Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39235833

ABSTRACT

Three bacterial strains, 1AS14IT, 1AS12I and 6AS6, isolated from root nodules of Acacia saligna, were characterized using a polyphasic approach. Phylogenetic analysis based on rrs sequences placed all three strains within the Rhizobium leguminosarum complex. Further phylogeny, based on 1 756 bp sequences of four concatenated housekeeping genes (recA, atpD, glnII and gyrB), revealed their distinction from known rhizobia species of the R. leguminosarum complex (Rlc), forming a distinct clade. The closest related species, identified as Rhizobium laguerreae, with a sequence identity of 96.4% based on concatenated recA-atpD-glnII-gyrB sequences. The type strain, 1AS14IT, showed average nucleotide identity (ANI) values of 94.9, 94.3 and 94.1% and DNA-DNA hybridization values of 56.1, 57.4 and 60.0% with the type strains of closest known species: R. laguerreae, Rhizobium acaciae and 'Rhizobium indicum', respectively. Phylogenomic analyses using 81 up-to-date bacteria core genes and the Type (Strain) Genome Server pipeline further supported the uniqueness of strains 1AS14IT, 1AS12I and 6AS6. The relatedness of the novel strains to NCBI unclassified Rhizobium sp. (396 genomes) and metagenome-derived genomes showed ANI values from 76.7 to 94.8% with a species-level cut-off of 96%, suggesting that strains 1AS14I, 1AS12I and 6AS6 are a distinct lineage. Additionally, differentiation of strains 1AS14IT, 1AS12I and 6AS6 from their closest phylogenetic neighbours was achieved using phenotypic, physiological and fatty acid content analyses. Based on the genomic, phenotypic and biochemical data, we propose the establishment of a novel rhizobial species, Rhizobium aouanii sp. nov., with strain 1AS14IT designated as the type strain (=DSM 113914T=LMG 33206T). This study contributes to the understanding of microbial diversity in nitrogen-fixing symbioses, specifically within Acacia saligna ecosystems in Tunisia.


Subject(s)
Acacia , Bacterial Typing Techniques , DNA, Bacterial , Fatty Acids , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Rhizobium , Root Nodules, Plant , Sequence Analysis, DNA , Rhizobium/genetics , Rhizobium/classification , Rhizobium/isolation & purification , DNA, Bacterial/genetics , Acacia/microbiology , RNA, Ribosomal, 16S/genetics , Fatty Acids/analysis , Tunisia , Root Nodules, Plant/microbiology , Genes, Essential/genetics , Genes, Bacterial , Base Composition , Symbiosis
2.
Syst Appl Microbiol ; 45(4): 126343, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35759954

ABSTRACT

Acacia saligna is an invasive alien species that has the ability to establish symbiotic relationships with rhizobia. In the present study, genotypic and symbiotic diversity of native rhizobia associated with A. saligna in Tunisia were studied. A total of 100 bacterial strains were selected and three different ribotypes were identified based on rrs PCR-RFLP analysis. Sequence analyses of rrs and four housekeeping genes (recA, atpD, gyrB and glnII) assigned 30 isolates to four putative new lineages and a single strain to Sinorhizobium meliloti. Thirteen slow-growing isolates representing the most dominant IGS (intergenic spacer) profile clustered distinctly from known rhizobia species within Bradyrhizobium with the closest related species being Bradyrhizobium shewense and Bradyrhizobium niftali, which had 95.17% and 95.1% sequence identity, respectively. Two slow-growing isolates, 1AS28L and 5AS6L, had B. frederekii as their closest species with a sequence identity of 95.2%, an indication that these strains could constitute a new lineage. Strains 1AS14I, 1AS12I and 6AS6 clustered distinctly from known rhizobia species but within the Rhizobium leguminosarum complex (Rlc) with the most closely related species being Rhizobium indicum with 96.3% sequence identity. Similarly, the remaining 11 strains showed 96.9 % and 97.2% similarity values with R. changzhiense and R. indicum, respectively. Based on nodC and nodA phylogenies and cross inoculation tests, these 14 strains of Rlc species clearly diverged from strains of Sinorhizobium and Rlc symbiovars, and formed a new symbiovar for which the name sv. "salignae" is proposed. Bacterial strains isolated in this study that were taxonomically assigned to Bradyrhizobium harbored different symbiotic genes and the data suggested a new symbiovar, for which sv. "cyanophyllae" is proposed. Isolates formed effective nodules on A. saligna.


Subject(s)
Acacia , Bradyrhizobium , Rhizobium leguminosarum , Rhizobium , DNA, Bacterial/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Rhizobium leguminosarum/genetics , Root Nodules, Plant/microbiology , Sequence Analysis, DNA , Symbiosis/genetics , Tunisia
3.
Arch Microbiol ; 204(3): 170, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35157130

ABSTRACT

To determine whether the use of soil yeasts as inoculum would intervene in improving bean (Phaseolus vulgaris) growth and its symbiotic parameters, various experiments have been carried out. The effect of inoculation by soil yeasts Meyerozyma guilliermondii GP MT258984, Debaryomyces hansenii DFA MT259039, Rhodotorula mucilaginosa LIA MT259358, Rhodotorula mucilaginosa LC MT252049, along with the strain Saccharomyces cerevisiae in their cell or metabolite forms, was investigated in non-sterile (sand) and agricultural substrates (soil), in association or not with mycorrhizal fungi. The results showed that the yeast could have a beneficial effect on the bean biomass directly without increasing its nodulation and mycorrhization, or indirectly by improving those symbiotic parameters. They also revealed a very important ecological aspect and the possibility of inoculating with indigenous soil yeasts to increase the number of fertilising microorganisms, such as mycorrhizae and rhizobia, without resorting to introducing exogenous strains.


Subject(s)
Mycorrhizae , Phaseolus , Rhizobium , Soil , Symbiosis
4.
Can J Microbiol ; 63(5): 450-463, 2017 May.
Article in English | MEDLINE | ID: mdl-28235183

ABSTRACT

A total of 51 bacterial strains were isolated from root nodules of Scorpiurus muricatus sampled from 6 regions of western Algeria. Strain diversity was assessed by rep-PCR amplification fingerprinting, which grouped the isolates into 28 different clusters. Partial nucleotide sequencing of the 16S rRNA gene and BLAST analysis revealed that root nodules of S. muricatus were colonized by different species close to Rhizobium vignae, Rhizobium radiobacter, Rhizobium leguminosarum, Phyllobacterium ifriqiyense, Phyllobacterium endophyticum, Starkeya sp., and Pseudomonas sp. However, none of these strains was able to form nodules on its host plant; even nodC was present in a single strain (SMT8a). The inoculation test showed a great improvement in the growth of inoculated plants compared with noninoculated control plants. A significant amount of indole acetic acid was produced by some strains, but only 2 strains could solubilize phosphate. In this report we described for the first time the diversity of bacteria isolated from root nodules of S. muricatus growing in different regions in western Algeria and demonstrated their potential use in promoting plant growth.


Subject(s)
Bacteria/isolation & purification , Fabaceae/microbiology , Algeria , Alphaproteobacteria/genetics , Alphaproteobacteria/isolation & purification , Bacteria/classification , Bacteria/genetics , Biodiversity , Indoleacetic Acids/metabolism , Phylogeny , Plant Development , Plant Roots/microbiology , RNA, Ribosomal, 16S , Rhizobium/genetics , Rhizobium/isolation & purification
5.
Environ Microbiol ; 15(3): 795-810, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22891731

ABSTRACT

Legumes interact symbiotically with bacteria of the Rhizobiaceae to form nitrogen-fixing root nodules. We investigated the contribution of the three glutaredoxin (Grx)-encoding genes present in the Sinorhizobium meliloti genome to this symbiosis. SmGRX1 (CGYC active site) and SmGRX3 (CPYG) recombinant proteins displayed deglutathionylation activity in the 2-hydroethyldisulfide assay, whereas SmGRX2 (CGFS) did not. Mutation of SmGRX3 did not affect S. meliloti growth or symbiotic capacities. In contrast, SmGRX1 and SmGRX2 mutations decreased the growth of free-living bacteria and the nitrogen fixation capacity of bacteroids. Mutation of SmGRX1 led to nodule abortion and an absence of bacteroid differentiation, whereas SmGRX2 mutation decreased nodule development without modifying bacteroid development. The higher sensitivity of the Smgrx1 mutant strain as compared with wild-type strain to oxidative stress was associated with larger amounts of glutathionylated proteins. The Smgrx2 mutant strain displayed significantly lower levels of activity than the wild type for two iron-sulfur-containing enzymes, aconitase and succinate dehydrogenase. This lower level of activity could be associated with deregulation of the transcriptional activity of the RirA iron regulator and higher intracellular iron content. Thus, two S. meliloti Grx proteins are essential for symbiotic nitrogen fixation, playing independent roles in bacterial differentiation and the regulation of iron metabolism.


Subject(s)
Glutaredoxins/genetics , Glutaredoxins/metabolism , Iron/metabolism , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/metabolism , Symbiosis , Fabaceae/microbiology , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Mutation , Nitrogen Fixation/genetics , Phylogeny , Root Nodules, Plant/cytology , Root Nodules, Plant/growth & development , Root Nodules, Plant/microbiology , Sinorhizobium meliloti/classification , Sinorhizobium meliloti/growth & development , Succinate Dehydrogenase/metabolism
6.
FEMS Microbiol Ecol ; 80(3): 534-47, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22283876

ABSTRACT

The diversity of rhizobia associated with introduced and native Acacia species in Algeria was investigated from soil samples collected across seven districts distributed in arid and semi-arid zones. The in vitro tolerances of rhizobial strains to NaCl and high temperature in pure culture varied greatly regardless of their geographical and host plant origins but were not correlated with the corresponding edaphoclimatic characteristics of the sampling sites, as clearly demonstrated by principal component analysis. Based on 16S rRNA gene sequence comparisons, the 48 new strains isolated were ranked into 10 phylogenetic groups representing five bacterial genera, namely, Ensifer, Mesorhizobium, Rhizobium, Bradyrhizobium, and Ochrobactrum. Acacia saligna, an introduced species, appeared as the most promiscuous host because it was efficiently nodulated with the widest diversity of rhizobia taxa including both fast-growing ones, Rhizobium, Ensifer, and Mesorhizobium, and slow-growing Bradyrhizobium. The five other Acacia species studied were associated with fast-growing bacterial taxa exclusively. No difference in efficiency was found between bacterial taxa isolated from a given Acacia species. The tolerances of strains to salinity and temperature remains to be tested in symbiosis with their host plants to select the most adapted Acacia sp.-LNB taxa associations for further revegetation programs.


Subject(s)
Acacia/microbiology , Bradyrhizobium/classification , Mesorhizobium/classification , Ochrobactrum/classification , Rhizobium/classification , Symbiosis , Algeria , Bradyrhizobium/genetics , Bradyrhizobium/isolation & purification , DNA, Bacterial/genetics , Desert Climate , Hot Temperature , Mesorhizobium/genetics , Mesorhizobium/isolation & purification , Molecular Sequence Data , Ochrobactrum/genetics , Ochrobactrum/isolation & purification , Phylogeny , RNA, Ribosomal, 16S/genetics , Rhizobium/genetics , Rhizobium/isolation & purification , Salinity , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL