Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
medRxiv ; 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38370739

Background and aims: Inflammatory Bowel Diseases (IBD) are chronic inflammatory conditions influenced heavily by environmental factors. DNA methylation is a form of epigenetic regulation linking environmental stimuli to gene expression changes and inflammation. Here, we investigated how DNA methylation of the TNF promoter differs between inflamed and uninflamed mucosa of IBD patients, including anti-TNF responders and non-responders. Methods: We obtained mucosal biopsies from 200 participants (133 IBD and 67 controls) and analyzed TNF promoter methylation using bisulfite sequencing, comparing inflamed with uninflamed segments, in addition to paired inflamed/uninflamed samples from individual patients. We conducted similar analyses on purified intestinal epithelial cells from bowel resections. We also compared TNF methylation levels of inflamed and uninflamed mucosa from a separate cohort of 15 anti-TNF responders and 17 non-responders. Finally, we sequenced DNA methyltransferase genes to identify rare variants in IBD patients and functionally tested them using rescue experiments in a zebrafish genetic model of DNA methylation deficiency. Results: TNF promoter methylation levels were decreased in inflamed mucosa of IBD patients and correlated with disease severity. Isolated IECs from inflamed tissue showed proportional decreases in TNF methylation. Anti-TNF non-responders showed lower levels of TNF methylation than responders in uninflamed mucosa. Our sequencing analysis revealed two missense variants in DNMT1, one of which had reduced function in vivo. Conclusions: Our study reveals an association of TNF promoter hypomethylation with mucosal inflammation, suggesting that IBD patients may be particularly sensitive to inflammatory environmental insults affecting DNA methylation. Together, our analyses indicate that TNF promoter methylation analysis may aid in the characterization of IBD status and evaluation of anti-TNF therapy response.

2.
JCI Insight ; 9(4)2024 Feb 22.
Article En | MEDLINE | ID: mdl-38385744

Crohn's disease (CD) is a chronic inflammatory gut disorder. Molecular mechanisms underlying the clinical heterogeneity of CD remain poorly understood. MicroRNAs (miRNAs) are important regulators of gut physiology, and several have been implicated in the pathogenesis of adult CD. However, there is a dearth of large-scale miRNA studies for pediatric CD. We hypothesized that specific miRNAs uniquely mark pediatric CD. We performed small RNA-Seq of patient-matched colon and ileum biopsies from treatment-naive pediatric patients with CD (n = 169) and a control cohort (n = 108). Comprehensive miRNA analysis revealed 58 miRNAs altered in pediatric CD. Notably, multinomial logistic regression analysis revealed that index levels of ileal miR-29 are strongly predictive of severe inflammation and stricturing. Transcriptomic analyses of transgenic mice overexpressing miR-29 show a significant reduction of the tight junction protein gene Pmp22 and classic Paneth cell markers. The dramatic loss of Paneth cells was confirmed by histologic assays. Moreover, we found that pediatric patients with CD with elevated miR-29 exhibit significantly lower Paneth cell counts, increased inflammation scores, and reduced levels of PMP22. These findings strongly indicate that miR-29 upregulation is a distinguishing feature of pediatric CD, highly predictive of severe phenotypes, and associated with inflammation and Paneth cell loss.


Crohn Disease , MicroRNAs , Adult , Animals , Mice , Humans , Child , Crohn Disease/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Phenotype , Inflammation
3.
Sci Rep ; 14(1): 2667, 2024 02 01.
Article En | MEDLINE | ID: mdl-38302662

Pediatric Crohn's disease (CD) is characterized by a severe disease course with frequent complications. We sought to apply machine learning-based models to predict risk of developing future complications in pediatric CD using ileal and colonic gene expression. Gene expression data was generated from 101 formalin-fixed, paraffin-embedded (FFPE) ileal and colonic biopsies obtained from treatment-naïve CD patients and controls. Clinical outcomes including development of strictures or fistulas and progression to surgery were analyzed using differential expression and modeled using machine learning. Differential expression analysis revealed downregulation of pathways related to inflammation and extra-cellular matrix production in patients with strictures. Machine learning-based models were able to incorporate colonic gene expression and clinical characteristics to predict outcomes with high accuracy. Models showed an area under the receiver operating characteristic curve (AUROC) of 0.84 for strictures, 0.83 for remission, and 0.75 for surgery. Genes with potential prognostic importance for strictures (REG1A, MMP3, and DUOX2) were not identified in single gene differential analysis but were found to have strong contributions to predictive models. Our findings in FFPE tissue support the importance of colonic gene expression and the potential for machine learning-based models in predicting outcomes for pediatric CD.


