evidence supporting the increased risk of disease transmission with nebulized treatments is inconclusive, and inconsistent guidelines and differing opinions have left uncertainty regarding their use. Many clinicians opt for alternative devices, but this practice could impact outcomes negatively, especially for patients who may not derive full treatment benefit from handheld inhalers. Therefore, it is prudent to develop strategies that can be used during nebulized treatment to minimize the emission of fugitive aerosols, these comprising bioaerosols exhaled by infected individuals and medical aerosols generated by the device that also may be contaminated. This is particularly relevant for patient care in the context of a highly transmissible virus. RESEARCH QUESTION: How can potential risks of infections during nebulization be mitigated? STUDY DESIGN AND METHODS: The COPD Foundation Nebulizer Consortium (CNC) was formed in 2020 to address uncertainties surrounding administration of nebulized medication. The CNC is an international, multidisciplinary collaboration of patient advocates, pulmonary physicians, critical care physicians, respiratory therapists, clinical scientists, and pharmacists from research centers, medical centers, professional societies, industry, and government agencies. The CNC developed this expert guidance to inform the safe use of nebulized therapies for patients and providers and to answer key questions surrounding medication delivery with nebulizers during pandemics or when exposure to common respiratory pathogens is anticipated. RESULTS: CNC members reviewed literature and guidelines regarding nebulization and developed two sets of guidance statements: one for the health care setting and one for the home environment. INTERPRETATION: Future studies need to explore the risk of disease transmission with fugitive aerosols associated with different nebulizer types in real patient care situations and to evaluate the effectiveness of mitigation strategies.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive , Humans , Administration, Inhalation , Pandemics/prevention & control , Respiratory Aerosols and Droplets , Nebulizers and Vaporizers , Pulmonary Disease, Chronic Obstructive/drug therapy , Bronchodilator Agents
14.
Chronic Obstr Pulm Dis ; 11(1): 26-36, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-37931592

ABSTRACT

Rationale: The SubPopulations and InteRmediate Outcome Measures in COPD Study (SPIROMICS) is a prospective cohort study that enrolled 2981 participants with the goal of identifying new chronic obstructive pulmonary disease (COPD) subgroups and intermediate markers of disease progression. Individuals with COPD and obstructive sleep apnea (OSA) experience impaired quality of life and more frequent exacerbations. COPD severity also associates with computed tomography scan-based emphysema and alterations in airway dimensions. Objectives: The objective was to determine whether the combination of lung function and structure influences the risk of OSA among current and former smokers. Methods: Using 2 OSA risk scores, the Berlin Sleep Questionnaire (BSQ), and the DOISNORE50 (Diseases, Observed apnea, Insomnia, Snoring, Neck circumference > 18 inches, Obesity with body mass index [BMI] > 32, R = are you male, Excessive daytime sleepiness, 50 = age ≥ 50) (DIS), 1767 current and former smokers were evaluated for an association of lung structure and function with OSA risk. Measurements and Main Results: The study cohort's mean age was 63 years, BMI was 28 kg/m2, and forced expiratory volume in 1 second (FEV1) was 74.8% predicted. The majority were male (55%), White (77%), former smokers (59%), and had COPD (63%). A high-risk OSA score was reported in 36% and 61% using DIS and BSQ respectively. There was a 9% increased odds of a high-risk DIS score (odds ratio [OR]=1.09, 95% confidence interval [CI]:1.03-1.14) and nominally increased odds of a high-risk BSQ score for every 10% decrease in FEV1 %predicted (OR=1.04, 95%CI: 0.998-1.09). Lung function-OSA risk associations persisted after additionally adjusting for lung structure measurements (%emphysema, %air trapping, parametric response mapping for functional small airways disease, , mean segmental wall area, tracheal %wall area, dysanapsis) for DIS (OR=1.12, 95%CI:1.03-1.22) and BSQ (OR=1.09, 95%CI:1.01-1.18). Conclusions: Lower lung function independently associates with having high risk for OSA in current and former smokers. Lung structural elements, especially dysanapsis, functional small airways disease, and tracheal %wall area strengthened the effects on OSA risk.

