Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 60
1.
Pharmacol Rev ; 76(3): 323-357, 2024 May 02.
Article En | MEDLINE | ID: mdl-38697859

Over the last six decades, lithium has been considered the gold standard treatment for the long-term management of bipolar disorder due to its efficacy in preventing both manic and depressive episodes as well as suicidal behaviors. Nevertheless, despite numerous observed effects on various cellular pathways and biologic systems, the precise mechanism through which lithium stabilizes mood remains elusive. Furthermore, there is recent support for the therapeutic potential of lithium in other brain diseases. This review offers a comprehensive examination of contemporary understanding and predominant theories concerning the diverse mechanisms underlying lithium's effects. These findings are based on investigations utilizing cellular and animal models of neurodegenerative and psychiatric disorders. Recent studies have provided additional support for the significance of glycogen synthase kinase-3 (GSK3) inhibition as a crucial mechanism. Furthermore, research has shed more light on the interconnections between GSK3-mediated neuroprotective, antioxidant, and neuroplasticity processes. Moreover, recent advancements in animal and human models have provided valuable insights into how lithium-induced modifications at the homeostatic synaptic plasticity level may play a pivotal role in its clinical effectiveness. We focused on findings from translational studies suggesting that lithium may interface with microRNA expression. Finally, we are exploring the repurposing potential of lithium beyond bipolar disorder. These recent findings on the therapeutic mechanisms of lithium have provided important clues toward developing predictive models of response to lithium treatment and identifying new biologic targets. SIGNIFICANCE STATEMENT: Lithium is the drug of choice for the treatment of bipolar disorder, but its mechanism of action in stabilizing mood remains elusive. This review presents the latest evidence on lithium's various mechanisms of action. Recent evidence has strengthened glycogen synthase kinase-3 (GSK3) inhibition, changes at the level of homeostatic synaptic plasticity, and regulation of microRNA expression as key mechanisms, providing an intriguing perspective that may help bridge the mechanistic gap between molecular functions and its clinical efficacy as a mood stabilizer.


Lithium Compounds , Humans , Animals , Lithium Compounds/pharmacology , Lithium Compounds/therapeutic use , Antimanic Agents/pharmacology , Antimanic Agents/therapeutic use , Bipolar Disorder/drug therapy , Neuronal Plasticity/drug effects , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3/antagonists & inhibitors
2.
iScience ; 27(5): 109787, 2024 May 17.
Article En | MEDLINE | ID: mdl-38711453

Depression is a devastating mood disorder that causes significant disability worldwide. Current knowledge of its pathophysiology remains modest and clear biological markers are lacking. Emerging evidence from human and animal models reveals persistent alterations in endoplasmic reticulum (ER) homeostasis, suggesting that ER stress-related signaling pathways may be targets for prevention and treatment. However, the neurobiological basis linking the pathways involved in depression-related ER stress remains unknown. Here, we report that an induced model of ER stress in mouse serotonin (5-HT) neurons is associated with reduced Egr1-dependent 5-HT cellular activity and 5-HT neurotransmission, resulting in neuroplasticity deficits in forebrain regions and a depressive-like phenotype. Ketamine administration engages downstream eIF2α signaling to trigger rapid neuroplasticity events that rescue the depressive-like effects. Collectively, these data identify ER stress in 5-HT neurons as a cellular pathway involved in the pathophysiology of depression and show that eIF2α is critical in eliciting ketamine's fast antidepressant effects.

3.
Brain ; 2024 May 21.
Article En | MEDLINE | ID: mdl-38769595

Altered development and function of the prefrontal cortex (PFC) during adolescence is implicated in the origin of mental disorders. Deficits in the GABAergic system prominently contribute to these alterations. Nav1.1 is a voltage-gated Na+ channel critical for normal GABAergic activity. Here, we studied the role of Nav1.1 in PFC function and its potential relationship with the aetiology of mental disorders. Dysfunction of Nav1.1 activity in the medial PFC (mPFC) of adolescent mice enhanced the local excitation/inhibition ratio, resulting in epileptic activity, cognitive deficits and depressive-like behaviour in adulthood, along with a gene expression profile linked to major depressive disorder (MDD). Additionally, it reduced extracellular serotonin concentration in the dorsal raphe nucleus and brain-derived neurotrophic factor expression in the hippocampus, two MDD-related brain areas beyond the PFC. We also observed alterations in oscillatory activity and impaired hippocampal-mPFC coherence during sleep. Finally, we found reduced expression levels of SCN1A, the gene encoding Nav1.1, in post-mortem PFC samples from human MDD subjects. Collectively, our results provide a novel mechanistic framework linking adolescence-specific alterations in Nav1.1 function in the PFC to the pathogenesis of epilepsy and comorbidities such as cognitive impairment and depressive disorders.

