Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
2.
Lancet Child Adolesc Health ; 8(5): 325-338, 2024 May.
Article in English | MEDLINE | ID: mdl-38513681

ABSTRACT

BACKGROUND: Sepsis is defined as dysregulated host response to infection that leads to life-threatening organ dysfunction. Biomarkers characterising the dysregulated host response in sepsis are lacking. We aimed to develop host gene expression signatures to predict organ dysfunction in children with bacterial or viral infection. METHODS: This cohort study was done in emergency departments and intensive care units of four hospitals in Queensland, Australia, and recruited children aged 1 month to 17 years who, upon admission, underwent a diagnostic test, including blood cultures, for suspected sepsis. Whole-blood RNA sequencing of blood was performed with Illumina NovaSeq (San Diego, CA, USA). Samples with completed phenotyping, monitoring, and RNA extraction by March 31, 2020, were included in the discovery cohort; samples collected or completed thereafter and by Oct 27, 2021, constituted the Rapid Paediatric Infection Diagnosis in Sepsis (RAPIDS) internal validation cohort. An external validation cohort was assembled from RNA sequencing gene expression count data from the observational European Childhood Life-threatening Infectious Disease Study (EUCLIDS), which recruited children with severe infection in nine European countries between 2012 and 2016. Feature selection approaches were applied to derive novel gene signatures for disease class (bacterial vs viral infection) and disease severity (presence vs absence of organ dysfunction 24 h post-sampling). The primary endpoint was the presence of organ dysfunction 24 h after blood sampling in the presence of confirmed bacterial versus viral infection. Gene signature performance is reported as area under the receiver operating characteristic curves (AUCs) and 95% CI. FINDINGS: Between Sept 25, 2017, and Oct 27, 2021, 907 patients were enrolled. Blood samples from 595 patients were included in the discovery cohort, and samples from 312 children were included in the RAPIDS validation cohort. We derived a ten-gene disease class signature that achieved an AUC of 94·1% (95% CI 90·6-97·7) in distinguishing bacterial from viral infections in the RAPIDS validation cohort. A ten-gene disease severity signature achieved an AUC of 82·2% (95% CI 76·3-88·1) in predicting organ dysfunction within 24 h of sampling in the RAPIDS validation cohort. Used in tandem, the disease class and disease severity signatures predicted organ dysfunction within 24 h of sampling with an AUC of 90·5% (95% CI 83·3-97·6) for patients with predicted bacterial infection and 94·7% (87·8-100·0) for patients with predicted viral infection. In the external EUCLIDS validation dataset (n=362), the disease class and disease severity predicted organ dysfunction at time of sampling with an AUC of 70·1% (95% CI 44·1-96·2) for patients with predicted bacterial infection and 69·6% (53·1-86·0) for patients with predicted viral infection. INTERPRETATION: In children evaluated for sepsis, novel host transcriptomic signatures specific for bacterial and viral infection can identify dysregulated host response leading to organ dysfunction. FUNDING: Australian Government Medical Research Future Fund Genomic Health Futures Mission, Children's Hospital Foundation Queensland, Brisbane Diamantina Health Partners, Emergency Medicine Foundation, Gold Coast Hospital Foundation, Far North Queensland Foundation, Townsville Hospital and Health Services SERTA Grant, and Australian Infectious Diseases Research Centre.


Subject(s)
Bacterial Infections , Sepsis , Virus Diseases , Humans , Child , Cohort Studies , Transcriptome , Multiple Organ Failure/diagnosis , Multiple Organ Failure/genetics , Prospective Studies , Australia , Sepsis/diagnosis , Sepsis/genetics
3.
Intensive Care Med ; 50(4): 539-547, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38478027

