Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Epigenomics ; 16(14): 1013-1029, 2024.
Article in English | MEDLINE | ID: mdl-39225561

ABSTRACT

Aim: The epigenome influences gene regulation and phenotypes in response to exposures. Epigenome assessment can determine exposure history aiding in diagnosis.Materials & methods: Here we developed and implemented a machine learning algorithm, the exposure signature discovery algorithm (ESDA), to identify the most important features present in multiple epigenomic and transcriptomic datasets to produce an integrated exposure signature (ES).Results: Signatures were developed for seven exposures including Staphylococcus aureus, human immunodeficiency virus, SARS-CoV-2, influenza A (H3N2) virus and Bacillus anthracis vaccinations. ESs differed in the assays and features selected and predictive value.Conclusion: Integrated ESs can potentially be utilized for diagnosis or forensic attribution. The ESDA identifies the most distinguishing features enabling diagnostic panel development for future precision health deployment.


This article introduces ESDA, a new analytic tool for integrating multiple data types to identify the most distinguishing features following an exposure. Using the ESDA, we were able to identify signatures of infectious diseases. The results of the study indicate that integration of multiple types of large datasets can be used to identify distinguishing features for infectious diseases. Understanding the changes from different exposures will enable development of diagnostic tests for infectious diseases that target responses from the patient. Using the ESDA, we will be able to build a database of human response signatures to different infections and simplify diagnostic testing in the future.


Subject(s)
COVID-19 , Epigenomics , Machine Learning , Staphylococcus aureus , Humans , Epigenomics/methods , Staphylococcus aureus/genetics , COVID-19/virology , COVID-19/genetics , SARS-CoV-2/genetics , Epigenome , Influenza A Virus, H3N2 Subtype/genetics , Bacillus anthracis/genetics , Algorithms , Epigenesis, Genetic , Transcriptome , HIV Infections/genetics , Influenza, Human/genetics
2.
bioRxiv ; 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37425926

ABSTRACT

Variations in DNA methylation patterns in human tissues have been linked to various environmental exposures and infections. Here, we identified the DNA methylation signatures associated with multiple exposures in nine major immune cell types derived from peripheral blood mononuclear cells (PBMCs) at single-cell resolution. We performed methylome sequencing on 111,180 immune cells obtained from 112 individuals who were exposed to different viruses, bacteria, or chemicals. Our analysis revealed 790,662 differentially methylated regions (DMRs) associated with these exposures, which are mostly individual CpG sites. Additionally, we integrated methylation and ATAC-seq data from same samples and found strong correlations between the two modalities. However, the epigenomic remodeling in these two modalities are complementary. Finally, we identified the minimum set of DMRs that can predict exposures. Overall, our study provides the first comprehensive dataset of single immune cell methylation profiles, along with unique methylation biomarkers for various biological and chemical exposures.

SELECTION OF CITATIONS
SEARCH DETAIL