Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Radiat Res ; 199(6): 535-555, 2023 06 01.
Article En | MEDLINE | ID: mdl-37310880

Tools for radiation exposure reconstruction are required to support the medical management of radiation victims in radiological or nuclear incidents. Different biological and physical dosimetry assays can be used for various exposure scenarios to estimate the dose of ionizing radiation a person has absorbed. Regular validation of the techniques through inter-laboratory comparisons (ILC) is essential to guarantee high quality results. In the current RENEB inter-laboratory comparison, the performance quality of established cytogenetic assays [dicentric chromosome assay (DCA), cytokinesis-block micronucleus assay (CBMN), stable chromosomal translocation assay (FISH) and premature chromosome condensation assay (PCC)] was tested in comparison to molecular biological assays [gamma-H2AX foci (gH2AX), gene expression (GE)] and physical dosimetry-based assays [electron paramagnetic resonance (EPR), optically or thermally stimulated luminescence (LUM)]. Three blinded coded samples (e.g., blood, enamel or mobiles) were exposed to 0, 1.2 or 3.5 Gy X-ray reference doses (240 kVp, 1 Gy/min). These doses roughly correspond to clinically relevant groups of unexposed to low exposed (0-1 Gy), moderately exposed (1-2 Gy, no severe acute health effects expected) and highly exposed individuals (>2 Gy, requiring early intensive medical care). In the frame of the current RENEB inter-laboratory comparison, samples were sent to 86 specialized teams in 46 organizations from 27 nations for dose estimation and identification of three clinically relevant groups. The time for sending early crude reports and more precise reports was documented for each laboratory and assay where possible. The quality of dose estimates was analyzed with three different levels of granularity, 1. by calculating the frequency of correctly reported clinically relevant dose categories, 2. by determining the number of dose estimates within the uncertainty intervals recommended for triage dosimetry (±0.5 Gy or ±1.0 Gy for doses <2.5 Gy or >2.5 Gy), and 3. by calculating the absolute difference (AD) of estimated doses relative to the reference doses. In total, 554 dose estimates were submitted within the 6-week period given before the exercise was closed. For samples processed with the highest priority, earliest dose estimates/categories were reported within 5-10 h of receipt for GE, gH2AX, LUM, EPR, 2-3 days for DCA, CBMN and within 6-7 days for the FISH assay. For the unirradiated control sample, the categorization in the correct clinically relevant group (0-1 Gy) as well as the allocation to the triage uncertainty interval was, with the exception of a few outliers, successfully performed for all assays. For the 3.5 Gy sample the percentage of correct classifications to the clinically relevant group (≥2 Gy) was between 89-100% for all assays, with the exception of gH2AX. For the 1.2 Gy sample, an exact allocation to the clinically relevant group was more difficult and 0-50% or 0-48% of the estimates were wrongly classified into the lowest or highest dose categories, respectively. For the irradiated samples, the correct allocation to the triage uncertainty intervals varied considerably between assays for the 1.2 Gy (29-76%) and 3.5 Gy (17-100%) samples. While a systematic shift towards higher doses was observed for the cytogenetic-based assays, extreme outliers exceeding the reference doses 2-6 fold were observed for EPR, FISH and GE assays. These outliers were related to a particular material examined (tooth enamel for EPR assay, reported as kerma in enamel, but when converted into the proper quantity, i.e. to kerma in air, expected dose estimates could be recalculated in most cases), the level of experience of the teams (FISH) and methodological uncertainties (GE). This was the first RENEB ILC where everything, from blood sampling to irradiation and shipment of the samples, was organized and realized at the same institution, for several biological and physical retrospective dosimetry assays. Almost all assays appeared comparably applicable for the identification of unexposed and highly exposed individuals and the allocation of medical relevant groups, with the latter requiring medical support for the acute radiation scenario simulated in this exercise. However, extreme outliers or a systematic shift of dose estimates have been observed for some assays. Possible reasons will be discussed in the assay specific papers of this special issue. In summary, this ILC clearly demonstrates the need to conduct regular exercises to identify research needs, but also to identify technical problems and to optimize the design of future ILCs.