ABSTRACT

PURPOSE: Early recognition and effective treatment of sepsis improves outcomes in critically ill patients. However, antibiotic exposures are frequently suboptimal in the intensive care unit (ICU) setting. We describe the feasibility of the Bayesian dosing software Individually Designed Optimum Dosing Strategies (ID-ODS™), to reduce time to effective antibiotic exposure in children and adults with sepsis in ICU. METHODS: A multi-centre prospective, non-randomised interventional trial in three adult ICUs and one paediatric ICU. In a pre-intervention Phase 1, we measured the time to target antibiotic exposure in participants. In Phase 2, antibiotic dosing recommendations were made using ID-ODS™, and time to target antibiotic concentrations were compared to patients in Phase 1 (a pre-post-design). RESULTS: 175 antibiotic courses (Phase 1 = 123, Phase 2 = 52) were analysed from 156 participants. Across all patients, there was no difference in the time to achieve target exposures (8.7 h vs 14.3 h in Phase 1 and Phase 2, respectively, p = 0.45). Sixty-one courses in 54 participants failed to achieve target exposures within 24 h of antibiotic commencement (n = 36 in Phase 1, n = 18 in Phase 2). In these participants, ID-ODS™ was associated with a reduction in time to target antibiotic exposure (96 vs 36.4 h in Phase 1 and Phase 2, respectively, p < 0.01). These patients were less likely to exhibit subtherapeutic antibiotic exposures at 96 h (hazard ratio (HR) 0.02, 95% confidence interval (CI) 0.01-0.05, p < 0.01). There was no difference observed in in-hospital mortality. CONCLUSIONS: Dosing software may reduce the time to achieve target antibiotic exposures. It should be evaluated further in trials to establish its impact on clinical outcomes.


Subject(s)
Anti-Bacterial Agents , Sepsis , Adult , Child , Humans , Anti-Bacterial Agents/therapeutic use , Bayes Theorem , Critical Illness/therapy , Intensive Care Units, Pediatric , Prospective Studies , Sepsis/drug therapy , Software
4.
Microbiol Spectr ; 12(2): e0306523, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38193658

ABSTRACT

We aimed to evaluate the performance of Oxford Nanopore Technologies (ONT) sequencing from positive blood culture (BC) broths for bacterial identification and antimicrobial susceptibility prediction. Patients with suspected sepsis in four intensive care units were prospectively enrolled. Human-depleted DNA was extracted from positive BC broths and sequenced using ONT (MinION). Species abundance was estimated using Kraken2, and a cloud-based system (AREScloud) provided in silico predictive antimicrobial susceptibility testing (AST) from assembled contigs. Results were compared to conventional identification and phenotypic AST. Species-level agreement between conventional methods and AST predicted from sequencing was 94.2% (49/52), increasing to 100% in monomicrobial infections. In 262 high-quality AREScloud AST predictions across 24 samples, categorical agreement (CA) was 89.3%, with major error (ME) and very major error (VME) rates of 10.5% and 12.1%, respectively. Over 90% CA was achieved for some taxa (e.g., Staphylococcus aureus) but was suboptimal for Pseudomonas aeruginosa. In 470 AST predictions across 42 samples, with both high quality and exploratory-only predictions, overall CA, ME, and VME rates were 87.7%, 8.3%, and 28.4%. VME rates were inflated by false susceptibility calls in a small number of species/antibiotic combinations with few representative resistant isolates. Time to reporting from sequencing could be achieved within 8-16 h from BC positivity. Direct sequencing from positive BC broths is feasible and can provide accurate predictive AST for some species. ONT-based approaches may be faster but significant improvements in accuracy are required before it can be considered for clinical use.IMPORTANCESepsis and bloodstream infections carry a high risk of morbidity and mortality. Rapid identification and susceptibility prediction of causative pathogens, using Nanopore sequencing direct from blood cultures, may offer clinical benefit. We assessed this approach in comparison to conventional phenotypic methods and determined the accuracy of species identification and susceptibility prediction from genomic data. While this workflow holds promise, and performed well for some common bacterial species, improvements in sequencing accuracy and more robust predictive algorithms across a diverse range of organisms are required before this can be considered for clinical use. However, results could be achieved in timeframes that are faster than conventional phenotypic methods.


Subject(s)
Nanopore Sequencing , Sepsis , Humans , Blood Culture/methods , Microbial Sensitivity Tests , Sepsis/microbiology , Anti-Bacterial Agents , Critical Care
5.
Int J Pediatr Otorhinolaryngol ; 174: 111741, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37788516

