Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 18366, 2024 08 07.
Article in English | MEDLINE | ID: mdl-39112565

ABSTRACT

EGFR mutations are critical oncogenic drivers in lung adenocarcinoma (LUAD). However, the mechanisms by which they impact the tumor microenvironment (TME) and tumor immunity are unclear. Furthermore, the reasons underlying the poor response of EGFR-mutant (EGFR-MU) LUADs to immunotherapy with PD-1/PD-L1 inhibitors are unknown. Utilizing single-cell RNA (sc-RNA) and bulk RNA sequencing datasets, we conducted high-dimensional weighted gene coexpression network analysis to identify key genes and immune-related pathways contributing to the immunosuppressive TME. EGFR-MU cancer cells downregulated MHC class I genes to evade CD8+ cytotoxic T cells, expressed substantial levels of MHC class II molecules, and engaged with CD4+ regulatory T cells (Tregs). EGFR-MU tumors may recruit Tregs primarily through the CCL17/CCL22/CCR4 axis, leading to a Treg-enriched TME. High levels of MHC class II-positive cancer-associated fibroblasts and tumor endothelial cells were found within EGFR-MU tumors. Owing to the absence of costimulatory factors, they may inhibit rather than activate the tumor antigen-specific CD4+ T-cell response, contributing further to immune suppression. Multiplex immunohistochemistry analyses in a LUAD cohort confirmed increased expression of MHC class II molecules in cancer cells and fibroblasts in EGFR-MU tumors. Our research elucidates the highly immunosuppressive TME in EGFR-MU LUAD and suggests potential targets for effective immunotherapy.


Subject(s)
ErbB Receptors , Gene Expression Profiling , Lung Neoplasms , Mutation , Tumor Microenvironment , Humans , ErbB Receptors/genetics , ErbB Receptors/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Tumor Microenvironment/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Gene Expression Regulation, Neoplastic , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/pathology , Transcriptome , Single-Cell Analysis
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167098, 2024 04.
Article in English | MEDLINE | ID: mdl-38412927

ABSTRACT

Recent research has unveiled fascinating insights into the intricate mechanisms governing tumor evolution. These studies have illuminated how tumors adapt and proliferate by exploiting various factors, including immune evasion, resistance to therapeutic drugs, genetic mutations, and their ability to adapt to different environments. Furthermore, investigations into tumor heterogeneity and chromosomal aberrations have revealed the profound complexity that underlies the evolution of cancer. Emerging findings have also underscored the role of viral influences in the development and progression of cancer, introducing an additional layer of complexity to the field of oncology. Tumor evolution is a dynamic and complex process influenced by various factors, including immune evasion, drug resistance, tumor heterogeneity, and viral influences. Understanding these elements is indispensable for developing more effective treatments and advancing cancer therapies. A holistic approach to studying and addressing tumor evolution is crucial in the ongoing battle against cancer. The main goal of this comprehensive review is to explore the intricate relationship between tumor evolution and critical aspects of cancer biology. By delving into this complex interplay, we aim to provide a profound understanding of how tumors evolve, adapt, and respond to treatment strategies. This review underscores the pivotal importance of comprehending tumor evolution in shaping effective approaches to cancer treatment.


Subject(s)
Neoplasms , Tumor Escape , Humans , Tumor Escape/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Mutation , Medical Oncology , Drug Resistance
SELECTION OF CITATIONS
SEARCH DETAIL