Crohn Disease , Child , Humans , Constriction, Pathologic , Crohn Disease/pathology , Gene Expression , Machine Learning , Lithostathine/genetics
4.
Cell Mol Gastroenterol Hepatol ; 13(6): 1717-1740, 2022.
Article En | MEDLINE | ID: mdl-35158099

BACKGROUND & AIMS: The intestinal barrier comprises a monolayer of specialized intestinal epithelial cells (IECs) that are critical in maintaining mucosal homeostasis. Dysfunction within various IEC fractions can alter intestinal permeability in a genetically susceptible host, resulting in a chronic and debilitating condition known as Crohn's disease (CD). Defining the molecular changes in each IEC type in CD will contribute to an improved understanding of the pathogenic processes and the identification of cell type-specific therapeutic targets. We performed, at single-cell resolution, a direct comparison of the colonic epithelial cellular and molecular landscape between treatment-naïve adult CD and non-inflammatory bowel disease control patients. METHODS: Colonic epithelial-enriched, single-cell sequencing from treatment-naïve adult CD and non-inflammatory bowel disease patients was investigated to identify disease-induced differences in IEC types. RESULTS: Our analysis showed that in CD patients there is a significant skew in the colonic epithelial cellular distribution away from canonical LGR5+ stem cells, located at the crypt bottom, and toward one specific subtype of mature colonocytes, located at the crypt top. Further analysis showed unique changes to gene expression programs in every major cell type, including a previously undescribed suppression in CD of most enteroendocrine driver genes as well as L-cell markers including GCG. We also dissect an incompletely understood SPIB+ cell cluster, revealing at least 4 subclusters that likely represent different stages of a maturational trajectory. One of these SPIB+ subclusters expresses crypt-top colonocyte markers and is up-regulated significantly in CD, whereas another subcluster strongly expresses and stains positive for lysozyme (albeit no other canonical Paneth cell marker), which surprisingly is greatly reduced in expression in CD. In addition, we also discovered transposable element markers of colonic epithelial cell types as well as transposable element families that are altered significantly in CD in a cell type-specific manner. Finally, through integration with data from genome-wide association studies, we show that genes implicated in CD risk show heretofore unknown cell type-specific patterns of aberrant expression in CD, providing unprecedented insight into the potential biological functions of these genes. CONCLUSIONS: Single-cell analysis shows a number of unexpected cellular and molecular features, including transposable element expression signatures, in the colonic epithelium of treatment-naïve adult CD.


Crohn Disease , Adult , Crohn Disease/pathology , DNA Transposable Elements , Epithelium/pathology , Genome-Wide Association Study , Humans , Paneth Cells/metabolism , Single-Cell Analysis
5.
Sci Rep ; 11(1): 13533, 2021 06 29.
Article En | MEDLINE | ID: mdl-34188154

The host receptor for SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2), is highly expressed in small intestine. Our aim was to study colonic ACE2 expression in Crohn's disease (CD) and non-inflammatory bowel disease (non-IBD) controls. We hypothesized that the colonic expression levels of ACE2 impacts CD course. We examined the expression of colonic ACE2 in 67 adult CD and 14 NIBD control patients using RNA-seq and quantitative (q) RT-PCR. We validated ACE2 protein expression and localization in formalin-fixed, paraffin-embedded matched colon and ileal tissues using immunohistochemistry. The impact of increased ACE2 expression in CD for the risk of surgery was evaluated by a multivariate regression analysis and a Kaplan-Meier estimator. To provide critical support for the generality of our findings, we analyzed previously published RNA-seq data from two large independent cohorts of CD patients. Colonic ACE2 expression was significantly higher in a subset of adult CD patients which was defined as the ACE2-high CD subset. IHC in a sampling of ACE2-high CD patients confirmed high ACE2 protein expression in the colon and ileum compared to ACE2-low CD and NIBD patients. Notably, we found that ACE2-high CD patients are significantly more likely to undergo surgery within 5 years of CD diagnosis, and a Cox regression analysis found that high ACE2 levels is an independent risk factor for surgery (OR 2.17; 95% CI, 1.10-4.26; p = 0.025). Increased intestinal expression of ACE2 is associated with deteriorated clinical outcomes in CD patients. These data point to the need for molecular stratification that can impact CD disease-related outcomes.


