Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 535
Filter
1.
Clin Nucl Med ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39354685

ABSTRACT

ABSTRACT: A 64-year-old woman with meningioma presented with left-sided lenticulostriatal ischemia following craniotomy and debulking of a sphenoid wing meningioma. For subsequent radiotherapy planning, an SSTR-targeted PET/CT using the novel ligand 18F-SiTATE was performed 2.5 months thereafter. The meningioma remnants showed transosseous, intrasellar, and perivascular extension around the internal carotid artery with strong SSTR expression. Moreover, there was focal 18F-SiTATE uptake in the left caudate and corresponding contrast enhancement due to postischemic blood-brain barrier disruption and reactive SSTR expression. Therefore, increased cortical or subcortical SSTR PET signal may be related to ischemic changes even in the subacute stage after initial stroke.

2.
Mol Neurodegener ; 19(1): 64, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39238030

ABSTRACT

BACKGROUND: Microglial activation is one hallmark of Alzheimer disease (AD) neuropathology but the impact of the regional interplay of microglia cells in the brain is poorly understood. We hypothesized that microglial activation is regionally synchronized in the healthy brain but experiences regional desynchronization with ongoing neurodegenerative disease. We addressed the existence of a microglia connectome and investigated microglial desynchronization as an AD biomarker. METHODS: To validate the concept, we performed microglia depletion in mice to test whether interregional correlation coefficients (ICCs) of 18 kDa translocator protein (TSPO)-PET change when microglia are cleared. Next, we evaluated the influence of dysfunctional microglia and AD pathophysiology on TSPO-PET ICCs in the mouse brain, followed by translation to a human AD-continuum dataset. We correlated a personalized microglia desynchronization index with cognitive performance. Finally, we performed single-cell radiotracing (scRadiotracing) in mice to ensure the microglial source of the measured desynchronization. RESULTS: Microglia-depleted mice showed a strong ICC reduction in all brain compartments, indicating microglia-specific desynchronization. AD mouse models demonstrated significant reductions of microglial synchronicity, associated with increasing variability of cellular radiotracer uptake in pathologically altered brain regions. Humans within the AD-continuum indicated a stage-depended reduction of microglia synchronicity associated with cognitive decline. scRadiotracing in mice showed that the increased TSPO signal was attributed to microglia. CONCLUSION: Using TSPO-PET imaging of mice with depleted microglia and scRadiotracing in an amyloid model, we provide first evidence that a microglia connectome can be assessed in the mouse brain. Microglia synchronicity is closely associated with cognitive decline in AD and could serve as an independent personalized biomarker for disease progression.


Subject(s)
Alzheimer Disease , Brain , Cognitive Dysfunction , Microglia , Animals , Microglia/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Mice , Cognitive Dysfunction/metabolism , Humans , Brain/metabolism , Brain/pathology , Disease Models, Animal , Positron-Emission Tomography , Receptors, GABA/metabolism , Male , Mice, Transgenic , Connectome/methods , Female
3.
JMIR Cancer ; 10: e60323, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39303279

ABSTRACT

BACKGROUND: Salvage radiation therapy (sRT) is often the sole curative option in patients with biochemical recurrence after radical prostatectomy. After sRT, we developed and validated a nomogram to predict freedom from biochemical failure. OBJECTIVE: This study aims to evaluate prostate-specific membrane antigen-positron emission tomography (PSMA-PET)-based sRT efficacy for postprostatectomy prostate-specific antigen (PSA) persistence or recurrence. Objectives include developing a random survival forest (RSF) model for predicting biochemical failure, comparing it with a Cox model, and assessing predictive accuracy over time. Multinational cohort data will validate the model's performance, aiming to improve clinical management of recurrent prostate cancer. METHODS: This multicenter retrospective study collected data from 13 medical facilities across 5 countries: Germany, Cyprus, Australia, Italy, and Switzerland. A total of 1029 patients who underwent sRT following PSMA-PET-based assessment for PSA persistence or recurrence were included. Patients were treated between July 2013 and June 2020, with clinical decisions guided by PSMA-PET results and contemporary standards. The primary end point was freedom from biochemical failure, defined as 2 consecutive PSA rises >0.2 ng/mL after treatment. Data were divided into training (708 patients), testing (271 patients), and external validation (50 patients) sets for machine learning algorithm development and validation. RSF models were used, with 1000 trees per model, optimizing predictive performance using the Harrell concordance index and Brier score. Statistical analysis used R Statistical Software (R Foundation for Statistical Computing), and ethical approval was obtained from participating institutions. RESULTS: Baseline characteristics of 1029 patients undergoing sRT PSMA-PET-based assessment were analyzed. The median age at sRT was 70 (IQR 64-74) years. PSMA-PET scans revealed local recurrences in 43.9% (430/979) and nodal recurrences in 27.2% (266/979) of patients. Treatment included dose-escalated sRT to pelvic lymphatics in 35.6% (349/979) of cases. The external outlier validation set showed distinct features, including higher rates of positive lymph nodes (47/50, 94% vs 266/979, 27.2% in the learning cohort) and lower delivered sRT doses (<66 Gy in 57/979, 5.8% vs 46/50, 92% of patients; P<.001). The RSF model, validated internally and externally, demonstrated robust predictive performance (Harrell C-index range: 0.54-0.91) across training and validation datasets, outperforming a previously published nomogram. CONCLUSIONS: The developed RSF model demonstrates enhanced predictive accuracy, potentially improving patient outcomes and assisting clinicians in making treatment decisions.


