Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
2.
Front Immunol ; 15: 1360615, 2024.
Article En | MEDLINE | ID: mdl-38646521

Introduction: Malignant ascites indicates ovarian cancer progression and predicts poor clinical outcome. Various ascites components induce an immunosuppressive crosstalk between tumor and immune cells, which is poorly understood. In our previous study, imbalanced electrolytes, particularly high sodium content in malignant ascites, have been identified as a main immunosuppressive mechanism that impaired NK and T-cell activity. Methods: In the present study, we explored the role of high concentrations of ascites proteins and immunoglobulins on antitumoral NK effector functions. To this end, a coculture system consisting of healthy donor NK cells and ovarian cancer cells was used. The anti-EGFR antibody Cetuximab was added to induce antibody-dependent cellular cytotoxicity (ADCC). NK activity was assessed in the presence of different patient ascites samples and immunoglobulins that were isolated from ascites. Results: Overall high protein concentration in ascites impaired NK cell degranulation, conjugation to tumor cells, and intracellular calcium signaling. Immunoglobulins isolated from ascites samples competitively interfered with NK ADCC and inhibited the conjugation to target cells. Furthermore, downregulation of regulatory surface markers CD16 and DNAM-1 on NK cells was prevented by ascites-derived immunoglobulins during NK cell activation. Conclusion: Our data show that high protein concentrations in biological fluids are able to suppress antitumoral activity of NK cells independent from the mechanism mediated by imbalanced electrolytes. The competitive interference between immunoglobulins of ascites and specific therapeutic antibodies could diminish the efficacy of antibody-based therapies and should be considered in antibody-based immunotherapies.


Antibody-Dependent Cell Cytotoxicity , Ascites , Killer Cells, Natural , Ovarian Neoplasms , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Ascites/immunology , Female , Antibody-Dependent Cell Cytotoxicity/immunology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/metabolism , Cell Line, Tumor , Immunoglobulins/metabolism , Receptors, IgG/metabolism , Receptors, IgG/immunology , Cell Degranulation/immunology , Cell Degranulation/drug effects , Antigens, Differentiation, T-Lymphocyte/metabolism , Antigens, Differentiation, T-Lymphocyte/immunology , Cetuximab/pharmacology
3.
Front Immunol ; 13: 830938, 2022.
Article En | MEDLINE | ID: mdl-35251021

Calcium phosphate nanoparticles (CaP-NPs) are biodegradable carriers that can be functionalized with biologically active molecules. As such, they are potential candidates for delivery of therapeutic molecules in cancer therapies. In this context, it is important to explore whether CaP-NPs impair the natural or therapy-induced immune cell activity against cancer cells. Therefore, in this study, we have investigated the effects of different CaP-NPs on the anti-tumor activity of natural killer (NK) cells using different ovarian cancer (OC) cell line models. We explored these interactions in coculture systems consisting of NK cells, OC cells, CaP-NPs, and therapeutic Cetuximab antibodies (anti-EGFR, ADCC-inducing antibody). Our experiments revealed that aggregated CaP-NPs can serve as artificial targets, which activate NK cell degranulation and impair ADCC directed against tumor targets. However, when CaP-NPs were properly dissolved by sonication, they did not cause substantial activation. CaP-NPs with SiO2-SH-shell induced some activation of NK cells that was not observed with polyethyleneimine-coated CaP-NPs. Addition of CaP-NPs to NK killing assays did not impair conjugation of NK with OC and subsequent tumor cytolytic NK degranulation. Therapeutic antibody coupled to functionalized CaP-NPs maintained substantial levels of antibody-dependent cellular cytotoxic activity. Our study provides a cell biological basis for the application of functionalized CaP-NPs in immunologic anti-cancer therapies.


Nanoparticles , Ovarian Neoplasms , Antibody-Dependent Cell Cytotoxicity , Calcium Phosphates/pharmacology , Carcinoma, Ovarian Epithelial/metabolism , Cell Line, Tumor , ErbB Receptors/metabolism , Female , Humans , Killer Cells, Natural , Silicon Dioxide/pharmacology
...