16.
Front Med Technol ; 5: 1158154, 2023.
Article in English | MEDLINE | ID: mdl-37786727

ABSTRACT

Introduction: Dual lumen endobronchial tubes (DLTs) are frequently used for lung isolation and one lung ventilation in thoracic surgery and other specialized clinical scenarios. Modern DLTs are large and rigid, and account for half of all tracheobronchial injuries. Their 70 year old design has numerous flaws which limit their safety and clinical utility. Our research team set out to design a new and improved DLT to mitigate these shortcomings, and then test the proposed device to ensure proper function. Methods: Using published airway anatomy data and computed tomography imaging from 195 thoracic surgery patients, we designed a new DLT with a single size/configuration that would fit into adult surgery patients. This single "Universal design" was intended to replace both left and right sided 35Fr-41Fr DLTs (8 total products), while remaining small in diameter (35Fr). Other design goals included: 1) making intubation easier and safer, 2) allowing full sized therapeutic bronchoscopes to fit into this tube, 3) making the DLT more resistant to dislodgement. After design process completion the proposed dimensions were tested against 195 patients' left and right mainstem bronchi for radiographic fit. Once production prototypes were manufactured, they were tested in large adult Yorkshire pigs and fresh human cadavers for anatomic fit and performance. Results: The proposed design passed the radiographic fit test in all 195 patients for both left and right mainstem endobronchial placement. Intubation was successful and deemed atraumatic in all pigs and cadavers, and the device appropriately fit in both the right and left mainstem bronchi. Lung isolation was successfully achieved and the device proved resistant to axial force dislodgement. Conclusion: We propose a new design for a novel DLT meant to replace 8 currently supplied adult configurations with a single, one size/configuration fits all product that allows for large bore bronchoscopy and resists axial force dislodgement.

17.
Front Med (Lausanne) ; 10: 1151867, 2023.
Article in English | MEDLINE | ID: mdl-37840998

ABSTRACT

Purpose: Recent advancements in obtaining image-based biomarkers from CT images have enabled lung function characterization, which could aid in lung interventional planning. However, the regional heterogeneity in these biomarkers has not been well documented, yet it is critical to several procedures for lung cancer and COPD. The purpose of this paper is to analyze the interlobar and intralobar heterogeneity of tissue elasticity and study their relationship with COPD severity. Methods: We retrospectively analyzed a set of 23 lung cancer patients for this study, 14 of whom had COPD. For each patient, we employed a 5DCT scanning protocol to obtain end-exhalation and end-inhalation images and semi-automatically segmented the lobes. We calculated tissue elasticity using a biomechanical property estimation model. To obtain a measure of lobar elasticity, we calculated the mean of the voxel-wise elasticity values within each lobe. To analyze interlobar heterogeneity, we defined an index that represented the properties of the least elastic lobe as compared to the rest of the lobes, termed the Elasticity Heterogeneity Index (EHI). An index of 0 indicated total homogeneity, and higher indices indicated higher heterogeneity. Additionally, we measured intralobar heterogeneity by calculating the coefficient of variation of elasticity within each lobe. Results: The mean EHI was 0.223 ± 0.183. The mean coefficient of variation of the elasticity distributions was 51.1% ± 16.6%. For mild COPD patients, the interlobar heterogeneity was low compared to the other categories. For moderate-to-severe COPD patients, the interlobar and intralobar heterogeneities were highest, showing significant differences from the other groups. Conclusion: We observed a high level of lung tissue heterogeneity to occur between and within the lobes in all COPD severity cases, especially in moderate-to-severe cases. Heterogeneity results demonstrate the value of a regional, function-guided approach like elasticity for procedures such as surgical decision making and treatment planning.