ABSTRACT

OBJECTIVES: To identify and review key research advances from the literature published between 2019 and 2023 on the diagnosis and microbiology of otitis media (OM) including acute otitis media (AOM), recurrent AOM (rAOM), otitis media with effusion (OME), chronic suppurative otitis media (CSOM) and AOM complications (mastoiditis). DATA SOURCES: PubMed database of the National Library of Medicine. REVIEW METHODS: All relevant original articles published in Medline in English between July 2019 and February 2023 were identified. Studies that were reviews, case studies, relating to OM complications (other than mastoiditis), and studies focusing on guideline adherence, and consensus statements were excluded. Members of the panel drafted the report based on these search results. MAIN FINDINGS: For the diagnosis section, 2294 unique records screened, 55 were eligible for inclusion. For the microbiology section 705 unique records were screened and 137 articles were eligible for inclusion. The main themes that arose in OM diagnosis were the need to incorporate multiple modalities including video-otoscopy, tympanometry, telemedicine and artificial intelligence for accurate diagnoses in all diagnostic settings. Further to this, was the use of new, cheap, readily available tools which may improve access in rural and lowmiddle income (LMIC) settings. For OM aetiology, PCR remains the most sensitive method for detecting middle ear pathogens with microbiome analysis still largely restricted to research use. The global pandemic response reduced rates of OM in children, but post-pandemic shifts should be monitored. IMPLICATION FOR PRACTICE AND FUTURE RESEARCH: Cheap, easy to use multi-technique assessments combined with artificial intelligence and/or telemedicine should be integrated into future practice to improve diagnosis and treatment pathways in OM diagnosis. Longitudinal studies investigating the in-vivo process of OM development, timings and in-depth interactions between the triad of bacteria, viruses and the host immune response are still required. Standardized methods of collection and analysis for microbiome studies to enable inter-study comparisons are required. There is a need to target underlying biofilms if going to effectively prevent rAOM and OME and possibly enhance ventilation tube retention.


Subject(s)
Mastoiditis , Otitis Media with Effusion , Otitis Media , Child , Humans , Mastoiditis/complications , Artificial Intelligence , Otitis Media/complications , Otitis Media with Effusion/diagnosis , Otitis Media with Effusion/complications , Ear, Middle
6.
J Infect Dis ; 227(2): 278-287, 2023 01 11.
Article in English | MEDLINE | ID: mdl-35867852

ABSTRACT

BACKGROUND: A novel human parechovirus 3 Australian recombinant (HPeV3-AR) strain emerged in 2013 and coincided with biennial outbreaks of sepsis-like illnesses in infants. We evaluated the molecular evolution of the HPeV3-AR strain and its association with severe HPeV infections. METHODS: HPeV3-positive samples collected from hospitalized infants aged 5-252 days in 2 Australian states (2013-2020) and from a community-based birth cohort (2010-2014) were sequenced. Coding regions were used to conduct phylogenetic and evolutionary analyses. A recombinant-specific polymerase chain reaction was designed and utilized to screen all clinical and community HPeV3-positive samples. RESULTS: Complete coding regions of 54 cases were obtained, which showed the HPeV3-AR strain progressively evolving, particularly in the 3' end of the nonstructural genes. The HPeV3-AR strain was not detected in the community birth cohort until the initial outbreak in late 2013. High-throughput screening showed that most (>75%) hospitalized HPeV3 cases involved the AR strain in the first 3 clinical outbreaks, with declining prevalence in the 2019-2020 season. The AR strain was not statistically associated with increased clinical severity among hospitalized infants. CONCLUSIONS: HPeV3-AR was the dominant strain during the study period. Increased hospital admissions may have been from a temporary fitness advantage and/or increased virulence.


Subject(s)
Parechovirus , Picornaviridae Infections , Infant , Humans , Parechovirus/genetics , Phylogeny , Australia/epidemiology , Recombination, Genetic
7.
J Clin Med ; 13(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38202177

ABSTRACT

Chronic wet cough for longer than 4 weeks is a hallmark of chronic suppurative lung diseases (CSLD), including protracted bacterial bronchitis (PBB), and bronchiectasis in children. Severe lower respiratory infection early in life is a major risk factor of PBB and paediatric bronchiectasis. In these conditions, failure to clear an underlying endobronchial infection is hypothesised to drive ongoing inflammation and progressive tissue damage that culminates in irreversible bronchiectasis. Historically, the microbiology of paediatric chronic wet cough has been defined by culture-based studies focused on the detection and eradication of specific bacterial pathogens. Various 'omics technologies now allow for a more nuanced investigation of respiratory pathobiology and are enabling development of endotype-based models of care. Recent years have seen substantial advances in defining respiratory endotypes among adults with CSLD; however, less is understood about diseases affecting children. In this review, we explore the current understanding of the airway microbiome among children with chronic wet cough related to the PBB-bronchiectasis diagnostic continuum. We explore concepts emerging from the gut-lung axis and multi-omic studies that are expected to influence PBB and bronchiectasis endotyping efforts. We also consider how our evolving understanding of the airway microbiome is translating to new approaches in chronic wet cough diagnostics and treatments.