Subject(s)
Machine Learning , Neoplasm Recurrence, Local , Prostatectomy , Prostatic Neoplasms , Salvage Therapy , Humans , Male , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/surgery , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Retrospective Studies , Prostatectomy/methods , Salvage Therapy/methods , Aged , Neoplasm Recurrence, Local/diagnostic imaging , Neoplasm Recurrence, Local/radiotherapy , Middle Aged , Positron-Emission Tomography/methods , Prostate-Specific Antigen/blood , Antigens, Surface/metabolism , Glutamate Carboxypeptidase II/metabolism , Radiotherapy, Image-Guided/methods , Nomograms
4.
Neuroimage ; 300: 120860, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39332748

ABSTRACT

PURPOSE: 2-Fluorodeoxyglucose-PET (FDG-PET) is a powerful tool to study glucose metabolism in mammalian brains, but cellular sources of glucose uptake and metabolic connectivity during aging are not yet understood. METHODS: Healthy wild-type mice of both sexes (2-21 months of age) received FDG-PET and cell sorting after in vivo tracer injection (scRadiotracing). FDG uptake per cell was quantified in isolated microglia, astrocytes and neurons. Cerebral FDG uptake and metabolic connectivity were determined by PET. A subset of mice received measurement of blood glucose levels to study associations with cellular FDG uptake during aging. RESULTS: Cerebral FDG-PET signals in healthy mice increased linearly with age. Cellular FDG uptake of neurons increased between 2 and 12 months of age, followed by a strong decrease towards late ages. Contrarily, FDG uptake in microglia and astrocytes exhibited a U-shaped function with respect to age, comprising the predominant cellular source of higher cerebral FDG uptake in the later stages. Metabolic connectivity was closely associated with the ratio of glucose uptake in astroglial cells relative to neurons. Cellular FDG uptake was not associated with blood glucose levels and increasing FDG brain uptake as a function of age was still observed after adjusting for blood glucose levels. CONCLUSION: Trajectories of astroglial glucose uptake drive brain FDG-PET alterations and metabolic connectivity during aging.


Subject(s)
Astrocytes , Brain , Fluorodeoxyglucose F18 , Glucose , Mice, Inbred C57BL , Positron-Emission Tomography , Animals , Fluorodeoxyglucose F18/pharmacokinetics , Astrocytes/metabolism , Positron-Emission Tomography/methods , Mice , Glucose/metabolism , Male , Brain/metabolism , Brain/diagnostic imaging , Female , Aging/metabolism , Radiopharmaceuticals/pharmacokinetics , Neurons/metabolism , Healthy Aging/metabolism , Microglia/metabolism
5.
Alzheimers Dement ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39263969

ABSTRACT

INTRODUCTION: Recent advances in biomarker research have improved the diagnosis and monitoring of Alzheimer's disease (AD), but in vivo biomarker-based workflows to assess 4R-tauopathy (4RT) patients are currently missing. We suggest a novel biomarker-based algorithm to characterize AD and 4RTs. METHODS: We cross-sectionally assessed combinations of cerebrospinal fluid measures (CSF p-tau181 and t-tau) and 18F-PI-2620 tau-positron emission tomography (PET) in patients with AD (n = 64), clinically suspected 4RTs (progressive supranuclear palsy or corticobasal syndrome, n = 82) and healthy controls (n = 19). RESULTS: Elevated CSF p-tau181 and cortical 18F-PI-2620 binding was characteristic for AD while normal CSF p-tau181 with elevated subcortical 18F-PI-2620 binding was characteristic for 4RTs. 18F-PI-2620-assessed posterior cortical hypoperfusion could be used as an additional neuronal injury biomarker in AD. DISCUSSION: The specific combination of CSF markers and 18F-PI-2620 tau-PET in disease-specific regions facilitates the biomarker-guided stratification of AD and 4RTs. This has implications for biomarker-aided diagnostic workflows and the advancement in clinical trials. HIGHLIGHTS: Novel biomarker-based algorithm for differentiating AD and 4R-tauopathies. A combination of CSF p-tau181 and 18F-PI-2620 discriminates AD versus 4R tauopathies. Hypoperfusion serves as an additional neuronal injury biomarker in AD.