4.
Cell Mol Life Sci ; 80(12): 367, 2023 Nov 21.
Article En | MEDLINE | ID: mdl-37987826

BACKGROUND: Huntington's Disease (HD) is a disorder that affects body movements. Altered glutamatergic innervation of the striatum is a major hallmark of the disease. Approximately 30% of those glutamatergic inputs come from thalamic nuclei. Foxp2 is a transcription factor involved in cell differentiation and reported low in patients with HD. However, the role of the Foxp2 in the thalamus in HD remains unexplored. METHODS: We used two different mouse models of HD, the R6/1 and the HdhQ111 mice, to demonstrate a consistent thalamic Foxp2 reduction in the context of HD. We used in vivo electrophysiological recordings, microdialysis in behaving mice and rabies virus-based monosynaptic tracing to study thalamo-striatal and thalamo-cortical synaptic connectivity in R6/1 mice. Micro-structural synaptic plasticity was also evaluated in the striatum and cortex of R6/1 mice. We over-expressed Foxp2 in the thalamus of R6/1 mice or reduced Foxp2 in the thalamus of wild type mice to evaluate its role in sensory and motor skills deficiencies, as well as thalamo-striatal and thalamo-cortical connectivity in such mouse models. RESULTS: Here, we demonstrate in a HD mouse model a clear and early thalamo-striatal aberrant connectivity associated with a reduction of thalamic Foxp2 levels. Recovering thalamic Foxp2 levels in the mouse rescued motor coordination and sensory skills concomitant with an amelioration of neuropathological features and with a repair of the structural and functional connectivity through a restoration of neurotransmitter release. In addition, reduction of thalamic Foxp2 levels in wild type mice induced HD-like phenotypes. CONCLUSIONS: In conclusion, we show that a novel identified thalamic Foxp2 dysregulation alters basal ganglia circuits implicated in the pathophysiology of HD.


Huntington Disease , Motor Disorders , Humans , Animals , Mice , Thalamus , Corpus Striatum , Movement , Disease Models, Animal , Repressor Proteins , Forkhead Transcription Factors/genetics
5.
Biomedicines ; 11(2)2023 Feb 13.
Article En | MEDLINE | ID: mdl-36831077

In patients affected by Parkinson's disease (PD), up to 50% of them experience cognitive changes, and psychiatric disturbances, such as anxiety and depression, often precede the onset of motor symptoms and have a negative impact on their quality of life. Pathologically, PD is characterized by the loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc) and the presence of intracellular inclusions, called Lewy bodies and Lewy neurites, composed mostly of α-synuclein (α-Syn). Much of PD research has focused on the role of α-Syn aggregates in the degeneration of SNc DA neurons due to the impact of striatal DA deficits on classical motor phenotypes. However, abundant Lewy pathology is also found in other brain regions including the midbrain raphe nuclei, which may contribute to non-motor symptoms. Indeed, dysfunction of the serotonergic (5-HT) system, which regulates mood and emotional pathways, occurs during the premotor phase of PD. However, little is known about the functional consequences of α-Syn inclusions in this neuronal population other than DA neurons. Here, we provide an overview of the current knowledge of α-Syn and its role in regulating the 5-HT function in health and disease. Understanding the relative contributions to α-Syn-linked alterations in the 5-HT system may provide a basis for identifying PD patients at risk for developing depression and could lead to a more targeted therapeutic approach.

6.
EMBO Mol Med ; 15(3): e15847, 2023 03 08.
Article En | MEDLINE | ID: mdl-36740977

Tyrosine hydroxylase deficiency (THD) is a rare genetic disorder leading to dopaminergic depletion and early-onset Parkinsonism. Affected children present with either a severe form that does not respond to L-Dopa treatment (THD-B) or a milder L-Dopa responsive form (THD-A). We generated induced pluripotent stem cells (iPSCs) from THD patients that were differentiated into dopaminergic neurons (DAn) and compared with control-DAn from healthy individuals and gene-corrected isogenic controls. Consistent with patients, THD iPSC-DAn displayed lower levels of DA metabolites and reduced TH expression, when compared to controls. Moreover, THD iPSC-DAn showed abnormal morphology, including reduced total neurite length and neurite arborization defects, which were not evident in DAn differentiated from control-iPSC. Treatment of THD-iPSC-DAn with L-Dopa rescued the neuronal defects and disease phenotype only in THDA-DAn. Interestingly, L-Dopa treatment at the stage of neuronal precursors could prevent the alterations in THDB-iPSC-DAn, thus suggesting the existence of a critical developmental window in THD. Our iPSC-based model recapitulates THD disease phenotypes and response to treatment, representing a promising tool for investigating pathogenic mechanisms, drug screening, and personalized management.


Induced Pluripotent Stem Cells , Levodopa , Dopaminergic Neurons/metabolism , Induced Pluripotent Stem Cells/metabolism , Levodopa/therapeutic use , Levodopa/metabolism , Phenotype , Humans
7.
Front Mol Biosci ; 9: 887678, 2022.
Article En | MEDLINE | ID: mdl-36406277

A colloidal synthesis' proof-of-concept based on the Bligh-Dyer emulsion inversion method was designed for integrating into lipid nanoparticles (LNPs) cell-permeating DNA antisense oligonucleotides (ASOs), also known as GapmeRs (GRs), for mRNA interference. The GR@LNPs were formulated to target brain border-associated macrophages (BAMs) as a central nervous system (CNS) therapy platform for silencing neuroinflammation-related genes. We specifically aim at inhibiting the expression of the gene encoding for lipocalin-type prostaglandin D synthase (L-PGDS), an anti-inflammatory enzyme expressed in BAMs, whose level of expression is altered in neuropsychopathologies such as depression and schizophrenia. The GR@LNPs are expected to demonstrate a bio-orthogonal genetic activity reacting with L-PGDS gene transcripts inside the living system without interfering with other genetic or biochemical circuitries. To facilitate selective BAM phagocytosis and avoid subsidiary absorption by other cells, they were functionalized with a mannosylated lipid as a specific MAN ligand for the mannose receptor presented by the macrophage surface. The GR@LNPs showed a high GR-packing density in a compact multilamellar configuration as structurally characterized by light scattering, zeta potential, and transmission electronic microscopy. As a preliminary biological evaluation of the mannosylated GR@LNP nanovectors into specifically targeted BAMs, we detected in vivo gene interference after brain delivery by intracerebroventricular injection (ICV) in Wistar rats subjected to gene therapy protocol. The results pave the way towards novel gene therapy platforms for advanced treatment of neuroinflammation-related pathologies with ASO@LNP nanovectors.

8.
Int J Mol Sci ; 23(15)2022 Aug 02.
Article En | MEDLINE | ID: mdl-35955716

Parkinson's disease (PD) is characterized by cell loss in the substantia nigra and the presence of alpha-synuclein (α-syn)-containing neuronal Lewy bodies. While α-syn has received major interest in the pathogenesis of PD, the function of beta- and gamma-synucleins (ß-syn and γ-syn, respectively) is not really known. Yet, these proteins are members of the same family and also concentrated in neuronal terminals. The current preclinical study investigated the expression levels of α-, ß-, and γ-synucleins in brainstem regions involved in PD physiopathology. We analyzed synuclein expression in the substantia nigra, raphe nuclei, pedunculopontine nucleus, and locus coeruleus from control and parkinsonian (by MPTP) macaques. MPTP-intoxicated monkeys developed a more or less severe parkinsonian score and were sacrificed after a variable post-MPTP period ranging from 1 to 20 months. The expression of the three synucleins was increased in the substantia nigra after MPTP, and this increase correlates positively, although not very strongly, with cell loss and motor score and not with the time elapsed after intoxication. In the dorsal raphe nucleus, the expression of the three synucleins was also increased, but only α- and γ-Syn are linked to the motor score and associated cell loss. Finally, although no change in synuclein expression was demonstrated in the locus coeruleus after MPTP, we found increased expression levels of γ-Syn, which are only correlated with cell loss in the pedunculopontine nucleus. Altogether, our data suggest that these proteins may play a key role in brainstem regions and mesencephalic tegmentum. Given the involvement of these brain regions in non-motor symptoms of PD, these data also strengthen the relevance of the MPTP macaque model of PD, which exhibits pathological changes beyond nigral DA cell loss and α-synucleinopathy.


Parkinson Disease , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Brain Stem/metabolism , Parkinson Disease/metabolism , Primates , Substantia Nigra/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , gamma-Synuclein/metabolism
9.
Article En | MEDLINE | ID: mdl-35840289

OBJECTIVE: Recently, we reported on a new MDD-like mouse model based on a regionally selective knockdown of astroglial glutamate transporters, GLAST/GLT-1, in infralimbic cortex (IL) which evokes widespread changes in mouse brain associated with the typical alterations found in MDD patients. To further characterize this new MDD-like mouse model, here we examine some transcriptional elements of glutamatergic/GABAergic neurotransmission and neuroplasticity in forebrain regions in the GLT-1 knockdown mice. Furthermore, we assess the acute ketamine effects on these transcriptional processes. MATERIAL AND METHODS: We used a small interfering RNA (siRNA) pool targeting GLT-1 mRNA to disrupt the GLT-1 transcription in mouse IL. Histological assays were performed to examine postsynaptic density protein-95 (PSD95), neuritin (NRN), glutamine acid descarboxilase-65 (GAD65), and GLT-1 mRNA expression in IL and hippocampus. RESULTS: Knockdown of GLT-1 in mouse IL leads to decreased expression of PSD95 and NRN neuroplasticity mRNAs in IL and hippocampus, which was reversed by an acute dose of ketamine antidepressant. Likewise, a single dose of ketamine also increased the mRNA levels of GAD65 and GLT-1 in IL of GLT-1 knockdown mice, reaching the basal values of control mice. CONCLUSIONS: The glutamatergic neuronal hyperactivity and deficits in the GABA system resulting from siRNA-induced astroglial glutamate transporter knockdown in IL can compromise the integrity/plasticity of neurocircuits affected in MDD. Suitable depressive-like animal models to address the neurobiological changes in MDD are an unmet need and the development of the GLAST/GLT-1 knockdown mouse model may represent a better option to understand the rapid-acting antidepressant effects of ketamine.


Astrocytes , Ketamine , Neuronal Plasticity , Amino Acid Transport System X-AG/metabolism , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Astrocytes/metabolism , Depression/genetics , Depression/metabolism , Excitatory Amino Acid Transporter 2/drug effects , Excitatory Amino Acid Transporter 2/genetics , Humans , Ketamine/metabolism , Ketamine/pharmacology , Ketamine/therapeutic use , Mice , Neuronal Plasticity/drug effects , Neuronal Plasticity/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism
10.
STAR Protoc ; 3(2): 101445, 2022 06 17.
Article En | MEDLINE | ID: mdl-35707681

Here, we present an optimized protocol for generating a mouse model overexpressing human α-synuclein in dopamine (DA) neurons driven by an adeno-associated viral (AAV) vector and for the examination of the benefit of an antisense oligonucleotide (ASO)-based therapy on DA neurotransmission under Parkinson's disease (PD)-like conditions. We describe AAV injection, followed by implantation of an osmotic minipump for ASO delivery and a guide cannula for microdialysis to measure DA release. This protocol can be used to evaluate oligonucleotide-based therapies for PD. For complete details on the use and execution of this protocol, please refer to Alarcón-Arís et al. (2020).


Parkinson Disease , Animals , Disease Models, Animal , Dopamine/physiology , Dopaminergic Neurons , Mice , Oligonucleotides , Oligonucleotides, Antisense/therapeutic use , Parkinson Disease/genetics
11.
Nat Metab ; 4(4): 424-434, 2022 04.
Article En | MEDLINE | ID: mdl-35379970

Preparation for motherhood requires a myriad of physiological and behavioural adjustments throughout gestation to provide an adequate environment for proper embryonic development1. Cravings for highly palatable foods are highly prevalent during pregnancy2 and contribute to the maintenance and development of gestational overweight or obesity3. However, the neurobiology underlying the distinct ingestive behaviours that result from craving specific foods remain unknown. Here we show that mice, similarly to humans, experience gestational food craving-like episodes. These episodes are associated with a brain connectivity reorganization that affects key components of the dopaminergic mesolimbic circuitry, which drives motivated appetitive behaviours and facilitates the perception of rewarding stimuli. Pregnancy engages a dynamic modulation of dopaminergic signalling through neurons expressing dopamine D2 receptors in the nucleus accumbens, which directly modulate food craving-like events. Importantly, persistent maternal food craving-like behaviour has long-lasting effects on the offspring, particularly in males, leading to glucose intolerance, increased body weight and increased susceptibility to develop eating disorders and anxiety-like behaviours during adulthood. Our results reveal the cognitively motivated nature of pregnancy food cravings and advocates for moderating emotional eating during gestation to prevent deterioration of the offspring's neuropsychological and metabolic health.


Craving , Eating , Animals , Craving/physiology , Dopamine/metabolism , Female , Food Preferences/psychology , Male , Mice , Obesity/metabolism , Pregnancy , Weight Gain
12.
Rev. psiquiatr. salud ment. (Barc., Ed. impr.) ; 15(2): 94-100, abr.-jun. 2022. ilus, graf
Article En | IBECS | ID: ibc-206812

Objective: Recently, we reported on a new MDD-like mouse model based on a regionally selective knockdown of astroglial glutamate transporters, GLAST/GLT-1, in infralimbic cortex (IL) which evokes widespread changes in mouse brain associated with the typical alterations found in MDD patients. To further characterize this new MDD-like mouse model, here we examine some transcriptional elements of glutamatergic/GABAergic neurotransmission and neuroplasticity in forebrain regions in the GLT-1 knockdown mice. Furthermore, we assess the acute ketamine effects on these transcriptional processes.Material and methods: We used a small interfering RNA (siRNA) pool targeting GLT-1 mRNA to disrupt the GLT-1 transcription in mouse IL. Histological assays were performed to examine postsynaptic density protein-95 (PSD95), neuritin (NRN), glutamine acid descarboxilase-65 (GAD65), and GLT-1 mRNA expression in IL and hippocampus.Results: Knockdown of GLT-1 in mouse IL leads to decreased expression of PSD95 and NRN neuroplasticity mRNAs in IL and hippocampus, which was reversed by an acute dose of ketamine antidepressant. Likewise, a single dose of ketamine also increased the mRNA levels of GAD65 and GLT-1 in IL of GLT-1 knockdown mice, reaching the basal values of control mice.(AU)


Objetivo: Recientemente, informamos sobre un nuevo modelo de ratón de depresión basado en una reducción parcial de la transcripción de los transportadores de glutamato, GLAST/GLT-1, en los astrocitos de la corteza infralímbica (IL), que conduce a cambios generalizados de la función cerebral del ratón, que refleja alteraciones típicas encontradas en pacientes con depresión. Para caracterizar más detalladamente este nuevo modelo de ratón de depresión, aquí examinamos algunos elementos transcripcionales relacionados con la neurotransmisión glutamatérgica/GABAérgica y la neuroplasticidad en regiones corticales y subcorticales de los ratones con niveles reducidos de GLT-1. Además, evaluamos los efectos agudos de la ketamina, antidepresivo de acción rápida, en estos procesos transcripcionales.Material y métodos: Utilizamos ARN de interferencia (siRNA) dirigido al mRNA de GLT-1 para interrumpir su transcripción en la IL de ratón. Se realizaron ensayos histológicos para examinar la expresión de los mRNA de las siguientes proteínas: proteína de densidad postsináptica-95 (PSD95), neuritina (NRN), descarboxilasa de ácido glutámico-65 (GAD65) y GLT-1 en la IL e hipocampo.Resultados: La reducción de la expresión de GLT-1 en IL de ratón conduce a una disminución de la expresión de los mRNA de neuroplasticidad PSD95 y NRN en la IL y el hipocampo, efecto que se revirtió con una única administración del antidepresivo ketamina. Asimismo, una sola dosis de ketamina también aumentó los niveles de los mRNA de GAD65 y GLT-1 en la IL de ratones silenciados para GLT-1, que alcanzaron los valores basales de los ratones control. (AU)


Mice , Depression , Ketamine , Glutamic Acid , Neuronal Plasticity
13.
Transl Psychiatry ; 12(1): 79, 2022 02 24.
Article En | MEDLINE | ID: mdl-35210396

Anxiety and depression affect 35-50% of patients with Parkinson's disease (PD), often precede the onset of motor symptoms, and have a negative impact on their quality of life. Dysfunction of the serotonergic (5-HT) system, which regulates mood and emotional pathways, occurs during the premotor phase of PD and contributes to a variety of non-motor symptoms. Furthermore, α-synuclein (α-Syn) aggregates were identified in raphe nuclei in the early stages of the disease. However, there are very few animal models of PD-related neuropsychiatric disorders. Here, we develop a new mouse model of α-synucleinopathy in the 5-HT system that mimics prominent histopathological and neuropsychiatric features of human PD. We showed that adeno-associated virus (AAV5)-induced overexpression of wild-type human α-Syn (h-α-Syn) in raphe 5-HT neurons triggers progressive accumulation, phosphorylation, and aggregation of h-α-Syn protein in the 5-HT system. Specifically, AAV5-injected mice displayed axonal impairment in the output brain regions of raphe neurons, and deficits in brain-derived neurotrophic factor (BDNF) expression and 5-HT neurotransmission, resulting in a depressive-like phenotype. Intracerebroventricular treatment with an indatraline-conjugated antisense oligonucleotide (IND-ASO) for four weeks induced an effective and safe reduction of h-α-Syn synthesis in 5-HT neurons and its accumulation in the forebrain, alleviating early deficits of 5-HT function and improving the behavioural phenotype. Altogether, our findings show that α-synucleinopathy in 5-HT neurons negatively affects brain circuits that control mood and emotions, resembling the expression of neuropsychiatric symptoms occurring at the onset of PD. Early preservation of 5-HT function by reducing α-Syn synthesis/accumulation may alleviate PD-related depressive symptoms.


Serotonin , alpha-Synuclein , Animals , Disease Models, Animal , Humans , Mice , Neurons/metabolism , Oligonucleotides/metabolism , Oligonucleotides/pharmacology , Phenotype , Prosencephalon/metabolism , Quality of Life , Serotonin/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , alpha-Synuclein/pharmacology
14.
Int J Mol Sci ; 23(3)2022 Feb 04.
Article En | MEDLINE | ID: mdl-35163729

The synuclein family consists of α-, ß-, and γ-Synuclein (α-Syn, ß-Syn, and γ-Syn) expressed in the neurons and concentrated in synaptic terminals. While α-Syn is at the center of interest due to its implication in the pathogenesis of Parkinson's disease (PD) and other synucleinopathies, limited information exists on the other members. The current study aimed at investigating the biological role of γ-Syn controlling the midbrain dopamine (DA) function. We generated two different mouse models with: (i) γ-Syn overexpression induced by an adeno-associated viral vector and (ii) γ-Syn knockdown induced by a ligand-conjugated antisense oligonucleotide, in order to modify the endogenous γ-Syn transcription levels in midbrain DA neurons. The progressive overexpression of γ-Syn decreased DA neurotransmission in the nigrostriatal and mesocortical pathways. In parallel, mice evoked motor deficits in the rotarod and impaired cognitive performance as assessed by novel object recognition, passive avoidance, and Morris water maze tests. Conversely, acute γ-Syn knockdown selectively in DA neurons facilitated forebrain DA neurotransmission. Importantly, modifications in γ-Syn expression did not induce the loss of DA neurons or changes in α-Syn expression. Collectively, our data strongly suggest that DA release/re-uptake processes in the nigrostriatal and mesocortical pathways are partially dependent on substantia nigra pars compacta /ventral tegmental area (SNc/VTA) γ-Syn transcription levels, and are linked to modulation of DA transporter function, similar to α-Syn.


Dopamine , Dopaminergic Neurons , gamma-Synuclein , Animals , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Mice , Substantia Nigra/metabolism , Synaptic Transmission/genetics , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , gamma-Synuclein/genetics , gamma-Synuclein/metabolism
16.
Int J Mol Sci ; 22(16)2021 Aug 12.
Article En | MEDLINE | ID: mdl-34445375

Fast and sustained antidepressant effects of ketamine identified the mammalian target of rapamycin (mTOR) signaling pathway as the main modulator of its antidepressive effects. Thus, mTOR signaling has become integral for the preclinical evaluation of novel compounds to treat depression. However, causality between mTOR and depression has yet to be determined. To address this, we knocked down mTOR expression in mice using an acute intracerebral infusion of small interfering RNAs (siRNA) in the infralimbic (IL) or prelimbic (PrL) cortices of the medial prefrontal cortex (mPFC), and evaluated depressive- and anxious-like behaviors. mTOR knockdown in IL, but not PrL, cortex produced a robust depressive-like phenotype in mice, as assessed in the forced swimming test (FST) and the tail suspension test (TST). This phenotype was associated with significant reductions of mTOR mRNA and protein levels 48 h post-infusion. In parallel, decreased brain-derived neurotrophic factor (BDNF) expression was found bilaterally in both IL and PrL cortices along with a dysregulation of serotonin (5-HT) and glutamate (Glu) release in the dorsal raphe nucleus (DRN). Overall, our results demonstrate causality between mTOR expression in the IL cortex and depressive-like behaviors, but not in anxiety.


Depression/psychology , Prefrontal Cortex/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Depression/genetics , Depression/metabolism , Disease Models, Animal , Dorsal Raphe Nucleus/metabolism , Gene Knockdown Techniques , Glutamic Acid/metabolism , Hindlimb Suspension , Male , Mice , Serotonin/metabolism , Swimming
17.
Int J Mol Sci ; 22(6)2021 Mar 13.
Article En | MEDLINE | ID: mdl-33805843

α-Synuclein (α-Syn) protein is involved in the pathogenesis of Parkinson's disease (PD). Point mutations and multiplications of the α-Syn, which encodes the SNCA gene, are correlated with early-onset PD, therefore the reduction in a-Syn synthesis could be a potential therapy for PD if delivered to the key affected neurons. Several experimental strategies for PD have been developed in recent years using oligonucleotide therapeutics. However, some of them have failed or even caused neuronal toxicity. One limiting step in the success of oligonucleotide-based therapeutics is their delivery to the brain compartment, and once there, to selected neuronal populations. Previously, we developed an indatraline-conjugated antisense oligonucleotide (IND-1233-ASO), that selectively reduces α-Syn synthesis in midbrain monoamine neurons of mice, and nonhuman primates. Here, we extended these observations using a transgenic male mouse strain carrying both A30P and A53T mutant human α-Syn (A30P*A53T*α-Syn). We found that A30P*A53T*α-Syn mice at 4-5 months of age showed 3.5-fold increases in human α-Syn expression in dopamine (DA) and norepinephrine (NE) neurons of the substantia nigra pars compacta (SNc) and locus coeruleus (LC), respectively, compared with mouse α-Syn levels. In parallel, transgenic mice exhibited altered nigrostriatal DA neurotransmission, motor alterations, and an anxiety-like phenotype. Intracerebroventricular IND-1233-ASO administration (100 µg/day, 28 days) prevented the α-Syn synthesis and accumulation in the SNc and LC, and recovered DA neurotransmission, although it did not reverse the behavioral phenotype. Therefore, the present therapeutic strategy based on a conjugated ASO could be used for the selective inhibition of α-Syn expression in PD-vulnerable monoamine neurons, showing the benefit of the optimization of ASO molecules as a disease modifying therapy for PD and related α-synucleinopathies.


Glycoconjugates/genetics , Oligonucleotides, Antisense/administration & dosage , Parkinson Disease/therapy , Point Mutation , alpha-Synuclein/antagonists & inhibitors , alpha-Synuclein/genetics , Amino Acid Substitution , Animals , Corpus Striatum/metabolism , Corpus Striatum/pathology , Disease Models, Animal , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Glycoconjugates/administration & dosage , Glycoconjugates/metabolism , Humans , Indans/administration & dosage , Indans/chemistry , Indans/metabolism , Injections, Intraventricular , Locus Coeruleus/metabolism , Locus Coeruleus/pathology , Male , Mesencephalon/metabolism , Mesencephalon/pathology , Methylamines/administration & dosage , Methylamines/chemistry , Methylamines/metabolism , Mice , Mice, Transgenic , Norepinephrine/metabolism , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Pars Compacta/metabolism , Pars Compacta/pathology , Synaptic Transmission , alpha-Synuclein/metabolism
18.
Pharmacol Ther ; 227: 107873, 2021 11.
Article En | MEDLINE | ID: mdl-33915178

Remarkable advances in understanding the role of RNA in health and disease have expanded considerably in the last decade. RNA is becoming an increasingly important target for therapeutic intervention; therefore, it is critical to develop strategies for therapeutic modulation of RNA function. Oligonucleotides, including antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA mimic (miRNA), and anti-microRNA (antagomir) are perhaps the most direct therapeutic strategies for addressing RNA. Among other mechanisms, most oligonucleotide designs involve the formation of a hybrid with RNA that promotes its degradation by activation of endogenous enzymes such as RNase-H (e.g., ASO) or the RISC complex (e.g. RNA interference - RNAi for siRNA and miRNA). However, the use of oligonucleotides for the treatment of brain disorders is seriously compromised by two main limitations: i) how to deliver oligonucleotides to the brain compartment, avoiding the action of peripheral RNAses? and once there, ii) how to target specific neuronal populations? We review the main molecular pathways in major depressive disorder (MDD) and Parkinson's disease (PD), and discuss the challenges associated with the development of novel oligonucleotide therapeutics. We pay special attention to the use of conjugated ligand-oligonucleotide approach in which the oligonucleotide sequence is covalently bound to monoamine transporter inhibitors (e.g. sertraline, reboxetine, indatraline). This strategy allows their selective accumulation in the monoamine neurons of mice and monkeys after their intranasal or intracerebroventricular administration, evoking preclinical changes predictive of a clinical therapeutic action after knocking-down disease-related genes. In addition, recent advances in oligonucleotide therapeutic clinical trials are also reviewed.


Depressive Disorder, Major , Oligonucleotides , Parkinson Disease , Depressive Disorder, Major/drug therapy , Humans , Oligonucleotides/therapeutic use , Parkinson Disease/drug therapy
19.
EBioMedicine ; 59: 102944, 2020 Sep.
Article En | MEDLINE | ID: mdl-32810825

