Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39063120

ABSTRACT

In this work, we describe the synthesis of novel Ruthenium (II) complex-based salen Schiff bases. The obtained Ruthenium (II) complexes are characterized using usual spectroscopic and spectrometric techniques, viz., IR, UV-Vis, NMR (1H and 13C), powder X-ray diffraction, and HRMS. Further techniques, such as DTA-TGA and elemental analysis, are used to well establish the structure of the obtained complexes. Octahedral geometries are tentatively proposed for the new Ru(II) complexes. The measured molar conductance for the Ruthenium (II) complexes shows their electrolytic nature (4.24-4.44 S/m). The new Ru(II) complexes are evaluated for their antioxidant and antibacterial activities. The DPPH radical scavenging, FRAP, and total antioxidant capacity (TAC) assays show that the obtained complexes are more potent than the used positive control. They also exhibit promising antibacterial responses against pathogen bacteria: [RuH2L3Cl2] exhibits an important inhibition against Bacillus subtilis DSM 6633, with an inhibition zone of 21 ± 1.41 mm with an MIC value of 0.39 mg/mL, and Proteus mirabilis INH, with 16.50 ± 0.70 mm and an MIC value of 0.78 mg/mL, while [RuH2L2Cl2] exerts interesting antibacterial effects versus Bacillus subtilis DSM 6633 (21 ± 1.41 mm) and Proteus mirabilis INH (25.5 ± 0.70 mm) with equal MIC values of 0.97 mg/mL.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Coordination Complexes , Microbial Sensitivity Tests , Ruthenium , Schiff Bases , Schiff Bases/chemistry , Schiff Bases/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Ruthenium/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Bacillus subtilis/drug effects
2.
Biomed Pharmacother ; 177: 117072, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38991301

ABSTRACT

The development of natural substances derived from nature poses a significant challenge as technologies for the extraction and characterization of active principles advance. Hispolon has received a lot of attention in recent years, ascribable to its wide range of biological activities. It is a phenolic molecule that was extracted from several mushroom species such as Phellinus igniarius, Phellinus linteus, Phellinus lonicerinus, Phellinus merrillii, and Inonotus hispidus. To provide a comprehensive overview of the pharmacological activities of hispolon, this review highlights its anticancer, anti-inflammatory, antioxidant, antibacterial, and anti-diabetic activities. Several scientific research databases, including Google Scholar, Web of Science, PubMed, SciFinder, SpringerLink, Science Direct, Scopus, and, Wiley Online were used to gather the data on hispolon until May 2024. The in vitro and in vivo studies have revealed that hispolon exhibited significant anticancer properties through modifying several signaling pathways including cell apoptosis, cycle arrest, autophagy, and inhibition of angiogenesis and metastasis. Hispolon's antimicrobial activity was proven against many bacterial, fungal, and viral pathogens, highlighting its potential use as a novel antimicrobial agent. Additionally, hispolon displayed potent anti-inflammatory activity through the suppression of key inflammatory mediators, such as inducible NO synthase (iNOS), tumor necrosis factor-α (TNF-α), and cyclooxygenases-2 (COX-2), and the modulation of mitogen-activated protein kinases (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways. The antioxidant potential of hispolon was attributed to its capacity to neutralize reactive oxygen species (ROS) and to increase the activity of antioxidant enzymes, indicating a possible involvement in the prevention of oxidative stress-related illnesses. Hispolon's antidiabetic activity was associated with the inhibition of aldose reductase and α-glucosidase. Studies on hispolon emphasized its potential use as a promising scaffold for the development of novel therapeutic agents targeting various diseases, including cancer, infectious diseases, inflammatory disorders, and diabetes.


Subject(s)
Anti-Inflammatory Agents , Antineoplastic Agents , Antioxidants , Animals , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Antioxidants/pharmacology , Antioxidants/isolation & purification , Antineoplastic Agents/pharmacology , Antineoplastic Agents/isolation & purification , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/isolation & purification , Imino Sugars/pharmacology , Imino Sugars/chemistry , Signal Transduction/drug effects , Catechols
3.
Chem Biodivers ; : e202401209, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865194

ABSTRACT

This research aimed to evaluate the antidiabetic, dermatoprotective, and antibacterial activities of Mentha viridis L. essential oil (MVEO) collected in the province of Ouezzane (Northwest Morocco). Gas chromatography-mass spectrometry (GC-MS) analysis revealed that the main constituents of MVEO were carvone (37.26%), 1,8-cineole (11.82%), limonene (5.27%), α-terpineol (4.16%), and ß-caryophyllene (4.04%). MVEO showed strong inhibitory effects on α-amylase and α-glucosidase activities, exceeding those of acarbose, but weak anti-elastase activity. The main compounds, ß-caryophyllene (IC50 = 79.91 ± 2.24 and 62.08 ± 2.78 µg/mL) and limonene (IC50 = 90.73 ± 3.47 and 68.98 ± 1, 60 µg/mL), demonstrated the strongest inhibitory effects on both digestive enzymes (α-glucosidase and α-amylase, respectively). In silico investigations, using molecular docking, also showed the inhibitory potential of these bioactive compounds against the enzymes tested. In conclusion, MVEO, due to its main components such as limonene, 1,8-cineole, ß-caryophyllene, carvone, and α-terpineol, shows promising prospects for drug discovery and natural therapeutic applications.

4.
Chem Biodivers ; 21(6): e202400402, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38573028

ABSTRACT

Gastrodin, a bioactive compound derived from the rhizome of the orchid Gastrodia elata, exhibits a diverse range of biological activities. With documented neuroprotective, anti-inflammatory, antioxidant, anti-apoptotic, and anti-tumor effects, gastrodin stands out as a multifaceted therapeutic agent. Notably, it has demonstrated efficacy in protecting against neuronal damage and enhancing cognitive function in animal models of Alzheimer's disease, Parkinson's disease, and cerebral ischemia. Additionally, gastrodin showcases immunomodulatory effects by mitigating inflammation and suppressing the expression of inflammatory cytokines. Its cytotoxic activity involves the inhibition of angiogenesis, suppression of tumor growth, and induction of apoptosis. This comprehensive review seeks to elucidate the myriad potential effects of Gastrodin, delving into the intricate molecular mechanisms underpinning its pharmacological properties. The findings underscore the therapeutic potential of gastrodin in addressing various conditions linked to neuroinflammation and cancer.


Subject(s)
Benzyl Alcohols , Glucosides , Neuroprotective Agents , Benzyl Alcohols/pharmacology , Benzyl Alcohols/chemistry , Glucosides/pharmacology , Glucosides/chemistry , Humans , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Gastrodia/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Apoptosis/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism
5.
Chem Biodivers ; 21(5): e202400116, 2024 May.
Article in English | MEDLINE | ID: mdl-38462536

ABSTRACT

Bioactive metabolites obtained from fruits and vegetables as well as many drugs have various capacities to prevent or treat various ailments. Nevertheless, their efficiency, in vivo, encounter many challenges resulting in lower efficacy as well as different side effects when high doses are used resulting in many challenges for their application. Indeed, demand for effective treatments with no or less unfavorable side effects is rising. Delivering active molecules to a particular site of action within the human body is an example of targeted therapy which remains a challenging field. Developments of nanotechnology and polymer science have great promise for meeting the growing demands of efficient options. Encapsulation of active ingredients in nano-delivery systems has become as a vitally tool for protecting the integrity of critical biochemicals, improving their delivery, enabling their controlled release and maintaining their biological features. Here, we examine a wide range of nano-delivery techniques, such as niosomes, polymeric/solid lipid nanoparticles, nanostructured lipid carriers, and nano-emulsions. The advantages of encapsulation in targeted, synergistic, and supportive therapies are emphasized, along with current progress in its application. Additionally, a revised collection of studies was given, focusing on improving the effectiveness of anticancer medications and addressing the problem of antimicrobial resistance. To sum up, this paper conducted a thorough analysis to determine the efficacy of encapsulation technology in the field of drug discovery and development.


Subject(s)
Nanoparticles , Humans , Nanoparticles/chemistry , Drug Delivery Systems , Drug Carriers/chemistry
6.
Heliyon ; 9(11): e21222, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38053906

ABSTRACT

Lavandula stoechas, a Mediterranean plant, renowned in traditional medicine for its health benefits, is also arousing strong interest associated with its essential oils (EOs) with promising therapeutic properties. The aim of this study was to analyze the chemical composition of the plant, as well as to study its major activities, including antioxidant, anti-diabetic, dermatoprotective, anti-inflammatory, and antibacterial effects, focusing on its major molecules. Using the GC-MS method, the main compounds identified in L. stoechas EO (LSEO) were fenchone (31.81 %) and camphor (29.60 %), followed by terpineol (13.14 %) and menthone (8.96 %). To assess their antioxidant activity, three in vitro methods were used (DPPH, FRAP, and ABTS). The results revealed that LSEO exhibited the best antiradical property (54 ± 62 µg/mL) according to the DPPH test, while fenchone demonstrated the highest antioxidant capacity (87 ± 92 µg/mL) in the FRAP test, and camphor displayed the highest antioxidant capacity (96 ± 32 µg/mL) in the ABTS test. However, these results were lower than those obtained by Trolox used as a reference. In addition, study also explored the anti-diabetic potential of LSEO and its major compounds by evaluating their inhibitory activity towards two digestive enzymes, α-glucosidase and α-amylase. Camphor (76.92 ± 2.43 µg/mL) and fenchone (69.03 ± 2.31 µg/mL) exhibited the best inhibitory activities for α-amylase and α-glucosidase assays, respectively. Interestingly, all elements of the study exerted activities superior to those of acarbose, regardless of the test performed. In contrast, the evaluation of the dermatoprotective potential was carried out in vitro by targeting two enzymes involved in cutaneous processes, tyrosinase and elastase. In this light, fenchone (53.14 ± 3.06 µg/mL) and camphor (48.39 ± 1.92 µg/mL) were the most active against tyrosinase and elastase, respectively. It should be noted that the effect of both molecules, as well as that of LSEO, ranged between 53.14 ± 3.06 and 97.45 ± 5.22 µg/mL, which was significantly lower than the standard, quercetin (IC50 of 246.90 ± 2 0.54 µg/mL) against tyrosinase. Furthermore, the anti-inflammatory potential of these elements has been studied by evaluating their ability to inhibit lipooxygenase (LOX), a class of enzymes involved in the inflammatory process in the human body. As a result, the LSEO demonstrated a remarkable effect with an IC50 of 6.34 ± 1.29 µg/mL, which was almost comparable to the standard, quercetin (IC50 = 3.93 ± 0.45 µg/mL). Concerning the antibacterial potential, we carried out a quantitative analysis of the various products tested, revealing a bactericidal activity of the LSEO against the strain L. monocytogenes ATCC 13932 at a minimum effective concentration (MIC = CMB = 0.25). Overall, LSEOs offer significant potential as a source of natural antioxidants, and antidiabetic and anti-inflammatory agents, as well as dermatoprotective and antibacterial compounds. Its major molecules, fenchone and camphor, showed promising activity in these areas of study, making it a valuable candidate for future research and development in the field of natural medicine.

7.
Front Biosci (Landmark Ed) ; 28(9): 229, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37796709

ABSTRACT

BACKGROUND: Screening new natural molecules with pharmacological and/or cosmetic properties remains a highly sought-after area of research. Moreover, essential oils and volatile compounds have recently garnered significant interest as natural substance candidates. In this study, the volatile components of Pistacia lentiscus L. essential oils (PLEOs) isolated from the fruit and its main compounds, alpha-pinene, and limonene, are investigated for antioxidant, antidiabetic, and dermatoprotective activities. METHODS: In vitro antioxidant activity was investigated using 2,2'-diphenyl-1-picrylhydrazyl (DPPH), fluorescence recovery after photobleaching (FRAP), and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) methods. The antidiabetic and dermatoprotective effects were studied using enzyme inhibitory activities. RESULTS: Antioxidant tests showed that PLEO has the best activity (ranging from 29.64 ± 3.04 to 73.80 ± 3.96 µg/mL) compared to its main selected molecules (ranging from 74 ± 3.72 to 107.23 ± 5.03 µg/mL). The α-glucosidase and α-amylase assays demonstrated that the elements tested have a promising antidiabetic potential with IC50values ranging from 78.03 ± 2.31 to 116.03 ± 7.42 µg/mL and 74.39 ± 3.08 to 112.35 ± 4.92 µg/mL for the α-glucosidase and α-amylase assays, respectively, compared to the standard drug. For the tyrosinase test, we found that the EOs (IC50 = 57.72 ± 2.86 µg/mL) followed by limonene (IC50 = 74.24 ± 2.06 µg/mL) and α-pinene (IC50 = 97.45 ± 5.22 µg/mL) all exhibited greater inhibitory effects than quercetin (IC50 = 246.90 ± 2.54 µg/mL). CONCLUSIONS: Our results suggest that the biological activities of PLEO, as well as its main compounds, make them promising candidates for the development of new strategies aimed at improving dermatoprotection and treating diseases associated with diabetes mellitus and oxidative stress.


Subject(s)
Oils, Volatile , Pistacia , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Limonene/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , alpha-Glucosidases , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , alpha-Amylases
8.
J Biomol Struct Dyn ; : 1-15, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37817499

ABSTRACT

A mechanistic study was performed within the molecular electron density theory at the B3LYP/6-311G (d,p) computational level to explain the regioselectivity observed. An electron localization function analysis was also performed, and the results confirm the zwitterionic-type (zw-type) mechanism of the cycloaddition reactions between nitrile oxide and alkylated 4H-chromene-2-carboxylate derivatives and shed more light on the obtained regioselectivity experimentally. In silico studies on the pharmacokinetics, ADME and toxicity tests of the compounds were also performed, and it was projected that compounds 5a, 5b, 5c and 5d are pharmacokinetic and have favorable ADME profiles. Moreover, docking and molecular dynamics investigations were conducted to evaluate the interactions, orientation and conformation of the target compounds on the active sites of four distinct enzymes. The results of this investigation showed that two compounds, 5a and 5c, interacted effectively with the S. aureus active site while maintaining acceptable binding energy.Communicated by Ramaswamy H. Sarma.

9.
Curr Microbiol ; 80(10): 326, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37610439

ABSTRACT

Textile industry waste has become one of the largest polluters in the world. In recent years, there has been a growing awareness of the need for sustainable and eco-friendly practices for the treatment of dye-laden effluents. Overall, this study highlights the potential of bioremediation as a sustainable solution for wastewater treatment. The Bacillus mojavensis isolated from wastewater and identified using 16S rRNA degraded reactive yellow 145 and methyl orange in 36 h of incubation, this decolorization was affected by pH, temperature, dye concentration, glucose concentration, source of nitrogen, type of dye, and agitation. Our study found that the optimal conditions for total decolorization of dyes were achieved by incubating B. mojavensis at 46 °C, pH 9, with 1 g/L of glucose and 2 g/L of peptone. The azoreductase activity, FT-IR analysis, and UV-visible spectrum before and after total decolorization indicated that it was a dye degradation rather than biosorption in surface Celle. In addition, the study of phytotoxicity show the metabolites of degradation are not phytotoxic in Lens esculenta seeds. In conclusion, our results suggest the use of this bacterium as an environmentally friendly and also cost-effective method, making it an attractive option for industries looking to reduce their environmental impact.


Subject(s)
Coloring Agents , Wastewater , Biodegradation, Environmental , RNA, Ribosomal, 16S/genetics , Spectroscopy, Fourier Transform Infrared , Glucose
10.
Plants (Basel) ; 12(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36987101

ABSTRACT

The aim of this study was the determination of the chemical compounds of Lavandula stoechas essential oil from Aknol (LSEOA), Khenifra (LSEOK), and Beni Mellal (LSEOB), and the in vitro investigation of their antibacterial, anticandidal, and antioxidant effects, and in silico anti-SARS-CoV-2 activity. The chemical profile of LSEO was determined using GC-MS-MS analysis, the results of which showed a qualitative and quantitative variation in the chemical composition of volatile compounds including L-fenchone, cubebol, camphor, bornyl acetate, and τ-muurolol; indicating that the biosynthesis of essential oils of Lavandula stoechas (LSEO) varied depending on the site of growth. The antioxidant activity was evaluated using the ABTS and FRAP methods, our results showed that this tested oil is endowed with an ABTS inhibitory effect and an important reducing power which varies between 4.82 ± 1.52 and 15.73 ± 3.26 mg EAA/g extract. The results of antibacterial activity of LSEOA, LSEOK and LSEOB, tested against Gram-positive and Gram-negative bacteria, revealed that B. subtilis (20.66 ± 1.15-25 ± 4.35 mm), P. mirabilis (18.66 ± 1.15-18.66 ± 1.15 mm), and P. aeruginosa (13.33 ± 1.15-19 ± 1.00 mm) are the most susceptible strains to LSEOA, LSEOK and LSEOB of which LSEOB exhibits bactericidal effect against P. mirabilis. furthermore The LSEO exhibited varying degrees of anticandidal activity with an inhibition zones of 25.33 ± 0.5, 22.66 ± 2.51, and 19 ± 1 mm for LSEOK, LSEOB, and LSEOA, respectively. Additionally, the in silico molecular docking process, performed using Chimera Vina and Surflex-Dock programs, indicated that LSEO could inhibit SARS-CoV-2. These important biological properties of LSEO qualify this plant as an interesting source of natural bioactive compounds with medicinal actions.

11.
Crit Rev Food Sci Nutr ; : 1-20, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36908235

ABSTRACT

The field of nutrigenomics studies the interaction between nutrition and genetics, and how certain dietary patterns can impact gene expression and overall health. The Mediterranean diet (MedDiet), characterized by a high intake of fruits, vegetables, whole grains, and healthy fats, has been linked to better cardiovascular health (CVH) outcomes. This review summarizes the current state of research on the effects of nutrigenomics and MedDiet on cardiovascular health. Results suggest that MedDiet, through its impact on gene expression, can positively influence CVH markers such as blood pressure, lipid profile, and inflammation. However, more research is needed to fully understand the complex interactions between genetics, nutrition, and CVH, and to determine the optimal dietary patterns for individualized care. The aim of this scientific review is to evaluate the current evidence on the effects of nutrigenomics and MedDiet on cardiovascular health. The review summarizes the available studies that have investigated the relationship between nutrition, genetics, and cardiovascular health, and explores the mechanisms by which certain dietary patterns can impact CVH outcomes. The review focuses on the effects of MedDiet, a dietary pattern that is rich in whole foods and healthy fats, and its potential to positively influence CVH through its impact on gene expression. The review highlights the limitations of current research and the need for further studies to fully understand the complex interplay between nutrition, genetics, and cardiovascular health.

12.
Front Biosci (Schol Ed) ; 15(1): 1, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36959109

ABSTRACT

Traditional herbal medicine is still used for basic healthcare by a significant portion of the population in developing countries. This study aimed to explore the medicinal plant's diversity and to document related traditional knowledge in the Safi region of Morocco. We used semi-structured questionnaires to interview 222 informants living in the study area. To perform data analysis, we used quantitative indices like use value (UV), family use value (FUV), fidelity level (FL), the relative popularity level (RPL), rank of order priority (ROP), and informant consensus factor (ICF). We reported the ethnomedicinal uses of 144 medicinal plants belonging to 64 families. According to the findings, the dominating families were Lamiaceae (17 taxa), Asteraceae (15 taxa), and Apiaceae (12 taxa). The most commonly utilized plant part (48%) was leaves. The decoction was reported as the main preparation method (42%). Highly cited plant species were Marrubium vulgare (UV = 0.56), Salvia rosmarinus Spenn. (UV = 0.47), Thymus serpyllum (UV = 0.32), and Dysphania ambrosioides (UV = 0.29). Papaveraceae (FUV = 0.26), and Urticaceae (FUV= 0.23), Geraniaceae (FUV = 0.17), Oleaceae (FUV = 0.17), Lamiaceae (FUV = 0.17) had the highest family use-values. Gastrointestinal disorders (88%), respiratory diseases (85%), and anemia (66%) have the greatest ICF values. This study reveals the indigenous people's reliance on plant-derived traditional medicine to prevent, alleviate, and treat a broad range of health concerns. Our findings will provide a scientific basis for ethnomedicinal legacy conservation and further scientific investigations aimed at new natural bioactive molecules discovery.


Subject(s)
Lamiaceae , Plants, Medicinal , Humans , Ethnobotany/methods , Phytotherapy/methods , Morocco , Medicine, Traditional/methods
13.
Biomed Pharmacother ; 161: 114337, 2023 May.
Article in English | MEDLINE | ID: mdl-36812715

ABSTRACT

Cynaroside is a flavonoid, isolated from several species belonging to the Apiaceae, Poaceae, Lamiaceae, Solanaceae, Zingiberaceae, Compositae and other families and it can be extracted from seeds, roots, stems, leaves, barks, flowers, fruits, aerial parts, and the whole plant of these species. This paper discloses the current state of knowledge on the biological/pharmacological effects and mode of action to better understand the numerous health benefits of cynaroside. Several research works revealed that cynaroside could have beneficial effects on various human pathologies. Indeed, this flavonoid exerts antibacterial, antifungal, antileishmanial, antioxidant, hepatoprotective, antidiabetic, anti-inflammatory, and anticancer effects. Additionally, cynaroside exhibits its anticancer effects by blocking MET/AKT/mTOR axis by decreasing the phosphorylation level of AKT, mTOR, and P70S6K. For antibacterial activity, cynaroside reduces biofilm development of Pseudomonas aeruginosa and Staphylococcus aureus. Moreover, the incidence of mutations leading to ciprofloxacin resistance in Salmonella typhimurium was reduced after the treatment with cynaroside. In addition, cynaroside inhibited the production of reactive oxygen species (ROS), which reduced the damage to mitochondrial membrane potential caused by hydrogen peroxide (H2O2). It also enhanced the expression of the anti-apoptotic protein Bcl-2 and lowered that of the pro-apoptotic protein Bax. Cynaroside abrogated the up-regulation of c-Jun N-terminal kinase (JNK) and p53 protein expression triggered by H2O2. All these findings suggest that cynaroside could be used to prevent certain human diseases.


Subject(s)
Hydrogen Peroxide , Proto-Oncogene Proteins c-akt , Humans , Hydrogen Peroxide/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Luteolin/pharmacology , Apoptosis Regulatory Proteins , TOR Serine-Threonine Kinases , Anti-Bacterial Agents/pharmacology , Apoptosis
14.
J Microbiol Methods ; 204: 106659, 2023 01.
Article in English | MEDLINE | ID: mdl-36529157

ABSTRACT

The water is used in many textile manufacturing steps beyond cleaning. The quantity and the significant chemical load of the effluents generated constitute the primary challenge of the textile industry. In order to discover new sustainable methods to overcome this problem, the aim of this research was to study the potential for degradation of Reactive Blue 214, Reactive Red 195, and Reactive Yellow 145 using a dye degrading bacterium. Sequencing analysis reveals it to be Klebsiella pneumoniae MW815592. This strain completely decolorized artificial effluent (200 mg/L) after 42 h at pH 9 and 46 °C. The decolorization rate increased in the presence of glucose and yeast extract (2 g). In addition, our finding revealed that the decolorization is due to biodegradation rather than adsorption on the bacterial surface.


Subject(s)
Coloring Agents , Klebsiella pneumoniae , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Coloring Agents/metabolism , Naphthalenesulfonates , Azo Compounds/metabolism , Textiles , Biodegradation, Environmental
15.
Plants (Basel) ; 11(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36501387

ABSTRACT

Vachellia tortilis is a medicinal plant of the Fabaceae family, widely distributed in arid and semi-arid regions of North, East and Southern Africa, the Middle East and the Arabian Peninsula. In traditional medicine. It's commonly used to treat certain ailments, including diabetes, asthma, hepatitis and burns. Different scientific search databases were used to obtain data on V. tortilis, notably Google Scholar, Scopus, Wiley Online, Scifinder, Web of Science, ScienceDirect, SpringerLink, and PubMed. The knowledge of V. tortilis was organized based on ethnomedicinal use, phytochemistry, and pharmacological investigations. Phytochemical studies revealed the presence of a variety of phytocompounds, including fatty acids, monosaccharides, flavonoids, chalcones, and alcohols. Essential oils and organic extracts prepared from V. tortilis showed several biological properties, specifically antibacterial, antifungal, antiparasitic, antioxidant, antiproliferative, anti-diabetic, and anti-inflammatory effects. Antimicrobial and antiparasitic activities are due to the disturbance of cellular membranes and ultra-structural changes triggered by V. tortilis phytochemicals. While physiological and molecular processes such as apoptosis induction, preventing cell proliferation, and inflammatory mediators are responsible for the anti-diabetic, anti-cancer, and anti-inflammatory activities. However, further investigations concerning pharmacodynamics and pharmacokinetics should be carried out to validate their clinical applications.

16.
Cancers (Basel) ; 14(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36428613

ABSTRACT

The mammalian target of rapamycin (mTOR) is a highly conserved serine/threonine-protein kinase, which regulates many biological processes related to metabolism, cancer, immune function, and aging. It is an essential protein kinase that belongs to the phosphoinositide-3-kinase (PI3K) family and has two known signaling complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Even though mTOR signaling plays a critical role in promoting mitochondria-related protein synthesis, suppressing the catabolic process of autophagy, contributing to lipid metabolism, engaging in ribosome formation, and acting as a critical regulator of mRNA translation, it remains one of the significant signaling systems involved in the tumor process, particularly in apoptosis, cell cycle, and cancer cell proliferation. Therefore, the mTOR signaling system could be suggested as a cancer biomarker, and its targeting is important in anti-tumor therapy research. Indeed, its dysregulation is involved in different types of cancers such as colon, neck, cervical, head, lung, breast, reproductive, and bone cancers, as well as nasopharyngeal carcinoma. Moreover, recent investigations showed that targeting mTOR could be considered as cancer therapy. Accordingly, this review presents an overview of recent developments associated with the mTOR signaling pathway and its molecular involvement in various human cancer types. It also summarizes the research progress of different mTOR inhibitors, including natural and synthetised compounds and their main mechanisms, as well as the rational combinations with immunotherapies.

17.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36297347

ABSTRACT

Trichostatin A (TSA), a natural derivative of dienohydroxamic acid derived from a fungal metabolite, exhibits various biological activities. It exerts antidiabetic activity and reverses high glucose levels caused by the downregulation of brain-derived neurotrophic factor (BDNF) expression in Schwann cells, anti-inflammatory activity by suppressing the expression of various cytokines, and significant antioxidant activity by suppressing oxidative stress through multiple mechanisms. Most importantly, TSA exhibits potent inhibitory activity against different types of cancer through different pathways. The anticancer activity of TSA appeared in many in vitro and in vivo investigations that involved various cell lines and animal models. Indeed, TSA exhibits anticancer properties alone or in combination with other drugs used in chemotherapy. It induces sensitivity of some human cancers toward chemotherapeutical drugs. TSA also exhibits its action on epigenetic modulators involved in cell transformation, and therefore it is considered an epidrug candidate for cancer therapy. Accordingly, this work presents a comprehensive review of the most recent developments in utilizing this natural compound for the prevention, management, and treatment of various diseases, including cancer, along with the multiple mechanisms of action. In addition, this review summarizes the most recent and relevant literature that deals with the use of TSA as a therapeutic agent against various diseases, emphasizing its anticancer potential and the anticancer molecular mechanisms. Moreover, TSA has not been involved in toxicological effects on normal cells. Furthermore, this work highlights the potential utilization of TSA as a complementary or alternative medicine for preventing and treating cancer, alone or in combination with other anticancer drugs.

18.
Antioxidants (Basel) ; 11(10)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36290632

ABSTRACT

Stigmasterol is an unsaturated phytosterol belonging to the class of tetracyclic triterpenes. It is one of the most common plant sterols, found in a variety of natural sources, including vegetable fats or oils from many plants. Currently, stigmasterol has been examined via in vitro and in vivo assays and molecular docking for its various biological activities on different metabolic disorders. The findings indicate potent pharmacological effects such as anticancer, anti-osteoarthritis, anti-inflammatory, anti-diabetic, immunomodulatory, antiparasitic, antifungal, antibacterial, antioxidant, and neuroprotective properties. Indeed, stigmasterol from plants and algae is a promising molecule in the development of drugs for cancer therapy by triggering intracellular signaling pathways in numerous cancers. It acts on the Akt/mTOR and JAK/STAT pathways in ovarian and gastric cancers. In addition, stigmasterol markedly disrupted angiogenesis in human cholangiocarcinoma by tumor necrosis factor-α (TNF-α) and vascular endothelial growth factor receptor-2 (VEGFR-2) signaling down-regulation. The association of stigmasterol and sorafenib promoted caspase-3 activity and down-regulated levels of the anti-apoptotic protein Bcl-2 in breast cancer. Antioxidant activities ensuring lipid peroxidation and DNA damage lowering conferred to stigmasterol chemoprotective activities in skin cancer. Reactive oxygen species (ROS) regulation also contributes to the neuroprotective effects of stigmasterol, as well as dopamine depletion and acetylcholinesterase inhibition. The anti-inflammatory properties of phytosterols involve the production of anti-inflammatory cytokines, the decrease in inflammatory mediator release, and the inhibition of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Stigmasterol exerts anti-diabetic effects by reducing fasting glucose, serum insulin levels, and oral glucose tolerance. Other findings showed the antiparasitic activities of this molecule against certain strains of parasites such as Trypanosoma congolense (in vivo) and on promastigotes and amastigotes of the Leishmania major (in vitro). Some stigmasterol-rich plants were able to inhibit Candida albicans, virusei, and tropicalis at low doses. Accordingly, this review outlines key insights into the pharmacological abilities of stigmasterol and the specific mechanisms of action underlying some of these effects. Additionally, further investigation regarding pharmacodynamics, pharmacokinetics, and toxicology is recommended.

19.
Biotechnol Genet Eng Rev ; : 1-30, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36123811

ABSTRACT

Quinic acid is a cyclohexanecarboxylic acid contained in the extracts of several parts of medicinal plants including Haematocarpus validus, Hypericum empetrifolium, Achillea pseudoaleppica, Rumex nepalensis, Phagnalon saxatile subsp. saxatile, Coffea arabica, Ziziphus lotus L, and Artemisia annua L … etc. Currently, in vitro and in vivo pharmacological studies showed that quinic acid exhibits various biological activities, such as antioxidant, antidiabetic, anticancer activity, antimicrobial, antiviral, aging, protective, anti-nociceptive and analgesic effects. Indeed, QA possesses an important antibacterial effect which could be explained by the fact that this molecule modules the functions of ribosomes and the synthesis of aminoacyl-tRNAs, modifications the levels of glycerophospholipids and fatty acids and disruption of the oxidative phosphorylation pathway thereby causing interference with membrane fluidity. The antidiabetic activity of AQ is achieved by stimulation of insulin secretion via the mobilization of Ca2+ from intracellular reserves and the increase in the NAD(P)H/NAD(P)+ ratio. Its anticancer effect is through the promotion of apoptosis, inhibition of activator protein 1 (AP-1) and signaling pathways involving protein kinase C (PKC) and certain mitogen-activated protein kinases (MAPKs), resulting in the downregulation of matrix metallopeptidase 9 (MMP-9) expression. Therefore, this review describes the main research work carried out on the biological properties of AQ and the mechanism of action underlying some of these effects, as well as the investigations of the main pharmacokinetic studies.

20.
Antioxidants (Basel) ; 11(9)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36139916

ABSTRACT

The search for natural plant-based products as new pharmacological alternatives to treat various human pathologies has taken on great importance for researchers and research laboratories. In this context, research has intensified to extract and identify natural molecules endowed with biological effects. The objective of this study is to review the source and pharmacological properties of cirsimaritin. The identification and isolation of this flavonoid from various natural sources, including medicinal plants such as Artemisia judaica, Cirsium japonicum, Lithocarpus dealbatus, Microtea debilis, and Ocimum sanctum, has been carried out and verified using different spectral techniques. Biological effect investigations are carried out with a wide variety of experimental models in vitro and in vivo and laboratory techniques. The results of these research works showed the biological properties of cirsimaritin including anticancer, antimicrobial, antidiabetic, antiparasitic, antioxidant, and anti-inflammatory effects. The mechanisms involved in the multiple activities of this molecule are diverse and include sub-cellular, cellular, and molecular levels. Indeed, this bioactive induces anti-inflammatory and antiproliferative effects by inhibiting cell membrane receptors, interference with signaling pathways, and inhibiting transcriptional factors such as Nf-κB involved in cell promotion and proliferation. In the light of these results, cirsimaritin appears as a promising and viable alternative natural bioactive drug to treat many pathological conditions.

SELECTION OF CITATIONS
SEARCH DETAIL