Angiotensin-Converting Enzyme 2/metabolism , Crohn Disease/pathology , Adolescent , Adult , Angiotensin-Converting Enzyme 2/genetics , Crohn Disease/metabolism , Crohn Disease/surgery , Female , Humans , Ileum/metabolism , Ileum/pathology , Immunohistochemistry , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Male , Prognosis , Proportional Hazards Models , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Risk Factors , Sequence Analysis, RNA , Young Adult
6.
bioRxiv ; 2020 Nov 24.
Article En | MEDLINE | ID: mdl-33269348

BACKGROUND AND AIMS: The host receptor for SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2), is highly expressed in small intestine. Our aim was to study colonic ACE2 expression in Crohn's disease (CD) and non-inflammatory bowel disease (non-IBD) controls. We hypothesized that the colonic expression levels of ACE2 impacts CD course. METHODS: We examined the expression of colon ACE2 using RNA-seq and quantitative (q) RT-PCR from 69 adult CD and 14 NIBD control patients. In a subset of this cohort we validated ACE2 protein expression and localization in formalin-fixed, paraffin-embedded matched colon and ileal tissues using immunohistochemistry. The impact of increased ACE2 expression in CD for the risk of surgery was evaluated by a multivariate regression analysis and a Kaplan-Meier estimator. To provide critical support for the generality of our findings, we analyzed previously published RNA-seq data from two large independent cohorts of CD patients. RESULTS: Colonic ACE2 expression was significantly higher in a subset of adult CD patients (ACE2-high CD). IHC in a sampling of ACE2-high CD patients confirmed high ACE2 protein expression in the colon and ileum compared to ACE2-low CD and NIBD patients. Notably, we found that ACE2-high CD patients are significantly more likely to undergo surgery within 5 years of diagnosis, with a Cox regression analysis finding that high ACE2 levels is an independent risk factor (OR 2.18; 95%CI, 1.05-4.55; p=0.037). CONCLUSION: Increased intestinal expression of ACE2 is associated with deteriorated clinical outcomes in CD patients. These data point to the need for molecular stratification that may impact CD disease-related outcomes.

7.
Cell Mol Gastroenterol Hepatol ; 10(4): 779-796, 2020.
Article En | MEDLINE | ID: mdl-32561494

BACKGROUND & AIMS: Intestinal epithelial cell (IEC) barrier dysfunction is critical to the development of Crohn's disease (CD). However, the mechanism is understudied. We recently reported increased microRNA-31-5p (miR-31-5p) expression in colonic IECs of CD patients, but downstream targets and functional consequences are unknown. METHODS: microRNA-31-5p target genes were identified by integrative analysis of RNA- and small RNA-sequencing data from colonic mucosa and confirmed by quantitative polymerase chain reaction in colonic IECs. Functional characterization of activin receptor-like kinase 1 (ACVRL1 or ALK1) in IECs was performed ex vivo using 2-dimensional cultured human primary colonic IECs. The impact of altered colonic ALK1 signaling in CD for the risk of surgery and endoscopic relapse was evaluated by a multivariate regression analysis and a Kaplan-Meier estimator. RESULTS: ALK1 was identified as a target of miR-31-5p in colonic IECs of CD patients and confirmed using a 3'-untranslated region reporter assay. Activation of ALK1 restricted the proliferation of colonic IECs in a 5-ethynyl-2-deoxyuridine proliferation assay and down-regulated the expression of stemness-related genes. Activated ALK1 signaling increased colonic IEC differentiation toward colonocytes. Down-regulated ALK1 signaling was associated with increased stemness and decreased colonocyte-specific marker expression in colonic IECs of CD patients compared with healthy controls. Activation of ALK1 enhanced epithelial barrier integrity in a transepithelial electrical resistance permeability assay. Lower colonic ALK1 expression was identified as an independent risk factor for surgery and was associated with a higher risk of endoscopic relapse in CD patients. CONCLUSIONS: Decreased colonic ALK1 disrupted colonic IEC barrier integrity and was associated with poor clinical outcomes in CD patients.


Activin Receptors, Type II/analysis , Colon/pathology , Crohn Disease/pathology , Intestinal Mucosa/pathology , Activin Receptors, Type II/genetics , Activin Receptors, Type II/metabolism , Adult , Colon/metabolism , Crohn Disease/genetics , Crohn Disease/metabolism , Down-Regulation , Enzyme Activation , Female , Humans , Intestinal Mucosa/metabolism , Male , MicroRNAs/genetics , Middle Aged
...