18.
Respir Med Res ; 84: 101031, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37647739

ABSTRACT

BACKGROUND: Admission eosinopenia (<100 cells/µL) is associated with poor clinical outcomes in hospitalized COVID-19 patients. However, the effects of eosinophil recovery (defined as reaching ≥50 eosinophils/µL) during hospitalization on COVID-19 outcomes have been inconsistent. METHODS: The study included 1,831 patients admitted to UCLA hospitals between February 2020 and February 2021 with PCR-confirmed COVID-19. Using competing risk regression and modeling eosinophil recovery as a time-dependent covariate, we evaluated the longitudinal relationship between eosinophil recovery and in-hospital outcomes including ICU admission, need for mechanical ventilation, and in-hospital mortality. All analyses were adjusted for covariates including age, BMI, tobacco smoke exposure, comorbidities known to be risk factors for COVID-19 mortality, and treatments including dexamethasone and remdesivir. RESULTS: Eosinophil recovery was evaluated in patients with <50 eosinophils/µL on admission (n = 1282). These patients cumulatively amassed 11,633 hospital patient-days; 3,985 of those days qualified as eosinophil recovery events, which were represented by 781 patients achieving at least one instance of eosinophil recovery during hospitalization. Despite no significant difference in the rate of mechanical ventilation, eosinophil recoverers had significantly lower rates of in-hospital mortality (aHR: 0.44 [0.29, 0.65], P = 0.001) and ICU admission (aHR: 0.25 [0.11, 0.61], P = 0.002). CONCLUSION: Trending eosinophil counts during hospitalization is simple and can be performed in resource-limited healthcare settings to track the inflammatory status of a patient. Lack of eosinophil recovery events can identify those at risk for future progression to severe COVID.


Subject(s)
COVID-19 , Eosinophils , Humans , COVID-19/epidemiology , COVID-19/therapy , Hospital Mortality , Hospitalization , Cohort Studies , Intensive Care Units
19.
JAMA ; 330(5): 442-453, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37526720

ABSTRACT

Importance: People who smoked cigarettes may experience respiratory symptoms without spirometric airflow obstruction. These individuals are typically excluded from chronic obstructive pulmonary disease (COPD) trials and lack evidence-based therapies. Objective: To define the natural history of persons with tobacco exposure and preserved spirometry (TEPS) and symptoms (symptomatic TEPS). Design, Setting, and Participants: SPIROMICS II was an extension of SPIROMICS I, a multicenter study of persons aged 40 to 80 years who smoked cigarettes (>20 pack-years) with or without COPD and controls without tobacco exposure or airflow obstruction. Participants were enrolled in SPIROMICS I and II from November 10, 2010, through July 31, 2015, and followed up through July 31, 2021. Exposures: Participants in SPIROMICS I underwent spirometry, 6-minute walk distance testing, assessment of respiratory symptoms, and computed tomography of the chest at yearly visits for 3 to 4 years. Participants in SPIROMICS II had 1 additional in-person visit 5 to 7 years after enrollment in SPIROMICS I. Respiratory symptoms were assessed with the COPD Assessment Test (range, 0 to 40; higher scores indicate more severe symptoms). Participants with symptomatic TEPS had normal spirometry (postbronchodilator ratio of forced expiratory volume in the first second [FEV1] to forced vital capacity >0.70) and COPD Assessment Test scores of 10 or greater. Participants with asymptomatic TEPS had normal spirometry and COPD Assessment Test scores of less than 10. Patient-reported respiratory symptoms and exacerbations were assessed every 4 months via phone calls. Main Outcomes and Measures: The primary outcome was assessment for accelerated decline in lung function (FEV1) in participants with symptomatic TEPS vs asymptomatic TEPS. Secondary outcomes included development of COPD defined by spirometry, respiratory symptoms, rates of respiratory exacerbations, and progression of computed tomographic-defined airway wall thickening or emphysema. Results: Of 1397 study participants, 226 had symptomatic TEPS (mean age, 60.1 [SD, 9.8] years; 134 were women [59%]) and 269 had asymptomatic TEPS (mean age, 63.1 [SD, 9.1] years; 134 were women [50%]). At a median follow-up of 5.76 years, the decline in FEV1 was -31.3 mL/y for participants with symptomatic TEPS vs -38.8 mL/y for those with asymptomatic TEPS (between-group difference, -7.5 mL/y [95% CI, -16.6 to 1.6 mL/y]). The cumulative incidence of COPD was 33.0% among participants with symptomatic TEPS vs 31.6% among those with asymptomatic TEPS (hazard ratio, 1.05 [95% CI, 0.76 to 1.46]). Participants with symptomatic TEPS had significantly more respiratory exacerbations than those with asymptomatic TEPS (0.23 vs 0.08 exacerbations per person-year, respectively; rate ratio, 2.38 [95% CI, 1.71 to 3.31], P < .001). Conclusions and Relevance: Participants with symptomatic TEPS did not have accelerated rates of decline in FEV1 or increased incidence of COPD vs those with asymptomatic TEPS, but participants with symptomatic TEPS did experience significantly more respiratory exacerbations over a median follow-up of 5.8 years.


