Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Genes (Basel) ; 13(10)2022 Sep 23.
Article En | MEDLINE | ID: mdl-36292597

Similar to other South American regions, Tierra del Fuego has an admixed population characterized by distinct ancestors: Native Americans who first occupied the continent, European settlers who arrived from the late 15th century onwards, and Sub-Saharan Africans who were brought to the Americas for slave labor. To disclose the paternal lineages in the current population from Tierra del Fuego, 196 unrelated males were genotyped for 23 Y-STRs and 52 Y-SNPs. Haplotype and haplogroup diversities were high, indicating the absence of strong founder or drift events. A high frequency of Eurasian haplogroups was detected (94.4%), followed by Native American (5.1%) and African (0.5%) ones. The haplogroup R was the most abundant (48.5%), with the sub-haplogroup R-S116* taking up a quarter of the total dataset. Comparative analyses with other Latin American populations showed similarities with other admixed populations from Argentina. Regarding Eurasian populations, Tierra del Fuego presented similarities with Italian and Iberian populations. In an in-depth analysis of the haplogroup R-M269 and its subtypes, Tierra del Fuego displayed a close proximity to the Iberian Peninsula. The results from this study are in line with the historical records and reflect the severe demographic change led mainly by male newcomers with paternal European origin.


Polymorphism, Single Nucleotide , Racial Groups , Humans , Male , Haplotypes , Argentina
2.
Am J Hum Biol ; 34(4): e23682, 2022 04.
Article En | MEDLINE | ID: mdl-34533260

OBJECTIVES: We aimed to contribute to the understanding of the ancient geographic origins of the uniparentally inherited markers in modern admixed Argentinian populations from central Patagonia with new information provided for the city of Trelew. We attempted to highlight the importance of combining different genetic markers when studying population history. METHODS: The mtDNA control region sequence was typified in 89 individuals and 12 Y-STR and 15 Y-SNP loci were analyzed in 66 males. With these data, analysis of molecular variance and Network analyses were carried out. We exhaustively compared the modern data with ancient mtDNA information. Finally, we tested the differences in continental origins estimated by uniparental and previously published biparental markers. RESULTS: Native American mtDNAs (53.9%) increased when maternal ancestors were born in the northern (81.8%) and southern (58.5%) regions of Argentina or in Chile (77.8%). Population substructure was only observed for Y-chromosome haplotypes. Some mtDNA haplogroups have been present in the area for at least ca. 2762-2430 and ca. 500 (D1g and D1g4 haplogroups) and ca. 6736 and ca. 6620 (C1b and C1c haplogroups) years, respectively. In contrast, haplogroups B2i2 and C1b13, frequent in modern Patagonia populations, had not been found in previous ancient DNA studies of the region. CONCLUSIONS: The results suggest that Native American ancestry is well preserved in the region. Trelew samples had characteristic native mtDNA haplogroups previously described in Chilean and Argentine Patagonian populations, but not observed in ancient samples until now. These findings support the idea that these lineages have a recent regional origin. Finally, the estimated proportions of continental ancestry depend on the genetic marker analyzed.


DNA, Mitochondrial , Genetics, Population , DNA, Mitochondrial/genetics , Genetic Markers , Haplotypes , Humans , Male , Racial Groups
3.
J Environ Manage ; 297: 113333, 2021 Nov 01.
Article En | MEDLINE | ID: mdl-34329910

Early detection and rapid response plans are a set of principles to reduce the establishment, spread and impact of invasive species and it is a critical step in management in marine ecosystems. Two potentially invasive ascidians attached to the hull of a recently sunk fishing vessel were early detected in Patagonia. With the aim of assisting in the management decision-making process during the early steps of a rapid response, we conducted several analyses through different approaches. First, we identified the species through classic taxonomical and genetic analyses. Then, we evaluated the regional and international shipping connectivity to study potential donor regions and finally, we used species distribution models (SDMs) to predict the potential distribution of these species. The potentially invasive ascidians were identified as Styela clava and Styela plicata, and this is the first record for both species in the Nuevo gulf, Patagonia Argentina. Both species have a widespread distribution around the world with strong ecological and economic impacts documented. Shipping traffic analysis suggested that S. plicata could have arrived by secondary spread from regional ports, while the arrival of S. clava was likely to be associated with international shipping traffic. Furthermore, the SDM predicted that S. clava has suitable coastal areas along the entire Southwestern Atlantic shoreline, where it is currently absent. On the contrary, the SDM predicted that further southward spread of S. plicata is unlikely, being limited by the minimum annual temperature. We discussed the different approaches, tools, and expertise integrated in this work in the light of the decision-making process for the early detection of marine invasive species in the Southwestern Atlantic. Moreover, we call attention to the increased creation of artificial habitats through the intentional sinking of ships and the potential consequences of these actions in the conservation of marine ecosystems.


Introduced Species , Urochordata , Animals , Argentina , Ecosystem , Ships , Urochordata/genetics
4.
PLoS One ; 15(5): e0233792, 2020.
Article En | MEDLINE | ID: mdl-32470001

BACKGROUND: The Argentinian pouched lamprey, classified as Petromyzon macrostomus Burmeister, 1868 was first described in 1867 in De La Plata River, in Buenos Aires, Argentina, and subsequently recorded in several rivers from Patagonia. Since its original description, the validity of P. macrostomus was questioned by several ichthyologists and 36 years after its original discovery it was considered a junior synonym of Geotria australis Gray, 1851. For a long time, the taxonomic status of G. australis has been uncertain, largely due to the misinterpretations of the morphological alterations that occur during sexual maturation, including the arrangement of teeth, size and position of fins and cloaca, and the development of an exceptionally large gular pouch in males. In this study, the taxonomic status of Geotria from across the "species" range was evaluated using both molecular analysis and examination of morphological characteristics. METHODOLOGY/PRINCIPAL FINDINGS: Phylogenetic and species delimitation analyses based on mitochondrial DNA sequences of Cytochrome b (Cyt b) and Cytochrome C Oxidase Subunit 1 (COI) genes, along with morphological analysis of diagnostic characters reported in the original descriptions of the species were used to assess genetic and morphological variation within Geotria and to determine the specific status of the Argentinian lamprey. These analyses revealed that Geotria from Argentina constitutes a well differentiated lineage from Chilean and Australasian populations. The position of the cloaca and the distance between the second dorsal and caudal fins in sub-adult individuals, and at previous life stages, can be used to distinguish between the two species. In addition, the genetic distance between G. macrostoma and G. australis for the COI and Cyt b mitochondrial genes is higher than both intra- and inter-specific distances reported for other Petromyzontiformes. CONCLUSIONS/SIGNIFICANCE: Our results indicate that the Argentinian pouched lamprey, found along a broad latitudinal gradient on the south-west Atlantic coast of South America, should be named as Geotria macrostoma (Burmeister, 1868) and not as G. australis Gray 1851, returning to its earliest valid designation in Argentina. Geotria macrostoma can now be considered as the single lamprey species inhabiting Argentinian Patagonia, with distinct local adaptations and evolutionary potential. It is essential that this distinctiveness is recognized in order to guide future conservation and management actions against imminent threats posed by human actions in the major basins of Patagonia.


Lampreys/classification , Animal Fins/anatomy & histology , Animals , Argentina , Cloaca/anatomy & histology , DNA, Mitochondrial/genetics , Lampreys/anatomy & histology , Lampreys/genetics , Phylogeny , Rivers
...