Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
J Alzheimers Dis ; 97(4): 1479-1502, 2024.
Article in English | MEDLINE | ID: mdl-38306032

ABSTRACT

Cerebral amyloid angiopathy (CAA) is characterized by amyloid-ß aggregation in the media and adventitia of the leptomeningeal and cortical blood vessels. CAA is one of the strongest vascular contributors to Alzheimer's disease (AD). It frequently co-occurs in AD patients, but the relationship between CAA and AD is incompletely understood. CAA may drive AD risk through damage to the neurovascular unit and accelerate parenchymal amyloid and tau deposition. Conversely, early AD may also drive CAA through cerebrovascular remodeling that impairs blood vessels from clearing amyloid-ß. Sole reliance on autopsy examination to study CAA limits researchers' ability to investigate CAA's natural disease course and the effect of CAA on cognitive decline. Neuroimaging allows for in vivo assessment of brain function and structure and can be leveraged to investigate CAA staging and explore its associations with AD. In this review, we will discuss neuroimaging modalities that can be used to investigate markers associated with CAA that may impact AD vulnerability including hemorrhages and microbleeds, blood-brain barrier permeability disruption, reduced cerebral blood flow, amyloid and tau accumulation, white matter tract disruption, reduced cerebrovascular reactivity, and lowered brain glucose metabolism. We present possible areas for research inquiry to advance biomarker discovery and improve diagnostics.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy , Humans , Alzheimer Disease/metabolism , Cerebral Amyloid Angiopathy/complications , Cerebral Amyloid Angiopathy/diagnostic imaging , Cerebral Amyloid Angiopathy/metabolism , Brain/metabolism , Amyloid beta-Peptides/metabolism , Neuroimaging , Amyloid/metabolism , Amyloidogenic Proteins/metabolism
2.
bioRxiv ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38293052

ABSTRACT

The blood-brain barrier (BBB) plays a pivotal role in protecting the central nervous system (CNS), shielding it from potential harmful entities. A natural decline of BBB function with aging has been reported in both animal and human studies, which may contribute to cognitive decline and neurodegenerative disorders. Limited data also suggest that being female may be associated with protective effects on BBB function. Here we investigated age and sex-dependent trajectories of perfusion and BBB water exchange rate (kw) across the lifespan in 186 cognitively normal participants spanning the ages of 8 to 92 years old, using a non-invasive diffusion prepared pseudo-continuous arterial spin labeling (DP-pCASL) MRI technique. We found that the pattern of BBB kw decline with aging varies across brain regions. Moreover, results from our DP-pCASL technique revealed a remarkable decline in BBB kw beginning in the early 60s, which was more pronounced in males. In addition, we observed sex differences in parietal and temporal regions. Our findings provide in vivo results demonstrating sex differences in the decline of BBB function with aging, which may serve as a foundation for future investigations into perfusion and BBB function in neurodegenerative and other brain disorders.

3.
medRxiv ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38076972

ABSTRACT

Exposure to ambient air pollution, especially particulate matter with aerodynamic diameter <2.5 µm (PM2.5) and nitrogen dioxide (NO2), are environmental risk factors for Alzheimer's disease and related dementia. The medial temporal lobe (MTL) is an important brain region subserving episodic memory that atrophies with age, during the Alzheimer's disease continuum, and is vulnerable to the effects of cerebrovascular disease. Despite the importance of air pollution it is unclear whether exposure leads to atrophy of the MTL and by what pathways. Here we conducted a longitudinal study examining associations between ambient air pollution exposure and MTL atrophy and whether putative air pollution exposure effects resembled Alzheimer's disease-related neurodegeneration or cerebrovascular disease-related neurodegeneration. Participants included older women (n = 627; aged 71-87) who underwent two structural brain MRI scans (MRI-1: 2005-6; MRI-2: 2009-10) as part of the Women's Health Initiative Memory Study of Magnetic Resonance Imaging. Regionalized universal kriging was used to estimate annual concentrations of PM2.5 and NO2 at residential locations aggregated to 3-year averages prior to MRI-1. The outcome was 5-year standardized change in MTL volumes. Mediators included voxel-based MRI measures of the spatial pattern of neurodegeneration of Alzheimer's disease (Alzheimer's disease pattern similarity scores [AD-PS]) and whole-brain white matter small-vessel ischemic disease (WM-SVID) volume as a proxy of global cerebrovascular damage. Structural equation models were constructed to examine whether the associations between exposures with MTL atrophy were mediated by the initial level or concurrent change in AD-PS score or WM-SVID while adjusting for sociodemographic, lifestyle, clinical characteristics, and intracranial volume. Living in locations with higher PM2.5 (per interquartile range [IQR]=3.17µg/m3) or NO2 (per IQR=6.63ppb) was associated with greater MTL atrophy (ßPM2.5 = -0.29, 95% confidence interval [CI]=[-0.41,-0.18]; ßNO2 =-0.12, 95%CI=[-0.23,-0.02]). Greater PM2.5 was associated with larger increases in AD-PS (ßPM2.5 = 0.23, 95%CI=[0.12,0.33]) over time, which partially mediated associations with MTL atrophy (indirect effect= -0.10; 95%CI=[-0.15, -0.05]), explaining approximately 32% of the total effect. NO2 was positively associated with AD-PS at MRI-1 (ßNO2=0.13, 95%CI=[0.03,0.24]), which partially mediated the association with MTL atrophy (indirect effect= -0.01, 95% CI=[-0.03,-0.001]). Global WM-SVID at MRI-1 or concurrent change were not significant mediators between exposures and MTL atrophy. Findings support the mediating role of Alzheimer's disease-related neurodegeneration contributing to MTL atrophy associated with late-life exposures to air pollutants. Alzheimer's disease-related neurodegeneration only partially explained associations between exposure and MTL atrophy suggesting the role of multiple neuropathological processes underlying air pollution neurotoxicity on brain aging.

4.
medRxiv ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38077091

ABSTRACT

Background: Ambient air pollution exposures increase risk for Alzheimer's disease (AD) and related dementias, possibly due to structural changes in the medial temporal lobe (MTL). However, existing MRI studies examining exposure effects on the MTL were cross-sectional and focused on the hippocampus, yielding mixed results. Method: To determine whether air pollution exposures were associated with MTL atrophy over time, we conducted a longitudinal study including 653 cognitively unimpaired community-dwelling older women from the Women's Health Initiative Memory Study with two MRI brain scans (MRI-1: 2005-6; MRI-2: 2009-10; Mage at MRI-1=77.3±3.5years). Using regionalized universal kriging models, exposures at residential locations were estimated as 3-year annual averages of fine particulate matter (PM2.5) and nitrogen dioxide (NO2) prior to MRI-1. Bilateral gray matter volumes of the hippocampus, amygdala, parahippocampal gyrus (PHG), and entorhinal cortex (ERC) were summed to operationalize the MTL. We used linear regressions to estimate exposure effects on 5-year volume changes in the MTL and its subregions, adjusting for intracranial volume, sociodemographic, lifestyle, and clinical characteristics. Results: On average, MTL volume decreased by 0.53±1.00cm3 over 5 years. For each interquartile increase of PM2.5 (3.26µg/m3) and NO2 (6.77ppb), adjusted MTL volume had greater shrinkage by 0.32cm3 (95%CI=[-0.43, -0.21]) and 0.12cm3 (95%CI=[-0.22, -0.01]), respectively. The exposure effects did not differ by APOE ε4 genotype, sociodemographic, and cardiovascular risk factors, and remained among women with low-level PM2.5 exposure. Greater PHG atrophy was associated with higher PM2.5 (b=-0.24, 95%CI=[-0.29, -0.19]) and NO2 exposures (b=-0.09, 95%CI=[-0.14, -0.04]). Higher exposure to PM2.5 but not NO2 was also associated with greater ERC atrophy. Exposures were not associated with amygdala or hippocampal atrophy. Conclusion: In summary, higher late-life PM2.5 and NO2 exposures were associated with greater MTL atrophy over time in cognitively unimpaired older women. The PHG and ERC - the MTL cortical subregions where AD neuropathologies likely begin, may be preferentially vulnerable to air pollution neurotoxicity.

5.
Neurobiol Aging ; 132: 1-12, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37708739

ABSTRACT

In older adults with abnormal levels of Alzheimer's disease neuropathology, lower cerebrospinal fluid (CSF) vascular endothelial growth factor (VEGF) levels are associated with lower [¹8F]-fluorodeoxyglucose positron emission tomography (FDG-PET) signal, but whether this association is (1) specific to VEGF or broadly driven by vascular inflammation, or (2) modified by vascular risk (e.g., white matter hyperintensities [WMHs]) remains unknown. To address this and build upon our past work, we evaluated whether 5 CSF vascular inflammation biomarkers (vascular cell adhesion molecule 1, VEGF, C-reactive protein, fibrinogen, and von Willebrand factor)-previously associated with CSF amyloid levels-were related to FDG-PET signal and whether WMH volume modified these associations in 158 Alzheimer's Disease Neuroimaging Initiative participants (55-90 years old, 39 cognitively normal, 80 mild cognitive impairment, 39 Alzheimer's disease). We defined regions both by cortical boundary and by the 3 major vascular territories: anterior, middle, and posterior cerebral arteries. We found that WMH volume had interactive effects with CSF biomarkers (VEGF and C-reactive protein) on FDG-PET throughout the cortex in both vascular territories and conventionally defined regions of interest.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , White Matter , Humans , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Fluorodeoxyglucose F18/metabolism , Vascular Endothelial Growth Factor A/metabolism , White Matter/pathology , C-Reactive Protein , Brain/metabolism , Positron-Emission Tomography/methods , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/metabolism , Inflammation/metabolism , Amyloid beta-Peptides/metabolism , Magnetic Resonance Imaging
6.
J Lipid Res ; 64(6): 100354, 2023 06.
Article in English | MEDLINE | ID: mdl-36958720

ABSTRACT

Apolipoprotein ε allele 4 (APOE4) influences the metabolism of polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA). The entorhinal cortex (EC) in the brain is affected early in Alzheimer's disease and is rich in DHA. The purpose of this study is to identify the effect of APOE4 and DHA lipid species on the EC. Plasma and cerebrospinal fluid (CSF) lipidomic measurements were obtained from the DHA Brain Delivery Pilot, a randomized clinical trial of DHA supplementation (n = 10) versus placebo (n = 12) for six months in nondemented older adults stratified by APOE4 status. Wild-type C57B6/J mice were fed a high or low DHA diet for 6 months followed by plasma and brain lipidomic analysis. Levels of phosphatidylcholine DHA (PC 38:6) and cholesterol ester DHA (CE 22:6) had the largest increases in CSF following supplementation (P < 0.001). DHA within triglyceride (TG) lipids in CSF strongly correlated with corresponding plasma TG lipids, and differed by APOE4, with carriers having a lower increase than noncarriers. Changes in plasma PC DHA had the strongest association with changes in EC thickness in millimeters, independent of APOE4 status (P = 0.007). In mice, a high DHA diet increased PUFAs within brain lipids. Our findings demonstrate an exchange of DHA at the CSF-blood barrier and into the brain within all lipid species with APOE having the strongest effect on DHA-containing TGs. The correlation of PC DHA with EC suggests a functional consequence of DHA accretion in high density lipoprotein for the brain.


Subject(s)
Apolipoprotein E4 , Docosahexaenoic Acids , Animals , Mice , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Diet , Dietary Supplements , Docosahexaenoic Acids/metabolism , Entorhinal Cortex/metabolism , Fatty Acids, Unsaturated
8.
Mol Psychiatry ; 28(4): 1813-1826, 2023 04.
Article in English | MEDLINE | ID: mdl-36127429

ABSTRACT

Mitochondrial DNA variants have previously associated with disease, but the underlying mechanisms have been largely elusive. Here, we report that mitochondrial SNP rs2853499 associated with Alzheimer's disease (AD), neuroimaging, and transcriptomics. We mapped rs2853499 to a novel mitochondrial small open reading frame called SHMOOSE with microprotein encoding potential. Indeed, we detected two unique SHMOOSE-derived peptide fragments in mitochondria by using mass spectrometry-the first unique mass spectrometry-based detection of a mitochondrial-encoded microprotein to date. Furthermore, cerebrospinal fluid (CSF) SHMOOSE levels in humans correlated with age, CSF tau, and brain white matter volume. We followed up on these genetic and biochemical findings by carrying out a series of functional experiments. SHMOOSE acted on the brain following intracerebroventricular administration, differentiated mitochondrial gene expression in multiple models, localized to mitochondria, bound the inner mitochondrial membrane protein mitofilin, and boosted mitochondrial oxygen consumption. Altogether, SHMOOSE has vast implications for the fields of neurobiology, Alzheimer's disease, and microproteins.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism , Peptide Fragments/metabolism , DNA, Mitochondrial/genetics , Biomarkers/cerebrospinal fluid , Micropeptides
9.
J Alzheimers Dis ; 90(2): 905-915, 2022.
Article in English | MEDLINE | ID: mdl-36189588

ABSTRACT

BACKGROUND: Despite tremendous advancements in the field, our understanding of mild cognitive impairment (MCI) and Alzheimer's disease (AD) among Mexican Americans remains limited. OBJECTIVE: The aim of this study was to characterize MCI and dementia among Mexican Americans and non-Hispanic whites. METHODS: Baseline data were analyzed from n = 1,705 (n = 890 Mexican American; n = 815 non-Hispanic white) participants enrolled in the Health and Aging Brain Study-Health Disparities (HABS-HD). RESULTS: Among Mexican Americans, age (OR = 1.07), depression (OR = 1.09), and MRI-based neurodegeneration (OR = 0.01) were associated with dementia, but none of these factors were associated with MCI. Among non-Hispanic whites, male gender (OR = 0.33), neighborhood deprivation (OR = 1.34), depression (OR = 1.09), and MRI-based neurodegeneration (OR = 0.03) were associated with MCI, while depression (OR = 1.09) and APOEɛ4 genotype (OR = 4.38) were associated with dementia. CONCLUSION: Findings from this study revealed that the demographic, clinical, sociocultural and biomarker characteristics of MCI and dementia are different among Mexican Americans as compared to non-Hispanic whites.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Male , Humans , Mexican Americans/psychology , Independent Living , White People , Risk Factors , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics
10.
Alzheimers Dement (Amst) ; 14(1): e12263, 2022.
Article in English | MEDLINE | ID: mdl-35229016

ABSTRACT

INTRODUCTION: Among vascular risk factors we hypothesized that an increased prevalence of diabetes in Hispanics would be associated with greater white matter hyperintensity (WMH) volume, which may contribute to cognitive decline. METHODS: A total of 1318 participants (60% female; 49% Hispanic, 51% non-Hispanic White; age 66.2 ± 8.9 years) underwent clinical evaluation and brain magnetic resonance imaging (MRI). WMH volume associations were assessed with age, sex, and ethnicity and then with vascular risk factors in a selective regression model. RESULTS: WMH volume was greater with older age (P < .0001), Hispanic ethnicity (P = .02), and female sex (P = .049). WMH volume was best predicted by age, diastolic blood pressure, hypertension history, hemoglobin A1c (HbA1c), white blood cell count, and hematocrit (P < .01 for all). Elevated HbA1c was associated with greater WMH volume among Hispanics (parameter estimate 0.08 ± 0.02, P < .0001) but not non-Hispanic Whites (parameter estimate 0.02 ± 0.04, P = .5). DISCUSSION: WMH volume was greater in Hispanics, which may be partly explained by increased WMH volume related to elevated HbA1c among Hispanics but not non-Hispanic Whites.

11.
J Alzheimers Dis ; 86(3): 1243-1254, 2022.
Article in English | MEDLINE | ID: mdl-35180110

ABSTRACT

BACKGROUND: Hispanics are expected to experience the largest increase in Alzheimer's disease (AD) and AD related dementias over the next several decades. However, few studies have examined biomarkers of AD among Mexican Americans, the largest segment of the U.S. Hispanic population. OBJECTIVE: We sought to examine proteomic profiles of an MRI-based marker of neurodegeneration from the AT(N) framework among a multi-ethnic, community-dwelling cohort. METHODS: Community-dwelling Mexican Americans and non-Hispanic white adults and elders were recruited. All participants underwent comprehensive assessments including an interview, functional exam, clinical labs, informant interview, neuropsychological testing, and 3T MRI of the brain. A neurodegeneration MRI meta-ROI biomarker for the AT(N) framework was calculated. RESULTS: Data was examined from n = 1,291 participants. Proteomic profiles were highly accurate for detecting neurodegeneration (i.e., N+) among both Mexican Americans (AUC = 1.0) and non-Hispanic whites (AUC = 0.98). The proteomic profile of N + was different between ethnic groups. Further analyses revealed that the proteomic profiles of N + varied by diagnostic status (control, MCI, dementia) and ethnicity (Mexican American versus non-Hispanic whites) though diagnostic accuracy was high for all classifications. CONCLUSION: A proteomic profile of neurodegeneration has tremendous value and point towards novel diagnostic and intervention opportunities. The current findings demonstrate that the underlying biological factors associated with neurodegeneration are different between Mexican Americans versus non-Hispanic whites as well as at different levels of disease progression.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Aged , Alzheimer Disease/diagnosis , Biomarkers , Cognitive Dysfunction/diagnosis , Humans , Mexican Americans , Neuropsychological Tests , Proteomics
12.
Alzheimers Dement (Amst) ; 14(1): e12267, 2022.
Article in English | MEDLINE | ID: mdl-35155729

ABSTRACT

INTRODUCTION: We sought to examine a magnetic resonance imaging (MRI)-based marker of neurodegeneration from the AT(N) (amyloid/tau/neurodegeneration) framework among a multi-ethnic, community-dwelling cohort. METHODS: Community-dwelling Mexican Americans and non-Hispanic White adults and elders were recruited. All participants underwent comprehensive assessments including an interview, functional exam, clinical labs, informant interview, neuropsychological testing and 3T MRI of the brain. A neurodegeneration MRI meta-region of interest (ROI) biomarker for the AT(N) framework was calculated. RESULTS: Data were examined from n = 1305 participants. Mexican Americans experienced N at significantly younger ages. The N biomarker was significantly associated with cognitive outcomes. N was significantly impacted by cardiovascular factors (e.g., total cholesterol, low-density lipoprotein) among non-Hispanic Whites whereas diabetes (glucose, HbA1c, duration of diabetes) and sociocultural (household income, acculturation) factors were strongly associated with N among Mexican Americans. DISCUSSION: The prevalence, progression, timing, and sequence of the AT(N) biomarkers must be examined across diverse populations.

13.
Hum Brain Mapp ; 43(1): 234-243, 2022 01.
Article in English | MEDLINE | ID: mdl-33067842

ABSTRACT

As stroke mortality rates decrease, there has been a surge of effort to study poststroke dementia (PSD) to improve long-term quality of life for stroke survivors. Hippocampal volume may be an important neuroimaging biomarker in poststroke dementia, as it has been associated with many other forms of dementia. However, studying hippocampal volume using MRI requires hippocampal segmentation. Advances in automated segmentation methods have allowed for studying the hippocampus on a large scale, which is important for robust results in the heterogeneous stroke population. However, most of these automated methods use a single atlas-based approach and may fail in the presence of severe structural abnormalities common in stroke. Hippodeep, a new convolutional neural network-based hippocampal segmentation method, does not rely solely on a single atlas-based approach and thus may be better suited for stroke populations. Here, we compared quality control and the accuracy of segmentations generated by Hippodeep and two well-accepted hippocampal segmentation methods on stroke MRIs (FreeSurfer 6.0 whole hippocampus and FreeSurfer 6.0 sum of hippocampal subfields). Quality control was performed using a stringent protocol for visual inspection of the segmentations, and accuracy was measured as volumetric correlation with manual segmentations. Hippodeep performed significantly better than both FreeSurfer methods in terms of quality control. All three automated segmentation methods had good correlation with manual segmentations and no one method was significantly more correlated than the others. Overall, this study suggests that both Hippodeep and FreeSurfer may be useful for hippocampal segmentation in stroke rehabilitation research, but Hippodeep may be more robust to stroke lesion anatomy.


Subject(s)
Hippocampus/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Neuroimaging/methods , Stroke/diagnostic imaging , Datasets as Topic , Hippocampus/pathology , Humans , Image Processing, Computer-Assisted/standards , Magnetic Resonance Imaging/standards , Neuroimaging/standards , Quality Control , Stroke/pathology
14.
J Gerontol A Biol Sci Med Sci ; 77(5): 977-985, 2022 05 05.
Article in English | MEDLINE | ID: mdl-34383042

ABSTRACT

BACKGROUND: Whether racial/ethnic disparities in Alzheimer's disease (AD) risk may be explained by ambient fine particles (PM2.5) has not been studied. METHOD: We conducted a prospective, population-based study on a cohort of Black (n = 481) and White (n = 6 004) older women (aged 65-79) without dementia at enrollment (1995-1998). Cox models accounting for competing risk were used to estimate the hazard ratio (HR) for racial/ethnic disparities in AD (1996-2010) defined by Diagnostic and Statistical Manual of Mental Disorders, 4th edition and the association with time-varying annual average PM2.5 (1999-2010) estimated by spatiotemporal model. RESULTS: Over an average follow-up of 8.3 (±3.5) years with 158 incident cases (21 in Black women), the racial disparities in AD risk (range of adjusted HRBlack women = 1.85-2.41) observed in various models could not be explained by geographic region, age, socioeconomic characteristics, lifestyle factors, cardiovascular risk factors, and hormone therapy assignment. Estimated PM2.5 exposure was higher in Black (14.38 ± 2.21 µg/m3) than in White (12.55 ± 2.76 µg/m3) women, and further adjustment for the association between PM2.5 and AD (adjusted HRPM2.5 = 1.18-1.28) slightly reduced the racial disparities by 2%-6% (HRBlack women = 1.81-2.26). The observed association between PM2.5 and AD risk was ~2 times greater in Black (HRPM2.5 = 2.10-2.60) than in White (HRPM2.5 = 1.07-1.15) women (range of interaction ps: <.01-.01). We found similar results after further adjusting for social engagement (social strain, social support, social activity, living alone), stressful life events, Women's Health Initiative's clinic sites, and neighborhood socioeconomic characteristics. CONCLUSIONS: PM2.5 may contribute to racial/ethnic disparities in AD risk and its associated increase in AD risk was stronger among Black women.


Subject(s)
Air Pollutants , Air Pollution , Alzheimer Disease , Aged , Air Pollutants/adverse effects , Air Pollutants/analysis , Alzheimer Disease/chemically induced , Alzheimer Disease/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Female , Humans , Particulate Matter/adverse effects , Particulate Matter/analysis , Prospective Studies
15.
Alzheimers Dement ; 18(2): 240-250, 2022 02.
Article in English | MEDLINE | ID: mdl-34310015

ABSTRACT

INTRODUCTION: No large-scale characterizations of neurofilament light chain (NfL) have been conducted in diverse populations. METHODS: Baseline data were analyzed among n = 890 Mexican Americans and n = 813 non-Hispanic Whites from the multi-ethnic Health & Aging Brain among Latino Elders (HABLE) study. Plasma NfL was measured on the Simoa platform. RESULTS: In unadjusted models, NfL was significantly associated with age (P < .001), hypertension (P  < .001), dyslipidemia (P = .02), and diabetes (P  < .001). Covarying for age and sex, NfL was associated with neurodegeneration (P  < .001) and global amyloid burden levels (P = .02) in a subset with available data. NfL levels were significantly associated with diagnostic groups (Normal Cognition [NC], mild cognitive impairment [MCI], Dementia; P  < .001); however, there was no cut-score that yielded acceptable diagnostic accuracy. NfL levels produced a sensitivity of 0.60 and specificity of 0.78 with negative predictive value of 89% for detecting amyloid positivity. DISCUSSION: Plasma NfL levels are significantly impacted by age and medical co-morbidities that are common among older adults, which complicate its utility as a diagnostic biomarker.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Aged , Aging , Alzheimer Disease/diagnosis , Biomarkers , Brain , Cognitive Dysfunction/diagnosis , Humans , Independent Living , Mexican Americans
16.
Alzheimers Dement ; 18(3): 478-497, 2022 03.
Article in English | MEDLINE | ID: mdl-34647685

ABSTRACT

Medications for type 2 diabetes (T2DM) offer a promising path for discovery and development of effective interventions for dementia syndromes. A common feature of dementia syndromes is an energy failure due to reduced energy supply to neurons and is associated with synaptic loss and results in cognitive decline and behavioral changes. Among diabetes medications, glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) promote protective effects on vascular, microglial, and neuronal functions. In this review, we present evidence from animal models, imaging studies, and clinical trials that support developing GLP-1 RAs for dementia syndromes. The review examines how changes in brain energy metabolism differ in conditions of insulin resistance and T2DM from dementia and underscores the challenges that arise from the heterogeneity of dementia syndromes. The development of GLP-1 RAs as dementia therapies requires a deeper understanding of the regional changes in brain energy homeostasis guided by novel imaging biomarkers.


Subject(s)
Dementia , Diabetes Mellitus, Type 2 , Animals , Brain/metabolism , Dementia/drug therapy , Dementia/metabolism , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/therapeutic use , Humans , Hypoglycemic Agents/therapeutic use , Syndrome
17.
Alzheimers Dement ; 18(1): 77-87, 2022 01.
Article in English | MEDLINE | ID: mdl-34057802

ABSTRACT

INTRODUCTION: Representation of Mexican Americans in Alzheimer's disease (AD) clinical research has been extremely poor. METHODS: Data were examined from the ongoing community-based, multi-ethnic Health & Aging Brain among Latino Elders (HABLE) study. Participants underwent functional exams, clinical labs, neuropsychological testing, and 3T magnetic resonance imaging of the brain. Fasting proteomic markers were examined for predicting mild cognitive impairment (MCI) and AD using support vector machine models. RESULTS: Data were examined from n = 1649 participants (Mexican American n = 866; non-Hispanic White n = 783). Proteomic profiles were highly accurate in detecting MCI (area under the curve [AUC] = 0.91) and dementia (AUC = 0.95). The proteomic profiles varied significantly between ethnic groups and disease state. Negative predictive value was excellent for ruling out MCI and dementia across ethnic groups. DISCUSSION: A blood-based screening tool can serve as a method for increasing access to state-of-the-art AD clinical research by bridging between community-based and clinic-based settings.


Subject(s)
Alzheimer Disease/blood , Alzheimer Disease/diagnosis , Cognitive Dysfunction/diagnosis , Independent Living , Mass Screening , Mexican Americans/statistics & numerical data , White People/statistics & numerical data , Aged , Alzheimer Disease/ethnology , Biomarkers/blood , Cognitive Dysfunction/blood , Female , Humans , Male , Neuropsychological Tests , Patient Selection , Proteomics
18.
Alzheimers Dement (Amst) ; 13(1): e12236, 2021.
Article in English | MEDLINE | ID: mdl-34692977

ABSTRACT

BACKGROUND: The current project sought to evaluate the impact that white matter hyperintensities (WMH) have on executive function in cognitively normal Mexican Americans, an underserved population with onset and more rapid progression of dementia. METHODS: Data from 515 participants (360 female) enrolled in the Health and Aging Brain Study: Health Disparities project were analyzed. Participants underwent clinical evaluation, cognitive testing, and a brain MRI. Linear regression was used to predict the effect of total WMH volume on cognitive test scores. Age, sex, and education were entered as covariates. RESULTS: Regression analysis showed that WMH volume significantly predicted executive function. WMH also predicted global cognition and attention scores, although not significantly after adjusting for age. CONCLUSION: In this sample of cognitively normal Mexican Americans, we found that WMH volume was associated with lower scores in a measure of executive function, after accounting for age, sex, and education.

19.
Alzheimers Dement (Amst) ; 13(1): e12202, 2021.
Article in English | MEDLINE | ID: mdl-34189247

ABSTRACT

INTRODUCTION: Mexican Americans remain severely underrepresented in Alzheimer's disease (AD) research. The Health & Aging Brain among Latino Elders (HABLE) study was created to fill important gaps in the existing literature. METHODS: Community-dwelling Mexican Americans and non-Hispanic White adults and elders (age 50 and above) were recruited. All participants underwent comprehensive assessments including an interview, functional exam, clinical labs, informant interview, neuropsychological testing, and 3T magnetic resonance imaging (MRI) of the brain. Amyloid and tau positron emission tomography (PET) scans were added at visit 2. Blood samples were stored in the Biorepository. RESULTS: Data was examined from n = 1705 participants. Significant group differences were found in medical, demographic, and sociocultural factors. Cerebral amyloid and neurodegeneration imaging markers were significantly different between Mexican Americans and non-Hispanic Whites. DISCUSSION: The current data provide strong support for continued investigations that examine the risk factors for and biomarkers of AD among diverse populations.

20.
Neurobiol Aging ; 105: 241-251, 2021 09.
Article in English | MEDLINE | ID: mdl-34126466

ABSTRACT

Vascular endothelial growth factor (VEGF) is a complex signaling protein that supports vascular and neuronal function. Alzheimer's disease (AD) -neuropathological hallmarks interfere with VEGF signaling and modify previously detected positive associations between cerebral spinal fluid (CSF) VEGF and cognition and hippocampal volume. However, it remains unknown 1) whether regional relationships between VEGF and glucose metabolism and cortical thinning exist, and 2) whether AD-neuropathological hallmarks (CSF Aß, t-tau, p-tau) also modify these relationships. We addressed this in 310 Alzheimer's Disease Neuroimaging Initiative (ADNI) participants (92 cognitively normal, 149 mild cognitive impairment, 69 AD; 215 CSF Aß+, 95 CSF Aß-) with regional cortical thickness and cognition measurements and 158 participants with FDG-PET. In Aß + participants (CSF Aß42 ≤ 192 pg/mL), higher CSF VEGF levels were associated with greater FDG-PET signal in the inferior parietal, and middle and inferior temporal cortices. Abnormal CSF amyloid and tau levels strengthened the positive association between VEGF and regional FDG-PET indices. VEGF also had both direct associations with semantic memory, as well as indirect associations mediated by regional FDG-PET signal to cognition.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/psychology , Cognition , Executive Function , Vascular Endothelial Growth Factor A/cerebrospinal fluid , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Cerebral Cortex/pathology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Positron-Emission Tomography , tau Proteins/cerebrospinal fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...