8.
J Pediatric Infect Dis Soc ; 11(5): 199-206, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35020908

ABSTRACT

BACKGROUND: Acute diarrheal illness (ADI) causes a substantial disease burden in high-income countries. We investigated associations between potentially pathogenic organisms in stools and ADI by polymerase chain reaction (PCR) in Australian children aged <2 years. METHODS: Children in a community-based birth cohort had gastrointestinal symptoms recorded daily and stool samples collected weekly until their second birthday. Diarrhea was defined as ≥3 liquid or looser than normal stools within a 24-hour period. PCR assays tested for 11 viruses, 5 bacteria, and 4 protozoa. Detections of a new organism or of the same following at least 2 negative tests were linked to ADIs, and incidence rates and estimates of association with ADI were calculated. RESULTS: One hundred fifty-four children provided 11 111 stool samples during 240 child-years of observation, and 228 ADIs were linked to samples. Overall, 6105 (55%) samples tested positive for a target organism. The incidence rate of 2967 new detections was 11.9 (95% confidence interval 11.4-12.3) per child-year, with 2561 (92%) new detections unrelated to an ADI. The relative risk of an ADI was 1.5-6.4 times greater for new detections of adenovirus, enterovirus, norovirus GII, parechovirus A, wild-type rotavirus, sapovirus GI/II/IV/V, Salmonella, Blastocystis, and Cryptosporidium, compared to when these were absent. CONCLUSIONS: Wild-type rotavirus, norovirus GII, sapovirus GI/II/IV/V, adenovirus 40/41, and Salmonella were associated with ADI in this age group and setting. However, high levels of asymptomatic shedding of potential pathogens in stools from children may contribute to diagnostic confusion when children present with an episode of ADI.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Gastroenteritis , Rotavirus , Adenoviridae , Australia/epidemiology , Cryptosporidiosis/epidemiology , Cryptosporidium/genetics , Diarrhea/microbiology , Feces , Gastroenteritis/epidemiology , Humans , Infant
9.
ISME Commun ; 2(1): 13, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-37938715

ABSTRACT

Actinic keratoses (AK) arise in severely photo-damaged skin and can progress to squamous cell carcinomas (SCC). AK and SCC are common in Caucasian populations, and immunosuppressed individuals have a markedly higher risk of developing SCC. An overabundance of Staphylococcus aureus has been reported in AK and SCC lesions of immunocompetent individuals, however, the AK/SCC microbiome in immunosuppressed cohorts has not been investigated. Here, the microbial profile and bacterial load of AK, SCC and control skin swabs from 32 immunosuppressed organ transplant recipients were characterised via SSU rRNA gene sequencing and qPCR, and compared to a previously described immunocompetent cohort. Although the taxonomic composition of skin swab samples was mostly subject-specific, significant differences were observed between control skin, AK, and SCC in both cohorts. Surface bacterial load was increased and alpha diversity decreased in AK and SCC compared to control skin due to an increased abundance of Staphylococcus species and relative decrease of skin commensals. Staphylococcus epidermidis predominated on SCC from transplant recipients in contrast to SCC of immunocompetent subjects dominated by S. aureus. In conclusion, AK and SCC of immunosuppressed and immunocompetent subjects present with distinctive microbial dysbioses, which may be relevant to SCC pathogenesis and progression.

10.
J Appl Microbiol ; 132(3): 2368-2378, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34606144

ABSTRACT

AIMS: To explore the in vitro ability of alpha haemolytic streptococcus (AHS) and lactobacilli (LBs), from Indigenous Australian children, to inhibit the growth of respiratory pathogens (Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis), also from Indigenous Australian children. METHODS AND RESULTS: The bacterial interference of 91 isolates, from Indigenous Australian children both with and without otitis media (OM) or rhinorrhoea, was investigated using agar overlay and cell-free supernatant. Promising isolates underwent whole genome sequencing to investigate upper respiratory tract tropism, antibiotic resistance and virulence. Antibiotic susceptibility was examined for ampicillin, amoxicillin +clavulanic acid and azithromycin. Differences in the strength of bacterial inferences in relation to OM was examined using a case series of three healthy and three children with OM. LBs readily inhibited the growth of pathogens. AHS were less effective, although several isolates inhibited S. pneumoniae. One L. rhamnosus had genes coding for pili to adhere to epithelial cells. We detected antibiotic resistance genes coding for antibiotic efflux pump and ribosomal protection protein. LBs were susceptible to antimicrobials in vitro. Screening for virulence detected genes encoding for two putative capsule proteins. Healthy children had AHS and LB that were more potent inhibitors of respiratory pathogens in vitro than children with OM. CONCLUSIONS: L. rhamnosus from remote Indigenous Australian children are potent inhibitors of respiratory pathogens in vitro. SIGNIFICANCE AND IMPACT OF STUDY: Respiratory/ear disease are endemic in Indigenous Australians. There is an urgent call for more effective treatment/prevention; beneficial microbes have not been explored. L. rhamnosus investigated in this study are potent inhibitors of respiratory pathogens in vitro and require further investigation.


Subject(s)
Lactobacillus , Otitis Media , Anti-Bacterial Agents/pharmacology , Australia/epidemiology , Humans , Moraxella catarrhalis , Otitis Media/epidemiology , Otitis Media/microbiology , Streptococcus
11.
Microbiol Spectr ; 9(2): e0036721, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34668729

ABSTRACT

The objective of this study was to examine the nasal microbiota in relation to otitis media (OM) status and nose health in Indigenous Australian children. Children 2 to 7 years of age were recruited from two northern Australian (Queensland) communities. Clinical histories were obtained through parent interviews and reviews of the medical records. Nasal cavity swab samples were obtained, and the children's ears, nose, and throat were examined. DNA was extracted and analyzed by 16S rRNA amplicon next-generation sequencing of the V3/V4 region, in combination with previously generated culture data. A total of 103 children were recruited (mean age, 4.7 years); 17 (16.8%) were healthy, i.e., normal examination results and no history of OM. The nasal microbiota differed significantly in relation to OM status and nose health. Children with historical OM had greater relative abundance of Moraxella, compared to healthy children, despite both having healthy ears at the time of swabbing. Children with healthy noses had greater relative abundance of Staphylococcus aureus, compared to those with rhinorrhea. Dolosigranulum was correlated with Corynebacterium in healthy children. Haemophilus and Streptococcus were correlated across phenotypes. Ornithobacterium was absent or was present with low relative abundance in healthy children and clustered around otopathogens. It correlated with Helcococcus and Dichelobacter. Dolosigranulum and Corynebacterium form a synergism that promotes upper respiratory tract (URT)/ear health in Indigenous Australian children. Ornithobacterium likely represents "Candidatus Ornithobacterium hominis" and in this population is correlated with a novel bacterium that appears to be related to poor URT/ear health. IMPORTANCE Recurring and chronic infections of the ear (OM) are disproportionately prevalent in disadvantaged communities across the globe and, in particular, within Indigenous communities. Despite numerous intervention strategies, OM persists as a major health issue and is the leading cause of preventable hearing loss. In disadvantaged communities, this hearing loss is associated with negative educational and social development outcomes, and consequently, poorer employment prospects and increased contact with the justice system in adulthood. Thus, a better understanding of the microbial ecology is needed in order to identify new targets to treat, as well as to prevent the infections. This study used a powerful combination of 16S rRNA gene sequencing and extended culturomics to show that Dolosigranulum pigrum, a bacterium previously identified as a candidate protective species, may require cocolonization with Corynebacterium pseudodiphtheriticum in order to prevent OM. Additionally, emerging and potentially novel pathogens and bacteria were identified.


Subject(s)
Bacteria/classification , Ear/microbiology , Microbiota/genetics , Nasal Cavity/microbiology , Native Hawaiian or Other Pacific Islander/statistics & numerical data , Otitis Media/epidemiology , Australia/epidemiology , Bacteria/genetics , Bacteria/isolation & purification , Child , Child, Preschool , Female , Health Status , Humans , Male , Microbiota/physiology , Nasal Mucosa/microbiology , Nasopharynx/microbiology , Otitis Media/microbiology , Persistent Infection/microbiology , RNA, Ribosomal, 16S/genetics , Respiratory System/microbiology
12.
Front Cell Infect Microbiol ; 11: 667680, 2021.
Article in English | MEDLINE | ID: mdl-34249774