7.
Neuroimage ; 297: 120748, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39069223

ABSTRACT

AIM: ß-amyloid (Aß) small animal PET facilitates quantification of fibrillar amyloidosis in Alzheimer's disease (AD) mouse models. Thus, the methodology is receiving growing interest as a monitoring tool in preclinical drug trials. In this regard, harmonization of data from different scanners at multiple sites would allow the establishment large collaborative cohorts and may facilitate efficacy comparison of different treatments. Therefore, we objected to determine the level of agreement of Aß-PET quantification by a head-to-head comparison of three different state-of-the-art small animal PET scanners, which could help pave the way for future multicenter studies. METHODS: Within a timeframe of 5 ± 2 weeks, transgenic APPPS1 (n = 9) and wild-type (WT) (n = 8) mice (age range: 13-16 months) were examined three times by Aß-PET ([18F]florbetaben) using a Siemens Inveon DPET, a MedisonanoScan PET/MR, and a MedisonanoScan PET/CT with harmonized reconstruction protocols. Cortex-to-white-matter 30-60 min p.i. standardized uptake value ratios (SUVRCTX/WM) were calculated to compare binding differences, effect sizes (Cohen's d) and z-score values of APPPS1 relative to WT mice. Correlation coefficients (Pearson's r) were calculated for the agreement of individual SUVR between different scanners. Voxel-wise analysis was used to determine the agreement of spatial pathology patterns. For validation of PET imaging against the histological gold standard, individual SUVR values were subject to a correlation analysis with area occupancy of methoxy­X04 staining. RESULTS: All three small animal PET scanners yielded comparable group differences between APPPS1 and WT mice (∆PET=20.4 % ± 2.9 %, ∆PET/MR=18.4 % ± 4.5 %, ∆PET/CT=18.1 % ± 3.3 %). Voxel-wise analysis confirmed a high degree of congruency of the spatial pattern (Dice coefficient (DC)PETvs.PET/MR=83.0 %, DCPETvs.PET/CT=69.3 %, DCPET/MRvs.PET/CT=81.9 %). Differences in the group level variance of the three scanners resulted in divergent z-scores (zPET=11.5 ± 1.6; zPET/MR=5.3 ± 1.3; zPET/CT=3.4 ± 0.6) and effect sizes (dPET=8.5, dPET/MR=4.5, dPET/CT=4.1). However, correlations at the individual mouse level were still strong between scanners (rPETvs.PET/MR=0.96, rPETvs.PET/CT=0.91, rPET/MRvs.PET/CT=0.87; all p ≤ 0.0001). Methoxy-X04 staining exhibited a significant correlation across all three PET machines combined (r = 0.76, p < 0.0001) but also at individual level (PET: r = 0.81, p = 0.026; PET/MR: r = 0.89, p = 0.0074; PET/CT: r = 0.93, p = 0.0028). CONCLUSIONS: Our comparison of standardized small animal Aß-PET acquired by three different scanners substantiates the possibility of moving towards a multicentric approach in preclinical AD research. The alignment of image acquisition and analysis methods achieved good overall comparability between data sets. Nevertheless, differences in variance of sensitivity and specificity of different scanners may limit data interpretation at the individual mouse level and deserves methodological optimization.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Disease Models, Animal , Mice, Transgenic , Positron-Emission Tomography , Animals , Positron-Emission Tomography/methods , Mice , Amyloid beta-Peptides/metabolism , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Brain/diagnostic imaging , Brain/metabolism , Aniline Compounds , Male , Stilbenes
8.
J Nucl Cardiol ; 39: 101911, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39009215

ABSTRACT

BACKGROUND: The heart-to-mediastinum ratio (H/M-Ratio) of 123iodo-metaiodobenzylguanidine (123I-MIBG) represents state-of-the-art assessment for sympathetic dysfunction in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC). This study aims to evaluate quantitative reconstruction of 123I-MIBG uptake and to demonstrate its correlation with echocardiographic parameters. METHODS: Cardiac innervation was assessed in 23 patients diagnosed with definite ARVC or borderline ARVC and 12 patients with other cardiac disease presenting arrhythmia, using quantitative 123I-MIBG Single Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) imaging. Tracer uptake was evaluated in the left (LV) and right ventricle (RV) based on a CT scan after quantitative image reconstruction. The relationship between tracer uptake and echocardiographic parameter data was examined. RESULTS: Absolute quantification of 123I-MIBG uptake in the LV and RV is feasible and correlates accurately with the gold standard H/M Ratio. When comparing sensitivity and specificity, the area under the curve (AUC) favors standardized uptake value (SUV) of the RV over the right-ventricle-to-mediastinum-ratio (RV/M-Ratio) for diagnosing ARVC. A reduced RV-SUV in patients with definite ARVC is associated with reduced RV function. RV polar maps revealed globally reduced 123I-MIBG uptake without segment-specific reduction in the RV. CONCLUSIONS: Quantitative 123I-MIBG SPECT in ARCV patients offers robust potential for clinical reporting and demonstrates a significant correlation with RV function. Segmental RV analysis needs to be evaluated in larger samples. In summary, cardiac 123I-MIBG imaging using SUV could facilitate image-guided therapy in patients diagnosed with ARVC.