Subject(s)
Cigarette Smoking , Lung Diseases , Spirometry , Female , Humans , Male , Middle Aged , Disease Progression , Follow-Up Studies , Forced Expiratory Volume , Lung/diagnostic imaging , Lung/physiopathology , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/physiopathology , Vital Capacity , Longitudinal Studies , Cigarette Smoking/adverse effects , Cigarette Smoking/physiopathology , Lung Diseases/diagnostic imaging , Lung Diseases/etiology , Lung Diseases/physiopathology , Respiratory Function Tests
20.
Int J Chron Obstruct Pulmon Dis ; 18: 1475-1486, 2023.
Article in English | MEDLINE | ID: mdl-37485051

ABSTRACT

Introduction: Clinical decisions in chronic obstructive pulmonary disease (COPD) treatment often utilize serially assessed physiologic parameters and biomarkers. To better understand the reliability of these tests, we evaluated changes in commonly assessed biomarkers over 3 months in patients with clinically stable COPD. Methods: We performed an observational prospective cohort study of 89 individuals with clinically stable COPD, defined as no exacerbation history within 3 months of enrollment. Biomarkers included lung function and functional performance status, patient-reported outcomes of symptoms and health status, and blood markers of inflammation. The correlation between testing at baseline and at 3-month follow-up was reported as the intraclass correlation coefficient (ICC). "Outliers" had significant variability between tests, defined as >1.645 standard deviations between the two measurements. Differences in clinical features between outliers and others were compared. Results: Participants with COPD (n = 89) were 70.5 ± 6.7 years old, 54 (61%) male, had a 40 pack-year smoking history with 24.7% being current smokers, and postbronchodilator forced expiratory volume in one second (FEV1) 62.3 ± 22.7% predicted. The biomarkers with excellent agreement between the initial and the follow-up measurements were FEV1 (ICC = 0.96), Saint George's Respiratory Questionnaire (SGRQ) (ICC = 0.98), COPD Assessment Test (CAT) (ICC = 0.93) and C-reactive protein (CRP) (ICC = 0.90). By contrast, parameters showing less robust agreement were 6-minute walking distance (ICC = 0.75), eosinophil count (ICC = 0.77), erythrocyte sedimentation rate (ICC = 0.75) and white blood cell count (ICC = 0.48). Individuals with greater variability in biomarkers reported chronic bronchitis more often and had higher baseline SGRQ and CAT scores. Conclusion: Our study evaluated the stability of commonly assessed biomarkers in clinically stable COPD and showed excellent agreement between baseline and three-month follow-up values for FEV1, SGRQ, CAT and CRP. Individuals with chronic bronchitis and more symptomatic disease at baseline demonstrated greater variability in 3-month interval biomarkers.


Subject(s)
Bronchitis, Chronic , Pulmonary Disease, Chronic Obstructive , Female , Humans , Male , Biomarkers , C-Reactive Protein , Forced Expiratory Volume , Prospective Studies , Pulmonary Disease, Chronic Obstructive/diagnosis , Quality of Life , Reproducibility of Results , Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...