BACKGROUND: Progressive neuronal death in monoaminergic nuclei and widespread accumulation of α-synuclein are neuropathological hallmarks of Parkinson's disease (PD). Given that α-synuclein may be an early mediator of the pathological cascade that ultimately leads to neurodegeneration, decreased α-synuclein synthesis will abate neurotoxicity if delivered to the key affected neurons. METHODS: We used a non-viral gene therapy based on a new indatraline-conjugated antisense oligonucleotide (IND-ASO) to disrupt the α-synuclein mRNA transcription selectively in monoamine neurons of a PD-like mouse model and elderly nonhuman primates. Molecular, cell biology, histological, neurochemical and behavioral assays were performed. FINDINGS: Intracerebroventricular and intranasal IND-ASO administration for four weeks in a mouse model with AAV-mediated wild-type human α-synuclein overexpression in dopamine neurons prevented the synthesis and accumulation of α-synuclein in the connected brain regions, improving dopamine neurotransmission. Likewise, the four-week IND-ASO treatment led to decreased levels of endogenous α-synuclein protein in the midbrain monoamine nuclei of nonhuman primates, which are affected early in PD. CONCLUSIONS: The inhibition of α-synuclein production in dopamine neurons and its accumulation in cortical/striatal projection areas may alleviate the early deficits of dopamine function, showing the high translational value of antisense oligonucleotides as a disease modifying therapy for PD and related synucleinopathies. FUNDING: Grants SAF2016-75797-R, RTC-2014-2812-1 and RTC-2015-3309-1, Ministry of Economy and Competitiveness (MINECO) and European Regional Development Fund (ERDF), UE; Grant ID 9238, Michael J. Fox Foundation; and Centres for Networked Biomedical Research on Mental Health (CIBERSAM), and on Neurodegenerative Diseases (CIBERNED).


Neurons/metabolism , Oligonucleotides, Antisense/administration & dosage , Parkinson Disease/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Animals , Behavior, Animal , Disease Models, Animal , Female , Gene Expression , Gene Transfer Techniques , Genetic Therapy , Genetic Vectors/genetics , Haplorhini , Humans , Immunohistochemistry , Male , Mice , Morris Water Maze Test , Parkinson Disease/diagnosis , Parkinson Disease/etiology , Parkinson Disease/therapy , Synaptic Transmission , Treatment Outcome
20.
Neuropharmacology ; 166: 107914, 2020 04.
Article En | MEDLINE | ID: mdl-32045742

Major depressive disorder (MDD) is a leading cause of disability worldwide, with a poorly known pathophysiology and sub-optimal treatment, based on serotonin (5-hydroxytryptamine, 5-HT) reuptake inhibitors. We review existing theories on MDD, paying special attention to the role played by the ventral anterior cingulate cortex (vACC) or its rodent equivalent, infralimbic cortex (IL), which tightly control the activity of brainstem monoamine neurons (including raphe 5-HT neurons) via descending afferents. Further, astrocytes regulate excitatory synapse activity via glutamate reuptake through astrocytic transporters EAAT1 and EAAT2 (GLAST and GLT-1 in rodents), and alterations of astrocyte number/function have been reported in MDD patients and suicide victims. We recently assessed the impact of reducing GLAST/GLT-1 function in IL on emotional behavior and serotonergic function in rodents. The acute pharmacological blockade of GLT-1 with dihydrokainate (DHK) in rat IL evoked an antidepressant-like effect mediated by local AMPA-R activation and a subsequent enhancement of serotonergic function. No effects were produced by DHK microinfusion in prelimbic cortex (PrL). In the second model, a moderate small interfering RNAs (siRNA)-induced reduction of GLAST and GLT-1 expression in mouse IL markedly increased local glutamatergic neurotransmission and evoked a depressive-like phenotype (reversed by citalopram and ketamine), and reduced serotonergic function and BDNF expression in cortical/hippocampal areas. As for DHK, siRNA microinfusion in PrL did not evoke behavioral/neurochemical effects. Overall, both studies support a critical role of the astrocyte-neuron communication in the control of excitatory neurotransmission in IL, and subsequently, on emotional behavior, via the downstream associated changes on serotonergic function.


Astrocytes/metabolism , Depressive Disorder, Major/metabolism , Emotions/physiology , Glutamic Acid/metabolism , Selective Serotonin Reuptake Inhibitors/metabolism , Serotonergic Neurons/metabolism , Animals , Astrocytes/drug effects , Astrocytes/pathology , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/psychology , Emotions/drug effects , Excitatory Amino Acid Transporter 1/antagonists & inhibitors , Excitatory Amino Acid Transporter 1/metabolism , Excitatory Amino Acid Transporter 2/antagonists & inhibitors , Excitatory Amino Acid Transporter 2/metabolism , Humans , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Serotonergic Neurons/drug effects , Serotonergic Neurons/pathology , Selective Serotonin Reuptake Inhibitors/pharmacology , Selective Serotonin Reuptake Inhibitors/therapeutic use , Suicide/psychology
...