Subject(s)
3-Iodobenzylguanidine , Arrhythmogenic Right Ventricular Dysplasia , Radiopharmaceuticals , Single Photon Emission Computed Tomography Computed Tomography , Humans , Arrhythmogenic Right Ventricular Dysplasia/diagnostic imaging , Male , Female , Middle Aged , Adult , Single Photon Emission Computed Tomography Computed Tomography/methods , Aged , Heart/diagnostic imaging , Echocardiography/methods , Heart Ventricles/diagnostic imaging
10.
J Nucl Med ; 65(8): 1272-1278, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38936975

ABSTRACT

Internal dosimetry supports safe and effective patient management during radionuclide therapy. Yet, it is associated with high clinical workload, costs, and patient burden, as patient scans at multiple time points (MTPs) must be acquired. Dosimetry based on imaging at a single time point (STP) has continuously gained popularity. However, MTP protocols, used as a reference to judge the validity of STP dosimetry, differ depending on local requirements and deviate from the unknown patient-specific ground truth pharmacokinetics. The aim of this study was to compare the error and optimum time point for different STP approaches using different reference MTP protocols. Methods: Whole-body SPECT/CT scans of 7 patients (7.4-8.9 GBq of [177Lu]Lu-PSMA-I&T) were scheduled at 24, 48, 72, and 168 h after injection. Sixty lesions, 14 kidneys, and 10 submandibular glands were delineated in the SPECT/CT data. Two curve models, that is, a mono- and a biexponential model, were fitted to the MTP data, in accordance with goodness-of-fit analysis (coefficients of variation, sum of squared errors). Three population-based STP approaches were compared: one method published by Hänscheid et al., one by Jackson et al., and one using population-based effective half-lives in the mono- or biexponential curve models. Percentage differences between STP and MTP dosimetry were evaluated. Results: Goodness-of-fit parameters show that a monoexponential function and a biexponential function with shared population-based parameters and physical tail are reasonable reference models. When comparing both reference models, we observed maximum differences of -44%, -19%, and -28% in the estimated absorbed doses for lesions, kidneys, and salivary glands, respectively. STP dosimetry with an average deviation of less than 10% from MTP dosimetry may be feasible; however, this deviation and the optimum imaging time point showed a dependence on the chosen reference protocol. Conclusion: STP dosimetry for [177Lu]Lu-PSMA therapy is promising to boost the integration of dosimetry into clinical routine. According to our patient cohort, 48 h after injection may be regarded as a compromise for STP dosimetry for lesions and at-risk organs. The results from this analysis show that a common gold standard for dosimetry is desirable to allow for reliable and comparable STP dosimetry.


Subject(s)
Lutetium , Radiometry , Single Photon Emission Computed Tomography Computed Tomography , Humans , Time Factors , Dipeptides/therapeutic use , Reproducibility of Results , Male , Radioisotopes/therapeutic use , Heterocyclic Compounds, 1-Ring/therapeutic use , Radiopharmaceuticals/therapeutic use , Radiopharmaceuticals/pharmacokinetics , Female , Prostate-Specific Antigen
11.
Eur J Nucl Med Mol Imaging ; 51(11): 3252-3266, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38717592

ABSTRACT

PURPOSE: [18F]PI-2620 positron emission tomography (PET) detects misfolded tau in progressive supranuclear palsy (PSP) and Alzheimer's disease (AD). We questioned the feasibility and value of absolute [18F]PI-2620 PET quantification for assessing tau by regional distribution volumes (VT). Here, arterial input functions (AIF) represent the gold standard, but cannot be applied in routine clinical practice, whereas image-derived input functions (IDIF) represent a non-invasive alternative. We aimed to validate IDIF against AIF and we evaluated the potential to discriminate patients with PSP and AD from healthy controls by non-invasive quantification of [18F] PET. METHODS: In the first part of the study, we validated AIF derived from radial artery whole blood against IDIF by investigating 20 subjects (ten controls and ten patients). IDIF were generated by manual extraction of the carotid artery using the average and the five highest (max5) voxel intensity values and by automated extraction of the carotid artery using the average and the maximum voxel intensity value. In the second part of the study, IDIF quantification using the IDIF with the closest match to the AIF was transferred to group comparison of a large independent cohort of 40 subjects (15 healthy controls, 15 PSP patients and 10 AD patients). We compared VT and VT ratios, both calculated by Logan plots, with distribution volume (DV) ratios using simplified reference tissue modelling and standardized uptake value (SUV) ratios. RESULTS: AIF and IDIF showed highly correlated input curves for all applied IDIF extraction methods (0.78 < r < 0.83, all p < 0.0001; area under the curves (AUC): 0.73 < r ≤ 0.82, all p ≤ 0.0003). Regarding the VT values, correlations were mainly found between those generated by the AIF and by the IDIF methods using the maximum voxel intensity values. Lowest relative differences (RD) were observed by applying the manual method using the five highest voxel intensity values (max5) (AIF vs. IDIF manual, avg: RD = -82%; AIF vs. IDIF automated, avg: RD = -86%; AIF vs. IDIF manual, max5: RD = -6%; AIF vs. IDIF automated, max: RD = -26%). Regional VT values revealed considerable variance at group level, which was strongly reduced upon scaling by the inferior cerebellum. The resulting VT ratio values were adequate to detect group differences between patients with PSP or AD and healthy controls (HC) (PSP target region (globus pallidus): HC vs. PSP vs. AD: 1.18 vs. 1.32 vs. 1.16; AD target region (Braak region I): HC vs. PSP vs. AD: 1.00 vs. 1.00 vs. 1.22). VT ratios and DV ratios outperformed SUV ratios and VT in detecting differences between PSP and healthy controls, whereas all quantification approaches performed similarly in comparing AD and healthy controls. CONCLUSION: Blood-free IDIF is a promising approach for quantification of [18F]PI-2620 PET, serving as correlating surrogate for invasive continuous arterial blood sampling. Regional [18F]PI-2620 VT show large variance, in contrast to regional [18F]PI-2620 VT ratios scaled with the inferior cerebellum, which are appropriate for discriminating PSP, AD and healthy controls. DV ratios obtained by simplified reference tissue modeling are similarly suitable for this purpose.