Biological Assay , Blood Specimen Collection , Retrospective Studies , Cytokinesis , Electron Spin Resonance Spectroscopy
2.
Radiat Res ; 199(6): 556-570, 2023 06 01.
Article En | MEDLINE | ID: mdl-37018160

After large-scale radiation accidents where many individuals are suspected to be exposed to ionizing radiation, biological and physical retrospective dosimetry assays are important tools to aid clinical decision making by categorizing individuals into unexposed/minimally, moderately or highly exposed groups. Quality-controlled inter-laboratory comparisons of simulated accident scenarios are regularly performed in the frame of the European legal association RENEB (Running the European Network of Biological and Physical retrospective Dosimetry) to optimize international networking and emergency readiness in case of large-scale radiation events. In total 33 laboratories from 22 countries around the world participated in the current RENEB inter-laboratory comparison 2021 for the dicentric chromosome assay. Blood was irradiated in vitro with X rays (240 kVp, 13 mA, ∼75 keV, 1 Gy/min) to simulate an acute, homogeneous whole-body exposure. Three blood samples (no. 1: 0 Gy, no. 2: 1.2 Gy, no. 3: 3.5 Gy) were sent to each participant and the task was to culture samples, to prepare slides and to assess radiation doses based on the observed dicentric yields from 50 manually or 150 semi-automatically scored metaphases (triage mode scoring). Approximately two-thirds of the participants applied calibration curves from irradiations with γ rays and about 1/3 from irradiations with X rays with varying energies. The categorization of the samples in clinically relevant groups corresponding to individuals that were unexposed/minimally (0-1 Gy), moderately (1-2 Gy) or highly exposed (>2 Gy) was successfully performed by all participants for sample no. 1 and no. 3 and by ≥74% for sample no. 2. However, while most participants estimated a dose of exactly 0 Gy for the sham-irradiated sample, the precise dose estimates of the samples irradiated with doses >0 Gy were systematically higher than the corresponding reference doses and showed a median deviation of 0.5 Gy (sample no. 2) and 0.95 Gy (sample no. 3) for manual scoring. By converting doses estimated based on γ-ray calibration curves to X-ray doses of a comparable mean photon energy as used in this exercise, the median deviation decreased to 0.27 Gy (sample no. 2) and 0.6 Gy (sample no. 3). The main aim of biological dosimetry in the case of a large-scale event is the categorization of individuals into clinically relevant groups, to aid clinical decision making. This task was successfully performed by all participants for the 0 Gy and 3.5 Gy samples and by 74% (manual scoring) and 80% (semiautomatic scoring) for the 1.2 Gy sample. Due to the accuracy of the dicentric chromosome assay and the high number of participating laboratories, a systematic shift of the dose estimates could be revealed. Differences in radiation quality (X ray vs. γ ray) between the test samples and the applied dose effect curves can partly explain the systematic shift. There might be several additional reasons for the observed bias (e.g., donor effects, transport, experimental conditions or the irradiation setup) and the analysis of these reasons provides great opportunities for future research. The participation of laboratories from countries around the world gave the opportunity to compare the results on an international level.


Chromosome Aberrations , Radioactive Hazard Release , Humans , Retrospective Studies , Radiometry/methods , Biological Assay/methods , Chromosomes , Dose-Response Relationship, Radiation
3.
Radiat Prot Dosimetry ; 172(1-3): 254-259, 2016 Dec.
Article En | MEDLINE | ID: mdl-27431686

In 2014, Health Canada was approached by the Canadian Nuclear Safety Commission to conduct biodosimetry for a possible overexposure 4 y prior to assessment. Dose estimates were determined by means of two cytogenetic assays, the dicentric chromosome assay (DCA) and translocations as measured by the fluorescent in situ hybridization (FISH). As dicentrics are considered to be unstable over time, the results of the DCA were adjusted to account for the time elapsed between the suspected exposure and sampling. The frequency of damage was then compared to Health Canada's calibration curves, respectively, to calculate dose. In addition, the translocation data were corrected for age-related increases in background. With a half-life of 36 months for dicentric chromosomes taken into consideration, the dose estimates from both assays were in agreement. Due to the uncertainty in the half-life of dicentrics, the FISH assay is considered to be more reliable as a technique for retrospective biodosimetry.


