Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Front Immunol ; 15: 1355130, 2024.
Article En | MEDLINE | ID: mdl-38742103

Pre-operative radiation therapy is not currently integrated into the treatment protocols for breast cancer. However, transforming immunological "cold" breast cancers by neoadjuvant irradiation into their "hot" variants is supposed to elicit an endogenous tumor immune defense and, thus, enhance immunotherapy efficiency. We investigated cellular and immunological effects of sub-lethal, neoadjuvant irradiation of ER pos., HER2 pos., and triple-negative breast cancer subtypes in-vitro and in-vivo in humanized tumor mice (HTM). This mouse model is characterized by a human-like immune system and therefore facilitates detailed analysis of the mechanisms and efficiency of neoadjuvant, irradiation-induced "in-situ vaccination", especially in the context of concurrently applied checkpoint therapy. Similar to clinical appearances, we observed a gradually increased immunogenicity from the luminal over the HER2-pos. to the triple negative subtype in HTM indicated by an increasing immune cell infiltration into the tumor tissue. Anti-PD-L1 therapy divided the HER2-pos. and triple negative HTM groups into responder and non-responder, while the luminal HTMs were basically irresponsive. Irradiation alone was effective in the HER2-pos. and luminal subtype-specific HTM and was supportive for overcoming irresponsiveness to single anti-PD-L1 treatment. The treatment success correlated with a significantly increased T cell proportion and PD-1 expression in the spleen. In all subtype-specific HTM combination therapy proved most effective in diminishing tumor growth, enhancing the immune response, and converted non-responder into responder during anti-PD-L1 therapy. In HTM, neoadjuvant irradiation reinforced anti-PD-L1 checkpoint treatment of breast cancer in a subtype -specific manner. According to the "bench to bedside" principle, this study offers a vital foundation for clinical translating the use of neoadjuvant irradiation in the context of checkpoint therapy.


B7-H1 Antigen , Immune Checkpoint Inhibitors , Neoadjuvant Therapy , Receptor, ErbB-2 , Triple Negative Breast Neoplasms , Animals , Female , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/radiotherapy , Triple Negative Breast Neoplasms/therapy , Neoadjuvant Therapy/methods , Mice , Humans , Receptor, ErbB-2/metabolism , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Cell Line, Tumor , Receptors, Estrogen/metabolism , Disease Models, Animal , Xenograft Model Antitumor Assays , Breast Neoplasms/immunology , Breast Neoplasms/radiotherapy , Breast Neoplasms/therapy
2.
Eur J Immunol ; 50(12): 2041-2054, 2020 12.
Article En | MEDLINE | ID: mdl-32640051

The purpose of this study was to elucidate whether DC NK lectin group receptor-1 (DNGR-1)-dependent cross-presentation of dead-cell-associated antigens occurs after transplantation and contributes to CD8+ T cell responses, chronic allograft rejection (CAR), and fibrosis. BALB/c or C57BL/6 hearts were heterotopically transplanted into WT, Clec9a-/- , or Batf3-/- recipient C57BL/6 mice. Allografts were analyzed for cell infiltration, CD8+ T cell activation, fibrogenesis, and CAR using immunohistochemistry, Western blot, qRT2 -PCR, and flow cytometry. Allografts displayed infiltration by recipient DNGR-1+ DCs, signs of CAR, and fibrosis. Allografts in Clec9a-/- recipients showed reduced CAR (p < 0.0001), fibrosis (P = 0.0137), CD8+ cell infiltration (P < 0.0001), and effector cytokine levels compared to WT recipients. Batf3-deficiency greatly reduced DNGR-1+ DC-infiltration, CAR (P < 0.0001), and fibrosis (P = 0.0382). CD8 cells infiltrating allografts of cytochrome C treated recipients, showed reduced production of CD8 effector cytokines (P < 0.05). Further, alloreactive CD8+ T cell response in indirect pathway IFN-γ ELISPOT was reduced in Clec9a-/- recipient mice (P = 0.0283). Blockade of DNGR-1 by antibody, similar to genetic elimination of the receptor, reduced CAR (P = 0.0003), fibrosis (P = 0.0273), infiltration of CD8+ cells (p = 0.0006), and effector cytokine levels. DNGR-1-dependent alloantigen cross-presentation by DNGR-1+ DCs induces alloreactive CD8+ cells that induce CAR and fibrosis. Antibody against DNGR-1 can block this process and prevent CAR and fibrosis.


Allografts/immunology , Antigen Presentation/immunology , Antigens, Surface/immunology , Cross-Priming/immunology , Dendritic Cells/immunology , Graft Rejection/immunology , Lectins, C-Type/immunology , Receptors, Immunologic/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Female , Interferon-gamma/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
3.
Mol Cancer Res ; 16(3): 428-438, 2018 03.
Article En | MEDLINE | ID: mdl-29222170

Cancer is a genetic disease caused by mutations and chromosomal abnormalities that contribute to uncontrolled cell growth. In addition, cancer cells can rapidly respond to conventional and targeted therapies by accumulating novel and often specific genetic lesions leading to acquired drug resistance and relapsing disease. In chronic lymphocytic leukemia (CLL), however, diverse chromosomal aberrations often occur. In many cases, improper repair of DNA double-strand breaks (DSB) is a major source for genomic abnormalities. Therefore, this study examined the repair of DNA DSBs by nonhomologous end joining (NHEJ) in CLL by performing plasmid-based repair assays in primary CLL cells and normal B cells, isolated from patients, as well as TALEN/Cas9-induced chromosomal deletions in the CLL cell line Mec1. It is demonstrated that DNA repair is aberrant in CLL cells, featuring perturbed DNA break structure preference with efficient joining of noncohesive ends and more deletions at repair junctions. In addition, increased microhomology-mediated end joining (MMEJ) of DNA substrates was observed in CLL together with increased expression of MMEJ-specific repair factors. In summary, these data identify major differences in DNA repair efficiency between CLL cells and normal B cells isolated from patients.Implications: This study suggests inherently aberrant DNA DSB repair in the acquisition of subclonal genomic structural variations important for clonal evolution and treatment resistance in CLL. Mol Cancer Res; 16(3); 428-38. ©2017 AACR.


DNA End-Joining Repair , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Cell Line, Tumor , DNA Ligase ATP/biosynthesis , DNA Ligase ATP/genetics , DNA Ligase ATP/metabolism , Gene Expression , HEK293 Cells , Humans , Transfection , X-ray Repair Cross Complementing Protein 1/biosynthesis , X-ray Repair Cross Complementing Protein 1/genetics , X-ray Repair Cross Complementing Protein 1/metabolism
...