Subject(s)
Alzheimer Disease , Image Processing, Computer-Assisted , Positron-Emission Tomography , tau Proteins , Humans , Positron-Emission Tomography/methods , Male , Female , Aged , tau Proteins/metabolism , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Middle Aged , Image Processing, Computer-Assisted/methods , Supranuclear Palsy, Progressive/diagnostic imaging , Supranuclear Palsy, Progressive/metabolism , Automation , Case-Control Studies , Radiopharmaceuticals/pharmacokinetics
12.
Eur J Nucl Med Mol Imaging ; 51(11): 3461-3464, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38761187

ABSTRACT

PURPOSE: Penile cancer is a rare entity and has a good prognosis in localized stage. Delayed surgical treatment of lymphatic disease is associated with poor overall survival but conventional imaging cannot detect occult lymph node metastasis sufficiently. Imaging cancer related fibroblasts has shown promising results as non-invasive staging tool in various tumor entities but has not yet been evaluated in penile cancer. METHODS: In this single-center pilot study, patients planned for surgical treatment for penile cancer underwent preoperatively [68Ga]Ga-FAPI-46 PET/CT. Post-operative histopathology was compared to [68Ga]Ga-FAPI-46 PET/CT results. RESULTS: From January 2022 to June 2022, a total number 11 patients with histopathologically proven penile cancer underwent surgery and received [68Ga]Ga-FAPI-46 PET/CT prior therapy. 8 primary tumor sites and 4 lymph node regions were analyzed. FAPI uptake was increased on primary tumor site (SUVmax 16.2 (9.1 - 25.8)). Histopathological proven lymph node regions showed highly increased FAPI uptakes (SUVmax 17.9 (16.4 - 23.5) on [68Ga]Ga-FAPI-46 PET/CT. CONCLUSION: In this first pilot cohort, there were no false-positive FAPI uptake which might allow the detection of occult lymph node metastasis by [68Ga]Ga-FAPI-46 PET/CT and might consequently lead to omitting lymph node regions during surgery that had no increased FAPI uptake pre-operatively.


Subject(s)
Feasibility Studies , Penile Neoplasms , Positron Emission Tomography Computed Tomography , Humans , Male , Penile Neoplasms/diagnostic imaging , Penile Neoplasms/surgery , Penile Neoplasms/pathology , Aged , Middle Aged , Pilot Projects , Lymphatic Metastasis/diagnostic imaging , Gallium Radioisotopes , Quinolines
13.
ACS Pharmacol Transl Sci ; 7(5): 1404-1414, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38751620

ABSTRACT

Aggregating poly(glycine-alanine) (poly-GA) is derived from the unconventional translation of the pathogenic intronic hexanucleotide repeat expansion in the C9orf72 gene, which is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Poly-GA accumulates predominantly in neuronal cytoplasmic inclusions unique to C9orf72 ALS/FTD patients. Poly-GA is, therefore, a promising target for PET/CT imaging of FTD/ALS to monitor disease progression and therapeutic interventions. A novel 64Cu-labeled anti-GA antibody (mAb1A12) targeting the poly-GA protein was developed and evaluated in a transgenic mouse model. It was obtained with high radiochemical purity (RCP), radiochemical yield (RCY), and specific activity, and showed high stability in vitro and ex vivo and specifically bound to poly-GA. The affinity of NODAGA-mAb1A12 for poly-GA was not affected by this modification. [64Cu]Cu-NODAGA-mAb1A12 was injected into transgenic mice expressing GFP-(GA)175 in excitatory neurons driven by Camk2a-Cre and in control littermates. PET/CT imaging was performed at 2, 20, and 40 h post-injection (p.i.) and revealed a higher accumulation in the cortex in transgenic mice than in wild-type mice, as reflected by higher standardized uptake value ratios (SUVR) using the cerebellum as the reference region. The organs were isolated for biodistribution and ex vivo autoradiography. Autoradiography revealed a higher cortex-to-cerebellum ratio in the transgenic mice than in the controls. Results from autoradiography were validated by immunohistochemistry and poly-GA immunoassays. Moreover, we confirmed antibody uptake in the CNS in a pharmacokinetic study of the perfused tissues. In summary, [64Cu]Cu-NODAGA-mAb1A12 demonstrated favorable in vitro characteristics and an increased relative binding in poly-GA transgenic mice compared to wild-type mice in vivo. Our results with this first-in-class radiotracer suggested that targeting poly-GA is a promising approach for PET/CT imaging in FTD/ALS.