Biological Assay/methods , Chromosome Aberrations/radiation effects , Cytogenetic Analysis/methods , In Situ Hybridization/methods , Occupational Exposure/analysis , Radiation Exposure/analysis , Radiometry/methods , Adult , Case-Control Studies , Cells, Cultured , Humans , Male , Radiation Dosage , Radioactive Hazard Release , Reproducibility of Results , Sensitivity and Specificity
4.
Radiat Prot Dosimetry ; 172(1-3): 223-229, 2016 Dec.
Article En | MEDLINE | ID: mdl-27421474

In cases of overexposure to ionizing radiation, the cytokinesis-block micronucleus (CBMN) assay can be performed in order to estimate the dose of radiation to an exposed individual. However, in the event of a large-scale radiation accident with many potentially exposed casualties, the assay must be able to generate accurate dose estimates to within ±0.5 Gy as quickly as possible. The assay has been adapted to, validated and optimized on the ImageStreamX imaging flow cytometer. The ease of running this automated version of the CBMN assay allowed investigation into the accuracy of dose estimates after reducing the volume of whole blood cultured to 200 µl and reducing the culture time to 48 h. The data analysis template used to identify binucleated lymphocyte cells (BNCs) and micronuclei (MN) has since been optimized to improve the sensitivity and specificity of BNC and MN detection. This paper presents a re-analysis of existing data using this optimized analysis template to demonstrate that dose estimations from blinded samples can be obtained to the same level of accuracy in a shorter data collection time. Here, we show that dose estimates from blinded samples were obtained to within ±0.5 Gy of the delivered dose when data collection time was reduced by 30 min at standard culture conditions and by 15 min at reduced culture conditions. Reducing data collection time while retaining the same level of accuracy in our imaging flow cytometry-based version of the CBMN assay results in higher throughput and further increases the relevancy of the CBMN assay as a radiation biodosimeter.


Chromosome Aberrations/radiation effects , Cytokinesis/genetics , Flow Cytometry/methods , Image Enhancement/methods , Micronucleus Tests/methods , Microscopy/methods , Radiometry/methods , Biological Assay/methods , Cell Separation/methods , Cell Tracking/methods , Cells, Cultured , Cytokinesis/radiation effects , Humans , Radiation Dosage , Reproducibility of Results , Sensitivity and Specificity
5.
Cytometry A ; 89(7): 653-62, 2016 07.
Article En | MEDLINE | ID: mdl-27272602

The cytokinesis-block micronucleus (CBMN) assay is a well-established technique that can be employed in triage radiation biodosimetry to estimate whole body doses of radiation to potentially exposed individuals through quantitation of the frequency of micronuclei (MN) in binucleated lymphocyte cells (BNCs). The assay has been partially automated using traditional microscope-based methods and most recently has been modified for application on the ImageStream(X) (IS(X) ) imaging flow cytometer. This modification has allowed for a similar number of BNCs to be automatically scored as compared to traditional microscopy in a much shorter time period. However, the MN frequency measured was much lower than both manual and automated slide-based methods of performing the assay. This work describes the optimized analysis template which implements newly developed functions in the IDEAS(®) data analysis software for the IS(X) that enhances specificity for BNCs and increases the frequency of scored MN. A new dose response calibration curve is presented in which the average rate of MN per BNC is of similar magnitude to those presented in the literature using automated CBMN slide scoring methods. In addition, dose estimates were generated for nine irradiated, blinded samples and were found to be within ±0.5 Gy of the delivered dose. Results demonstrate that the improved identification accuracy for MN and BNCs in the IS(X) -based version of the CBMN assay will translate to increased accuracy when estimating unknown radiation doses received by exposed individuals following large-scale radiological or nuclear emergencies. © 2016 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of ISAC.


Flow Cytometry/methods , High-Throughput Screening Assays/methods , Image Processing, Computer-Assisted/methods , Radiometry/methods , Adult , Cytokinesis , Female , Humans , Male , Micronucleus Tests/methods , Middle Aged , Sensitivity and Specificity
6.
Cytometry A ; 85(10): 883-93, 2014 Oct.
Article En | MEDLINE | ID: mdl-25154929

The cytokinesis-block micronucleus (CBMN) assay is an established technique in radiation biological dosimetry for estimating the dose to an individual by measuring the frequency of micronuclei (MN) in binucleated lymphocyte cells (BNCs). The assay has been partially automated using slide-scoring algorithms, but an automated multiparameter method without the need of the slide-making procedure would be advantageous to further increase throughput for application in mass casualty events. The development of the ImageStreamX (ISX) imaging flow cytometer has made it possible to adapt the CBMN assay to an automated imaging flow cytometry (FCM) method. The protocol and analysis presented in this work tailor and expand the assay to a multiparameter biodosimetry tool. Ex vivo irradiated whole blood samples were cultured, processed, and analyzed on the ISX and BNCs, MN, and mononuclear cells were imaged, identified, and enumerated automatically and simultaneously. Details on development of the method, gating strategy, and dose response curves generated for the rate of MN per BNC, percentage of mononuclear cells as well as the replication index are presented. Results indicate that adapting the CBMN assay for use in imaging FCM has produced a rapid, robust, multiparameter analysis method with higher throughput than is currently available with standard microscopy. We conclude that the ISX-CBMN method may be an advantageous tool following a radiological event where triage biodosimetry must be performed on a large number of casualties.


Cytokinesis/physiology , Cytokinesis/radiation effects , Flow Cytometry/methods , Image Cytometry/methods , Radiometry/methods , Adult , Female , Humans , Male , Micronucleus Tests/methods , Middle Aged
7.
Radiat Environ Biophys ; 53(2): 273-82, 2014 May.
Article En | MEDLINE | ID: mdl-24604721

The cytokinesis-block micronucleus (CBMN) assay is employed in biological dosimetry to determine the dose of radiation to an exposed individual from the frequency of micronuclei (MN) in binucleated lymphocyte cells. The method has been partially automated for the use in mass casualty events, but it would be advantageous to further automate the method for increased throughput. Recently, automated image analysis has been successfully applied to the traditional, slide-scoring-based method of the CBMN assay. However, with the development of new technologies such as the imaging flow cytometer, it is now possible to adapt this microscope-based assay to an automated imaging flow cytometry method. The ImageStream(X) is an imaging flow cytometer that has adequate sensitivity to quantify radiation doses larger than 1 Gy while adding the increased throughput of traditional flow cytometry. The protocol and analysis presented in this work adapts the CBMN assay for the use on the ImageStream(X). Ex vivo-irradiated whole blood samples cultured for CBMN were analyzed on the ImageStream(X), and preliminary results indicate that binucleated cells and MN can be identified, imaged and enumerated automatically by imaging flow cytometry. Details of the method development, gating strategy and the dose response curve generated are presented and indicate that adaptation of the CBMN assay for the use with imaging flow cytometry has potential for high-throughput analysis following a mass casualty radiological event.


Cytokinesis/radiation effects , Flow Cytometry/methods , Micronucleus Tests/methods , Molecular Imaging/methods , Radiometry/methods , Automation , Dose-Response Relationship, Radiation , Humans , Image Processing, Computer-Assisted , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/radiation effects
...