Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Biol Anthropol ; 180(1): 216-223, 2023 01.
Article in English | MEDLINE | ID: mdl-37406034

ABSTRACT

Objectives: Intra-tooth patterns of trace elements barium (Ba) and strontium (Sr) have been used to infer human and nonhuman primate nursing histories, including australopithecine and Neanderthal juveniles. Here we contrast the two elemental models in first molars (M1s) of four wild baboons and explore the assumptions that underlie each. Materials and Methods: Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was employed to create comprehensive calcium-normalized barium and strontium (Ba/Ca, Sr/Ca) maps of M1 enamel and dentine at 35 micron resolution. Results: Postnatal Ba/Ca values were typically high, peaking ~0.5 years of age and then decreasing throughout M1 crown formation; all four individuals showed minimal Ba/Ca values between ~1.2-1.8 years, consistent with field reports of the cessation of suckling. Enamel Sr/Ca did not support patterns of previous LA-ICP-MS spot sampling as the enamel rarely showed discrete Sr/Ca secretory zonation. Increases in Sr/Ca appeared in coronal dentine beginning ~0.3 years, with varied peak value ages (~0.7-2.7 years) and no evidence of a predicted postweaning decline. Discussion: Inferences of baboon weaning ages from initial Ba/Ca minima are more congruent with behavioral observations than Sr/Ca maxima; this is consistent with studies of captive macaques of known weaning ages. Elemental variation is more apparent in the coronal dentine than the enamel of these baboons, which may relate to its more rapid mineralization and protection from the oral environment. Inferences of nursing histories from enamel Sr/Ca patterns alone should be reconsidered, and elevated values of Ba/Ca and Sr/Ca in teeth formed after weaning require further study.


Subject(s)
Tooth , Animals , Humans , Weaning , Barium/analysis , Tooth/chemistry , Strontium/analysis , Papio
2.
Arch Oral Biol ; 142: 105524, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36029738

ABSTRACT

OBJECTIVES: Enamel prism decussation, which manifests as Hunter-Schreger Bands (HSB), is considered a mechanism to mitigate crack propagation. During the chewing cycle, the 'functional' cusps that are involved in Phase II crushing and grinding experience more complex patterns of stress than do those that 'guide' the molars into occlusion (Phase I). This study examines HSB configuration in the lateral enamel of human molars to identify potential differences between these cusps as predicted from their functional distinctions. DESIGN: Measurements were recorded from scanning electron micrographs of sections through the mesial cusps of unworn permanent molars. For each section, HSB packing density and the relative thickness of decussated enamel were quantified in the cuspal and middle segments of lateral enamel over the guiding and functional cusps. RESULTS: No clear trend from first to third molars in HSB configuration was found in either jaw. In maxillary molars, the functional cusp displays higher HSB packing density in the cuspal and middle segments, and relatively thicker decussated enamel in the cuspal segment than does the guiding cusp. In mandibular molars, the functional cusp displays higher HSB packing density in the middle segment than does the guiding cusp, but no difference in relative thickness was found between them. Enamel of mandibular molars shows weaker decussation than maxillary molars. CONCLUSIONS: The results suggest that guiding cusps are intrinsically more susceptible to crack propagation than functional cusps in human permanent molars. Structural factors such as enamel decussation should be considered when interpreting enamel chipping patterns in dietary contexts.


Subject(s)
Dental Enamel , Molar , Dental Occlusion , Humans , Mastication , Molar, Third
SELECTION OF CITATIONS
SEARCH DETAIL
...