14.
J Nucl Med ; 65(6): 952-955, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38575191

ABSTRACT

We used a new data-driven methodology to identify a set of reference regions that enhanced the quantification of the SUV ratio of the second-generation tau tracer 2-(2-([18F]fluoro)pyridin-4-yl)-9H-pyrrolo[2,3-b:4,5-c']dipyridine ([18F]PI-2620) in a group of patients clinically diagnosed with 4-repeat tauopathy, specifically progressive supranuclear palsy or cortical basal syndrome. The study found that SUV ratios calculated using the identified reference regions (i.e., fusiform gyrus and crus-cerebellum) were significantly associated with symptom severity and disease duration. This establishes, for the first time to our knowledge, the suitability of [18F]PI-2620 for tracking disease progression in this 4-repeat disease population. This is an important step toward increased clinical utility, such as patient stratification and monitoring in disease-modifying treatment trials. Additionally, the applied methodology successfully optimized reference regions for automated detection of brain imaging tracers. This approach may also hold value for other brain imaging tracers.


Subject(s)
Phenotype , Positron-Emission Tomography , tau Proteins , Humans , Positron-Emission Tomography/methods , tau Proteins/metabolism , Male , Female , Middle Aged , Aged , Pyridines , Tauopathies/diagnostic imaging , Tauopathies/metabolism , Radiopharmaceuticals/pharmacokinetics
15.
Am J Transplant ; 24(8): 1395-1405, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38432328

ABSTRACT

Allogeneic intraportal islet transplantation (ITx) has become an established treatment for patients with poorly controlled type 1 diabetes. However, the loss of viable beta-cell mass after transplantation remains a major challenge. Therefore, noninvasive imaging methods for long-term monitoring of the transplant fate are required. In this study, [68Ga]Ga-DOTA-exendin-4 positron emission tomography/computed tomography (PET/CT) was used for repeated monitoring of allogeneic neonatal porcine islets (NPI) after intraportal transplantation into immunosuppressed genetically diabetic pigs. NPI transplantation (3320-15,000 islet equivalents per kg body weight) led to a reduced need for exogenous insulin therapy and finally normalization of blood glucose levels in 3 out of 4 animals after 5 to 10 weeks. Longitudinal PET/CT measurements revealed a significant increase in standard uptake values in graft-bearing livers. Histologic analysis confirmed the presence of well-engrafted, mature islet clusters in the transplanted livers. Our study presents a novel large animal model for allogeneic intraportal ITx. A relatively small dose of NPIs was sufficient to normalize blood glucose levels in a clinically relevant diabetic pig model. [68Ga]Ga-DOTA-exendin-4 PET/CT proved to be efficacious for longitudinal monitoring of islet transplants. Thus, it could play a crucial role in optimizing ITx as a curative therapy for type 1 diabetes.


Subject(s)
Animals, Newborn , Diabetes Mellitus, Experimental , Islets of Langerhans Transplantation , Islets of Langerhans , Positron Emission Tomography Computed Tomography , Animals , Islets of Langerhans Transplantation/methods , Swine , Positron Emission Tomography Computed Tomography/methods , Islets of Langerhans/diagnostic imaging , Diabetes Mellitus, Type 1/surgery , Graft Survival , Blood Glucose/analysis
16.
Eur J Nucl Med Mol Imaging ; 51(8): 2504-2514, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38512484

ABSTRACT

PURPOSE: Although 221Fr and 213Bi have sufficient gamma emission probabilities, quantitative SPECT after [225Ac]Ac-PSMA-I&T therapy remains challenging due to low therapeutic activities. Furthermore, 221Fr and 213Bi may underlie a different pharmacokinetics due to alpha recoil. We conducted a quantitative SPECT study and a urine analysis to investigate the pharmacokinetics of 221Fr and 213Bi and the impact on image-based lesion and kidney dosimetry. METHODS: Five patients (7.7 ± 0.2 MBq [225Ac]Ac-PSMA-I&T) underwent an abdominal SPECT/CT (1 h) at 24 and 48 h (Siemens Symbia T2, high-energy collimator, 440 keV/218 keV (width 20%), 78 keV (width 50%)). Quantitative SPECT was reconstructed using MAP-EM with attenuation and transmission-dependent scatter corrections and resolution modelling. Time-activity curves for kidneys (CT-based) and lesions (80% isocontour 24 h) were fitted mono-exponentially. Urine samples collected along with each SPECT/CT were measured in a gamma counter until secular equilibrium was reached. RESULTS: Mean kidney and lesion effective half-lives were as follows: 213Bi, 27 ± 6/38 ± 10 h; 221Fr, 24 ± 6/38 ± 11 h; 78 keV, 23 ± 7/39 ± 13 h. The 213Bi-to-221Fr kidney SUV ratio increased by an average of 9% from 24 to 48 h. Urine analysis revealed an increasing 213Bi-to-225Ac ratio (24 h, 0.98 ± 0.15; 48 h, 1.08 ± 0.09). Mean kidney and lesion absorbed doses were 0.17 ± 0.06 and 0.36 ± 0.1 Sv RBE = 5 /MBq using 221Fr and 213Bi SPECT images, compared to 0.16 ± 0.05/0.18 ± 0.06 and 0.36 ± 0.1/0.38 ± 0.1 Sv RBE = 5 /MBq considering either the 221Fr or 213Bi SPECT. CONCLUSION: SPECT/CT imaging and urine analysis showed minor differences of up to 10% in the daughter-specific pharmacokinetics. These variances had a minimal impact on the lesion and kidney dosimetry which remained within 8%.


Subject(s)
Radiometry , Single Photon Emission Computed Tomography Computed Tomography , Humans , Male , Actinium/pharmacokinetics , Actinium/chemistry , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Middle Aged , Kidney/diagnostic imaging , Kidney/metabolism , Aged , Radiopharmaceuticals/pharmacokinetics , Glutamate Carboxypeptidase II/metabolism , Radioisotopes/pharmacokinetics , Radioisotopes/therapeutic use
17.
Eur J Nucl Med Mol Imaging ; 51(7): 1909-1922, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38366196

ABSTRACT

PURPOSE: We hypothesized that severe tau burden in brain regions involved in direct or indirect pathways of the basal ganglia correlate with more severe striatal dopamine deficiency in four-repeat (4R) tauopathies. Therefore, we correlated [18F]PI-2620 tau-positron-emission-tomography (PET) imaging with [123I]-Ioflupane single-photon-emission-computed tomography (SPECT) for dopamine transporter (DaT) availability. METHODS: Thirty-eight patients with clinically diagnosed 4R-tauopathies (21 male; 69.0 ± 8.5 years) and 15 patients with clinically diagnosed α-synucleinopathies (8 male; 66.1 ± 10.3 years) who underwent [18F]PI-2620 tau-PET and DaT-SPECT imaging with a time gap of 3 ± 5 months were evaluated. Regional Tau-PET signals and DaT availability as well as their principal components were correlated in patients with 4R-tauopathies and α-synucleinopathies. Both biomarkers and the residuals of their association were correlated with clinical severity scores in 4R-tauopathies. RESULTS: In patients with 4R-tauopathies, [18F]PI-2620 binding in basal ganglia and midbrain regions was negatively associated with striatal DaT availability (i.e. globus pallidus internus and putamen (ß = - 0.464, p = 0.006, Durbin-Watson statistics = 1.824) in a multiple regression model. Contrarily, [18F]PI-2620 binding in the dentate nucleus showed no significant regression factor with DaT availability in the striatum (ß = 0.078, p = 0.662, Durbin-Watson statistics = 1.686). Patients with α-synucleinopathies did not indicate any regional associations between [18F]PI-2620-binding and DaT availability. Higher DaT-SPECT binding relative to tau burden was associated with better clinical performance (ß = - 0.522, p = 0.011, Durbin-Watson statistics = 2.663) in patients with 4R-tauopathies. CONCLUSION: Tau burden in brain regions involved in dopaminergic pathways is associated with aggravated dopaminergic dysfunction in patients with clinically diagnosed primary tauopathies. The ability to sustain dopamine transmission despite tau accumulation may preserve motor function.


Subject(s)
Dopamine Plasma Membrane Transport Proteins , Dopamine , Positron-Emission Tomography , Tauopathies , tau Proteins , Humans , Male , Female , Aged , Tauopathies/diagnostic imaging , Tauopathies/metabolism , Dopamine/metabolism , tau Proteins/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Tomography, Emission-Computed, Single-Photon , Middle Aged , Nortropanes/pharmacokinetics
18.
J Neuroinflammation ; 21(1): 30, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38263017