ABSTRACT

Background: Sepsis contributes significantly to morbidity and mortality globally. In Australia, 20,000 develop sepsis every year, resulting in 5,000 deaths, and more than AUD$846 million in expenditure. Prompt, appropriate antibiotic therapy is effective in improving outcomes in sepsis. Conventional culture-based methods to identify appropriate therapy have limited yield and take days to complete. Recently, nanopore technology has enabled rapid sequencing with real-time analysis of pathogen DNA. We set out to demonstrate the feasibility and diagnostic accuracy of pathogen sequencing direct from clinical samples, and estimate the impact of this approach on time to effective therapy when integrated with personalised software-guided antimicrobial dosing in children and adults on ICU with sepsis. Methods: The DIRECT study is a pilot prospective, non-randomized multicentre trial of an integrated diagnostic and therapeutic algorithm combining rapid direct pathogen sequencing and software-guided, personalised antibiotic dosing in children and adults with sepsis on ICU. Participants and interventions: DIRECT will collect microbiological and pharmacokinetic samples from approximately 200 children and adults with sepsis admitted to one of four ICUs in Brisbane. In Phase 1, we will evaluate Oxford Nanopore Technologies MinION sequencing direct from blood in 50 blood culture-proven sepsis patients recruited from consecutive patients with suspected sepsis. In Phase 2, a further 50 consecutive patients with suspected sepsis will be recruited in whom MinION sequencing will be combined with Bayesian software-guided (ID-ODS) personalised antimicrobial dosing. Outcome measures: The primary outcome is time to effective antimicrobial therapy, defined as trough drug concentrations above the MIC of the pathogen. Secondary outcomes are diagnostic accuracy of MinION sequencing from whole blood, time to pathogen identification and susceptibility testing using sequencing direct from whole blood and from positive blood culture broth. Discussion: Rapid pathogen sequencing coupled with antimicrobial dosing software has great potential to overcome the limitations of conventional diagnostics which often result in prolonged inappropriate antimicrobial therapy. Reduced time to optimal antimicrobial therapy may reduce sepsis mortality and ICU length of stay. This pilot study will yield key feasibility data to inform further, urgently needed sepsis studies. Phase 2 of the trial protocol is registered with the ANZCTR (ACTRN12620001122943). Trial registration: Registered with the Australia New Zealand Clinical Trials Registry Number ACTRN12620001122943.


Subject(s)
Sepsis , Adult , Anti-Bacterial Agents/therapeutic use , Australia , Bayes Theorem , Child , Humans , Multicenter Studies as Topic , Pilot Projects , Prospective Studies , Sepsis/diagnosis , Sepsis/drug therapy , Treatment Outcome
14.
J Pediatric Infect Dis Soc ; 10(4): 468-476, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33393596

ABSTRACT

BACKGROUND: We explored the nasal microbiota in Indigenous Australian children in relation to ear and nasal health. METHODS: In total, 103 Indigenous Australian children aged 2-7 years (mean 4.7 years) were recruited from 2 Queensland communities. Children's ears, nose, and throats were examined and upper respiratory tract (URT) swabs collected. Clinical histories were obtained from parents/medical records. URT microbiota were characterized using culturomics with Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) identification. Real-time PCR was used to quantify otopathogen (Haemophilus influenzae, Streptococcus pneumoniae, and Moraxella catarrhalis) loads and detect respiratory viruses. Data were analyzed using beta diversity measures, regression modeling, and a correlation network analysis. RESULTS: Children with historical/current otitis media (OM) or URT infection (URTI) had higher nasal otopathogen detection and loads and rhinovirus detection compared with healthy children (all P < .04). Children with purulent rhinorrhea had higher nasal otopathogen detection and loads and rhinovirus detection (P < .04) compared with healthy children. High otopathogen loads were correlated in children with historical/current OM or URTI, whereas Corynebacterium pseudodiphtheriticum and Dolosigranulum pigrum were correlated in healthy children. CONCLUSIONS: Corynebacterium pseudodiphtheriticum and D. pigrum are associated with URT and ear health. The importance of the main otopathogens in URT disease/OM was confirmed, and their role relates to co-colonization and high otopathogens loads.


Subject(s)
Carnobacteriaceae , Microbiota , Otitis Media , Australia/epidemiology , Child , Corynebacterium , Humans
16.
Clin Infect Dis ; 71(1): 116-127, 2020 06 24.
Article in English | MEDLINE | ID: mdl-31406985

ABSTRACT

BACKGROUND: Hospital-based studies identify parechovirus (PeV), primarily PeV-A3, as an important cause of severe infections in young children. However, few community-based studies have been published and the true PeV infection burden is unknown. We investigated PeV epidemiology in healthy children participating in a community-based, longitudinal birth cohort study. METHODS: Australian children (n = 158) enrolled in the Observational Research in Childhood Infectious Diseases (ORChID) study were followed from birth until their second birthday. Weekly stool and nasal swabs and daily symptom diaries were collected. Swabs were tested for PeV by reverse-transcription polymerase chain reaction and genotypes determined by subgenomic sequencing. Incidence rate, infection characteristics, clinical associations, and virus codetections were investigated. RESULTS: PeV was detected in 1423 of 11 124 (12.8%) and 17 of 8100 (0.2%) stool and nasal swabs, respectively. Major genotypes among the 306 infection episodes identified were PeV-A1 (47.9%), PeV-A6 (20.1%), and PeV-A3 (18.3%). The incidence rate was 144 episodes (95% confidence interval, 128-160) per 100 child-years. First infections appeared at a median age of 8 (interquartile range, 6.0-11.7) months. Annual seasonal peaks changing from PeV-A1 to PeV-A3 were observed. Infection was positively associated with age ≥6 months, summer season, nonexclusive breastfeeding at age <3 months, and formal childcare attendance before age 12 months. Sole PeV infections were either asymptomatic (38.4%) or mild (32.7%), while codetection with other viruses in stool swabs was common (64.4%). CONCLUSIONS: In contrast with hospital-based studies, this study showed that diverse and dynamically changing PeV genotypes circulate in the community causing mild or subclinical infections in children.Parechovirus can cause severe illnesses in children. However, studies focus mainly on hospitalized populations. True disease burden in the community remains largely unknown. From our community-based cohort, we found diverse parechovirus genotypes in the community, causing mild or subclinical infections in children. CLINICAL TRIALS REGISTRATION: NCT01304914.


Subject(s)
Parechovirus , Picornaviridae Infections , Australia/epidemiology , Child , Child, Preschool , Cohort Studies , Genotype , Humans , Infant , Parechovirus/genetics , Picornaviridae Infections/epidemiology
17.
J Infect ; 80(1): 84-98, 2020 01.
Article in English | MEDLINE | ID: mdl-31580867

ABSTRACT

OBJECTIVE: To elucidate the effects of meteorological variations on the activity of influenza A and B in 11 sites across different climate regions. METHODS: Daily numbers of laboratory-confirmed influenza A and B cases from 2011-2015 were collected from study sites where the corresponding daily mean temperature, relative humidity, wind speed and daily precipitation amount were used for boosted regression trees analysis on the marginal associations and the interaction effects. RESULTS: Cold temperature was a major determinant that favored both influenza A and B in temperate and subtropical sites. Temperature-to-influenza A, but not influenza B, exhibited a U-shape association in subtropical and tropical sites. High relative humidity was also associated with influenza activities but was less consistent with influenza B activity. Compared with relative humidity, absolute humidity had a stronger association - it was negatively associated with influenza B activity in temperate zones, but was positively associated with both influenza A and B in subtropical and tropical zones. CONCLUSION: The association between meteorological factors and with influenza activity is virus type specific and climate dependent. The heavy influence of temperature on influenza activity across climate zones implies that global warming is likely to have an impact on the influenza burden.


Subject(s)
Influenza, Human , Humans , Humidity , Influenza, Human/epidemiology , Meteorological Concepts , Seasons , Temperature
18.
Int J Pediatr Otorhinolaryngol ; 130 Suppl 1: 109836, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31879084

ABSTRACT

OBJECTIVE: To perform a comprehensive review of otitis media microbiome literature published between 1st July 2015 and 30th June 2019. DATA SOURCES: PubMed database, National Library of Medicine. REVIEW METHODS: Key topics were assigned to each panel member for detailed review. Draft reviews were collated and circulated for discussion when the panel met at the 20th International Symposium on Recent Advances in Otitis Media in June 2019. The final draft was prepared with input from all panel members. CONCLUSIONS: Much has been learned about the different types of bacteria (including commensals) present in the upper respiratory microbiome, but little is known about the virome and mycobiome. A small number of studies have investigated the middle ear microbiome; however, current data are often limited by small sample sizes and methodological heterogeneity between studies. Furthermore, limited reporting of sample collection methods mean that it is often difficult to determine whether bacteria detected in middle ear fluid specimens originated from the middle ear or the external auditory canal. Recent in vitro studies suggest that bacterial interactions in the nasal/nasopharyngeal microbiome may affect otitis media pathogenesis by modifying otopathogen behaviours. Impacts of environmental pressures (e.g. smoke, nutrition) and clinical interventions (e.g. vaccination, antibiotics) on the upper respiratory and middle ear microbiomes remain poorly understood as there are few data. IMPLICATIONS FOR PRACTICE: Advances in understanding bacterial dynamics in the upper airway microbiome are driving development of microbiota-modifying therapies to prevent or treat disease (e.g. probiotics). Further advances in otitis media microbiomics will likely require technological improvements that overcome the current limitations of OMICs technologies when applied to low volume and low biomass specimens that potentially contain high numbers of host cells. Improved laboratory models are needed to elucidate mechanistic interactions among the upper respiratory and middle ear microbiomes. Minimum reporting standards are critically needed to improve inter-study comparisons and enable future meta-analyses.


Subject(s)
Bacteria , Ear, Middle/microbiology , Microbiota , Otitis Media/microbiology , Animals , Anti-Bacterial Agents/pharmacology , Disease Models, Animal , Humans , Microbiota/drug effects , Nasopharynx/microbiology , Smoking , Vaccines/pharmacology
19.
J Infect ; 79(4): 373-382, 2019 10.
Article in English | MEDLINE | ID: mdl-31323249

ABSTRACT

OBJECTIVES: To improve our understanding of the global epidemiology of common respiratory viruses by analysing their contemporaneous incidence at multiple sites. METHODS: 2010-2015 incidence data for influenza A (IAV), influenza B (IBV), respiratory syncytial (RSV) and parainfluenza (PIV) virus infections were collected from 18 sites (14 countries), consisting of local (n = 6), regional (n = 9) and national (n = 3) laboratories using molecular diagnostic methods. Each site submitted monthly virus incidence data, together with details of their patient populations tested and diagnostic assays used. RESULTS: For the Northern Hemisphere temperate countries, the IAV, IBV and RSV incidence peaks were 2-6 months out of phase with those in the Southern Hemisphere, with IAV having a sharp out-of-phase difference at 6 months, whereas IBV and RSV showed more variable out-of-phase differences of 2-6 months. The tropical sites Singapore and Kuala Lumpur showed fluctuating incidence of these viruses throughout the year, whereas subtropical sites such as Hong Kong, Brisbane and Sydney showed distinctive biannual peaks for IAV but not for RSV and PIV. CONCLUSIONS: There was a notable pattern of synchrony of IAV, IBV and RSV incidence peaks globally, and within countries with multiple sampling sites (Canada, UK, Australia), despite significant distances between these sites.


Subject(s)
Influenza, Human/epidemiology , Paramyxoviridae Infections/epidemiology , Respiratory Syncytial Virus Infections/epidemiology , Africa/epidemiology , Asia, Southeastern/epidemiology , Australasia/epidemiology , Europe/epidemiology , Humans , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza B virus/genetics , Influenza B virus/isolation & purification , Middle East/epidemiology , Molecular Diagnostic Techniques , North America/epidemiology , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/isolation & purification , Respirovirus/genetics , Respirovirus/isolation & purification , Seasons
20.
BMC Infect Dis ; 19(1): 660, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31340776

ABSTRACT

BACKGROUND: Rapid diagnosis and appropriate treatment is imperative in bacterial sepsis due increasing risk of mortality with every hour without appropriate antibiotic therapy. Atypical infections with fastidious organisms may take more than 4 days to diagnose leading to calls for improved methods for rapidly diagnosing sepsis. Capnocytophaga canimorsus is a slow-growing, fastidious gram-negative bacillus which is a common commensal within the mouths of dogs, but rarely cause infections in humans. C. canimorsus sepsis risk factors include immunosuppression, alcoholism and elderly age. Here we report on the application of emerging nanopore sequencing methods to rapidly diagnose an atypical case of C. canimorsus septic shock. CASE PRESENTATION: A 62 year-old female patient was admitted to an intensive care unit with septic shock and multi-organ failure six days after a reported dog bite. Blood cultures were unable to detect a pathogen after 3 days despite observed intracellular bacilli on blood smears. Real-time nanopore sequencing was subsequently employed on whole blood to detect Capnocytophaga canimorsus in 19 h. The patient was not immunocompromised and did not have any other known risk factors. Whole-genome sequencing of clinical sample and of the offending dog's oral swabs showed near-identical C. canimorsus genomes. The patient responded to antibiotic treatment and was discharged from hospital 31 days after admission. CONCLUSIONS: Use of real-time nanopore sequencing reduced the time-to-diagnosis of Capnocytophaga canimorsus in this case from 6.25 days to 19 h. Capnocytophaga canimorsus should be considered in cases of suspected sepsis involving cat or dog contact, irrespective of the patient's known risk factors.


Subject(s)
Bites and Stings/complications , Capnocytophaga/isolation & purification , Shock, Septic/diagnosis , Animals , Anti-Bacterial Agents/therapeutic use , Capnocytophaga/drug effects , Capnocytophaga/genetics , Cats , Dogs , Female , Gram-Negative Bacterial Infections/diagnosis , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/microbiology , Humans , Immunocompromised Host , Middle Aged , Nanopores , Sequence Analysis, DNA , Shock, Septic/immunology , Shock, Septic/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...