ABSTRACT

BACKGROUND AND OBJECTIVES: 18-kDa translocator protein position-emission-tomography (TSPO-PET) imaging emerged for in vivo assessment of neuroinflammation in Alzheimer's disease (AD) research. Sex and obesity effects on TSPO-PET binding have been reported for cognitively normal humans (CN), but such effects have not yet been systematically evaluated in patients with AD. Thus, we aimed to investigate the impact of sex and obesity on the relationship between ß-amyloid-accumulation and microglial activation in AD. METHODS: 49 patients with AD (29 females, all Aß-positive) and 15 Aß-negative CN (8 female) underwent TSPO-PET ([18F]GE-180) and ß-amyloid-PET ([18F]flutemetamol) imaging. In 24 patients with AD (14 females), tau-PET ([18F]PI-2620) was additionally available. The brain was parcellated into 218 cortical regions and standardized-uptake-value-ratios (SUVr, cerebellar reference) were calculated. Per region and tracer, the regional increase of PET SUVr (z-score) was calculated for AD against CN. The regression derived linear effect of regional Aß-PET on TSPO-PET was used to determine the Aß-plaque-dependent microglial response (slope) and the Aß-plaque-independent microglial response (intercept) at the individual patient level. All read-outs were compared between sexes and tested for a moderation effect of sex on associations with body mass index (BMI). RESULTS: In AD, females showed higher mean cortical TSPO-PET z-scores (0.91 ± 0.49; males 0.30 ± 0.75; p = 0.002), while Aß-PET z-scores were similar. The Aß-plaque-independent microglial response was stronger in females with AD (+ 0.37 ± 0.38; males with AD - 0.33 ± 0.87; p = 0.006), pronounced at the prodromal stage. On the contrary, the Aß-plaque-dependent microglial response was not different between sexes. The Aß-plaque-independent microglial response was significantly associated with tau-PET in females (Braak-II regions: r = 0.757, p = 0.003), but not in males. BMI and the Aß-plaque-independent microglial response were significantly associated in females (r = 0.44, p = 0.018) but not in males (BMI*sex interaction: F(3,52) = 3.077, p = 0.005). CONCLUSION: While microglia response to fibrillar Aß is similar between sexes, women with AD show a stronger Aß-plaque-independent microglia response. This sex difference in Aß-independent microglial activation may be associated with tau accumulation. BMI is positively associated with the Aß-plaque-independent microglia response in females with AD but not in males, indicating that sex and obesity need to be considered when studying neuroinflammation in AD.


Subject(s)
Alzheimer Disease , Microglia , Humans , Female , Male , Body Mass Index , Neuroinflammatory Diseases , Amyloid beta-Peptides , Obesity , Receptors, GABA
19.
Biomedicines ; 12(1)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38255293

ABSTRACT

BACKGROUND: The translocator protein (TSPO) has been proven to have great potential as a target for the positron emission tomography (PET) imaging of glioblastoma. However, there is an ongoing debate about the potential various sources of the TSPO PET signal. This work investigates the impact of the inoculation-driven immune response on the PET signal in experimental orthotopic glioblastoma. METHODS: Serial [18F]GE-180 and O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) PET scans were performed at day 7/8 and day 14/15 after the inoculation of GL261 mouse glioblastoma cells (n = 24) or saline (sham, n = 6) into the right striatum of immunocompetent C57BL/6 mice. An additional n = 25 sham mice underwent [18F]GE-180 PET and/or autoradiography (ARG) at days 7, 14, 21, 28, 35, 50 and 90 in order to monitor potential reactive processes that were solely related to the inoculation procedure. In vivo imaging results were directly compared to tissue-based analyses including ARG and immunohistochemistry. RESULTS: We found that the inoculation process represents an immunogenic event, which significantly contributes to TSPO radioligand uptake. [18F]GE-180 uptake in GL261-bearing mice surpassed [18F]FET uptake both in the extent and the intensity, e.g., mean target-to-background ratio (TBRmean) in PET at day 7/8: 1.22 for [18F]GE-180 vs. 1.04 for [18F]FET, p < 0.001. Sham mice showed increased [18F]GE-180 uptake at the inoculation channel, which, however, continuously decreased over time (e.g., TBRmean in PET: 1.20 at day 7 vs. 1.09 at day 35, p = 0.04). At the inoculation channel, the percentage of TSPO/IBA1 co-staining decreased, whereas TSPO/GFAP (glial fibrillary acidic protein) co-staining increased over time (p < 0.001). CONCLUSION: We identify the inoculation-driven immune response to be a relevant contributor to the PET signal and add a new aspect to consider for planning PET imaging studies in orthotopic glioblastoma models.

20.
Neuroimage ; 286: 120513, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38191101

ABSTRACT

Among functional imaging methods, metabolic connectivity (MC) is increasingly used for investigation of regional network changes to examine the pathophysiology of neurodegenerative diseases such as Alzheimer's disease (AD) or movement disorders. Hitherto, MC was mostly used in clinical studies, but only a few studies demonstrated the usefulness of MC in the rodent brain. The goal of the current work was to analyze and validate metabolic regional network alterations in three different mouse models of neurodegenerative diseases (ß-amyloid and tau) by use of 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography (FDG-PET) imaging. We compared the results of FDG-µPET MC with conventional VOI-based analysis and behavioral assessment in the Morris water maze (MWM). The impact of awake versus anesthesia conditions on MC read-outs was studied and the robustness of MC data deriving from different scanners was tested. MC proved to be an accurate and robust indicator of functional connectivity loss when sample sizes ≥12 were considered. MC readouts were robust across scanners and in awake/ anesthesia conditions. MC loss was observed throughout all brain regions in tauopathy mice, whereas ß-amyloid indicated MC loss mainly in spatial learning areas and subcortical networks. This study established a methodological basis for the utilization of MC in different ß-amyloid and tau mouse models. MC has the potential to serve as a read-out of pathological changes within neuronal networks in these models.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Tauopathies , Mice , Animals , Fluorodeoxyglucose F18/metabolism , Amyloid beta-Peptides/metabolism , Alzheimer Disease/pathology , Tauopathies/pathology , Brain/metabolism , Neurodegenerative Diseases/metabolism , Positron-Emission Tomography/methods , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL