Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
J Struct Biol X ; 9: 100101, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38883399

ABSTRACT

Physical properties of biological membranes directly or indirectly govern biological processes. Yet, the interplay between membrane and integral membrane proteins is difficult to assess due to reciprocal effects between membrane proteins, individual lipids, and membrane architecture. Using solid-state NMR (SSNMR) we previously showed that KirBac1.1, a bacterial Inward-Rectifier K+ channel, nucleates bilayer ordering and microdomain formation through tethering anionic lipids. Conversely, these lipids cooperatively bind cationic residues to activate the channel and initiate K+ flux. The mechanistic details governing the relationship between cooperative lipid loading and bilayer ordering are, however, unknown. To investigate, we generated KirBac1.1 samples with different concentrations of 13C-lableded phosphatidyl glycerol (PG) lipids and acquired a full suite of SSNMR 1D temperature series experiments using the ordered all-trans (AT) and disordered trans-gauche (TG) acyl conformations as markers of bilayer dynamics. We observed increased AT ordered signal, decreased TG disordered signal, and increased bilayer melting temperature with increased PG concentration. Further, we identified cooperativity between ordering and direct binding of PG lipids, indicating KirBac1.1-driven bilayer ordering and microdomain formation is a classically cooperative Hill-type process driven by and predicated upon direct binding of PG lipids. Our results provide unique mechanistic insight into how proteins and lipids in tandem contribute to supramolecular bilayer heterogeneity in the lipid membrane.

2.
Nat Microbiol ; 9(7): 1778-1791, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38783023

ABSTRACT

Antimicrobial resistance is a leading cause of mortality, calling for the development of new antibiotics. The fungal antibiotic plectasin is a eukaryotic host defence peptide that blocks bacterial cell wall synthesis. Here, using a combination of solid-state nuclear magnetic resonance, atomic force microscopy and activity assays, we show that plectasin uses a calcium-sensitive supramolecular killing mechanism. Efficient and selective binding of the target lipid II, a cell wall precursor with an irreplaceable pyrophosphate, is achieved by the oligomerization of plectasin into dense supra-structures that only form on bacterial membranes that comprise lipid II. Oligomerization and target binding of plectasin are interdependent and are enhanced by the coordination of calcium ions to plectasin's prominent anionic patch, causing allosteric changes that markedly improve the activity of the antibiotic. Structural knowledge of how host defence peptides impair cell wall synthesis will likely enable the development of superior drug candidates.


Subject(s)
Calcium , Cell Wall , Peptides , Uridine Diphosphate N-Acetylmuramic Acid , Cell Wall/metabolism , Cell Wall/drug effects , Cell Wall/chemistry , Calcium/metabolism , Peptides/pharmacology , Peptides/metabolism , Peptides/chemistry , Uridine Diphosphate N-Acetylmuramic Acid/analogs & derivatives , Uridine Diphosphate N-Acetylmuramic Acid/metabolism , Uridine Diphosphate N-Acetylmuramic Acid/chemistry , Microscopy, Atomic Force , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Magnetic Resonance Spectroscopy , Protein Binding
3.
J Am Chem Soc ; 146(7): 4421-4432, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38334076

ABSTRACT

Lipids adhere to membrane proteins to stimulate or suppress molecular and ionic transport and signal transduction. Yet, the molecular details of lipid-protein interaction and their functional impact are poorly characterized. Here we combine NMR, coarse-grained molecular dynamics (CGMD), and functional assays to reveal classic cooperativity in the binding and subsequent activation of a bacterial inward rectifier potassium (Kir) channel by phosphatidylglycerol (PG), a common component of many membranes. Past studies of lipid activation of Kir channels focused primarily on phosphatidylinositol bisphosphate, a relatively rare signaling lipid that is tightly regulated in space and time. We use solid-state NMR to quantify the binding of unmodified 13C-PG to the K+ channel KirBac1.1 in liposomes. This specific lipid-protein interaction has a dissociation constant (Kd) of ∼7 mol percentage PG (ΧPG) with positive cooperativity (n = 3.8) and approaches saturation near 20% ΧPG. Liposomal flux assays show that K+ flux also increases with PG in a cooperative manner with an EC50 of ∼20% ΧPG, within the physiological range. Further quantitative fitting of these data reveals that PG acts as a partial (80%) agonist with fivefold K+ flux amplification. Comparisons of NMR chemical shift perturbation and CGMD simulations at different ΧPG confirm the direct interaction of PG with key residues, several of which would not be accessible to lipid headgroups in the closed state of the channel. Allosteric regulation by a common lipid is directly relevant to the activation mechanisms of several human ion channels. This study highlights the role of concentration-dependent lipid-protein interactions and tightly controlled protein allostery in the activation and regulation of ion channels.


Subject(s)
Potassium Channels, Inwardly Rectifying , Humans , Potassium Channels, Inwardly Rectifying/chemistry , Potassium Channels, Inwardly Rectifying/metabolism , Liposomes , Membrane Proteins/metabolism , Lipids , Magnetic Resonance Spectroscopy
4.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(4): 159467, 2024 May.
Article in English | MEDLINE | ID: mdl-38382574

ABSTRACT

Gram-negative bacteria possess an asymmetric outer membrane (OM) primarily composed of lipopolysaccharides (LPS) on the outer leaflet and phospholipids on the inner leaflet. The outer membrane functions as an effective permeability barrier to compounds such as antibiotics. Studying LPS biosynthesis is therefore helpful to explore novel strategies for new antibiotic development. Metabolic glycan labeling of the bacterial surface has emerged as a powerful method to investigate LPS biosynthesis. However, the previously reported methods of labeling LPS are based on radioactivity or difficult-to-produce analogs of bacterial sugars. In this study, we report on the incorporation of azido galactose into the LPS of the Gram-negative bacteria Escherichia coli and Salmonella typhi via metabolic labeling. As a common sugar analog, azido galactose successfully labeled both O-antigen and core of Salmonella LPS, but not E. coli LPS. This labeling of Salmonella LPS, as shown by SDS-PAGE analysis and fluorescence microscopy, differs from the previously reported labeling of either O-antigen or core of LPS. Our findings are useful for studying LPS biogenesis pathways in Gram-negative bacteria like Salmonella. In addition, our approach is helpful for screening for agents that target LPS biosynthesis as it allows for the detection of newly synthesized LPS that appears in the OM. Furthermore, this approach may also aid in isolating chemically modified LPS for vaccine development or immunotherapy.


Subject(s)
Escherichia coli Proteins , Lipopolysaccharides , Lipopolysaccharides/metabolism , Galactose/metabolism , O Antigens/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Anti-Bacterial Agents
5.
Biochim Biophys Acta Biomembr ; 1866(3): 184282, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38218577

ABSTRACT

Epilancin 15X is a lantibiotic that has an antimicrobial activity in the nanomolar concentration range towards Staphylococcus simulans. Such low MICs usually imply that these peptides employ a mechanism of action (MoA) involving high affinity targets. Here we studied this MoA by using epilancin 15X's ability to dissipate the membrane potential of intact S. simulans cells. These membrane depolarization assays showed that treatment of the bacteria by antibiotics known to affect the bacterial cell wall synthesis pathway decreased the membrane depolarization effects of epilancin 15X. Disruption of the Lipid II cycle in intact bacteria using several methods led to a decrease in the activity of epilancin 15X. Antagonism-based experiments on 96-well plate and agar diffusion plate pointed towards a possible interaction between epilancin 15X and Lipid II and this was confirmed by Circular Dichroism (CD) based experiments. However, this interaction did not lead to a detectable effect on either carboxyfluorescein (CF) leakage or proton permeability. All experiments point to the involvement of a phosphodiester-containing target within a polyisoprene-based biosynthesis pathway, yet the exact identity of the target remains obscure so far.


Subject(s)
Bacteriocins , Amino Acid Sequence , Bacteriocins/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Peptides/pharmacology
6.
Eur J Med Chem ; 261: 115853, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37857144

ABSTRACT

Teixobactin is a cyclic undecadepsipeptide that has shown excellent potency against multidrug-resistant pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). In this article, we present the design, synthesis, and antibacterial evaluations of 16 different teixobactin analogues. These simplified analogues contain commercially available hydrophobic, non-proteogenic amino acid residues instead of synthetically challenging expensive L-allo-enduracididine amino acid residue at position 10 together with different combinations of arginines at positions 3, 4 and 9. The new teixobactin analogues showed potent antibacterial activity against a broad panel of Gram-positive bacteria, including MRSA and VRE strains. Our work also presents the first demonstration of the potent antibiofilm activity of teixobactin analogoues against Staphylococcus species associated with serious chronic infections. Our results suggest that the use of hydrophobic, non-proteogenic amino acids at position 10 in combination with arginine at positions 3, 4 and 9 holds the key to synthesising a new generation of highly potent teixobactin analogues to tackle resistant bacterial infections and biofilms.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Vancomycin-Resistant Enterococci , Structure-Activity Relationship , Amino Acids/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms , Microbial Sensitivity Tests
7.
Biophys J ; 122(23): 4503-4517, 2023 12 05.
Article in English | MEDLINE | ID: mdl-37905401

ABSTRACT

Lipid oxidation is a universal degradative process of cell membrane lipids that is induced by oxidative stress and reactive oxygen and nitrogen species (RONS) in multiple pathophysiological situations. It has been shown that certain oxidized lipids alter membrane properties, leading to a loss of membrane function. Alteration of membrane properties is thought to depend on the initial membrane lipid composition, such as the number of acyl chain unsaturations. However, it is unclear how oxidative damage is related to biophysical properties of membranes. We therefore set out to quantify lipid oxidation through various analytical methods and determine key biophysical membrane parameters using model membranes containing lipids with different degrees of lipid unsaturation. As source for RONS, we used cold plasma, which is currently developed as treatment for infections and cancer. Our data revealed complex lipid oxidation that can lead to two main permeabilization mechanisms. The first one appears upon direct contact of membranes with RONS and depends on the formation of truncated oxidized phospholipids. These lipids seem to be partly released from the bilayer, implying that they are likely to interact with other membranes and potentially act as signaling molecules. This mechanism is independent of lipid unsaturation, does not rely on large variations in lipid packing, and is most probably mediated via short-living RONS. The second mechanism takes over after longer incubation periods and probably depends on the continued formation of lipid oxygen adducts such as lipid hydroperoxides or ketones. This mechanism depends on lipid unsaturation and involves large variations in lipid packing. This study indicates that polyunsaturated lipids, which are present in mammalian membranes rather than in bacteria, do not sensitize membranes to instant permeabilization by RONS but could promote long-term damage.


Subject(s)
Lipid Bilayers , Membrane Lipids , Animals , Lipid Bilayers/metabolism , Membrane Lipids/metabolism , Phospholipids/metabolism , Reactive Oxygen Species , Oxygen , Mammals/metabolism
8.
Cell ; 186(19): 4059-4073.e27, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37611581

ABSTRACT

Antimicrobial resistance is a leading mortality factor worldwide. Here, we report the discovery of clovibactin, an antibiotic isolated from uncultured soil bacteria. Clovibactin efficiently kills drug-resistant Gram-positive bacterial pathogens without detectable resistance. Using biochemical assays, solid-state nuclear magnetic resonance, and atomic force microscopy, we dissect its mode of action. Clovibactin blocks cell wall synthesis by targeting pyrophosphate of multiple essential peptidoglycan precursors (C55PP, lipid II, and lipid IIIWTA). Clovibactin uses an unusual hydrophobic interface to tightly wrap around pyrophosphate but bypasses the variable structural elements of precursors, accounting for the lack of resistance. Selective and efficient target binding is achieved by the sequestration of precursors into supramolecular fibrils that only form on bacterial membranes that contain lipid-anchored pyrophosphate groups. This potent antibiotic holds the promise of enabling the design of improved therapeutics that kill bacterial pathogens without resistance development.


Subject(s)
Anti-Bacterial Agents , Bacteria , Soil Microbiology , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Biological Assay , Diphosphates
9.
bioRxiv ; 2023 May 15.
Article in English | MEDLINE | ID: mdl-37292624

ABSTRACT

Antimicrobial resistance is a leading mortality factor worldwide. Here we report the discovery of clovibactin, a new antibiotic, isolated from uncultured soil bacteria. Clovibactin efficiently kills drug-resistant bacterial pathogens without detectable resistance. Using biochemical assays, solid-state NMR, and atomic force microscopy, we dissect its mode of action. Clovibactin blocks cell wall synthesis by targeting pyrophosphate of multiple essential peptidoglycan precursors (C 55 PP, Lipid II, Lipid WTA ). Clovibactin uses an unusual hydrophobic interface to tightly wrap around pyrophosphate, but bypasses the variable structural elements of precursors, accounting for the lack of resistance. Selective and efficient target binding is achieved by the irreversible sequestration of precursors into supramolecular fibrils that only form on bacterial membranes that contain lipid-anchored pyrophosphate groups. Uncultured bacteria offer a rich reservoir of antibiotics with new mechanisms of action that could replenish the antimicrobial discovery pipeline.

10.
Biochim Biophys Acta Biomembr ; 1865(6): 184160, 2023 08.
Article in English | MEDLINE | ID: mdl-37100361

ABSTRACT

Antimicrobial peptides (AMPs) commonly target bacterial membranes and show broad-spectrum activity against microorganisms. In this research we used three AMPs (nisin, epilancin 15×, [R4L10]-teixobactin) and tested their membrane effects towards three strains (Staphylococcus simulans, Micrococcus flavus, Bacillus megaterium) in relation with their antibacterial activity. We describe fluorescence and luminescence-based assays to measure effects on membrane potential, intracellular pH, membrane permeabilization and intracellular ATP levels. The results show that our control peptide, nisin, performed mostly as expected in view of its targeted pore-forming activity, with fast killing kinetics that coincided with severe membrane permeabilization in all three strains. However, the mechanisms of action of both Epilancin 15× as well as [R4L10]-teixobactin appeared to depend strongly on the bacterium tested. In certain specific combinations of assay, peptide and bacterium, deviations from the general picture were observed. This was even the case for nisin, indicating the importance of using multiple assays and bacteria for mode of action studies to be able to draw proper conclusions on the mode of action of AMPs.


Subject(s)
Nisin , Nisin/pharmacology , Antimicrobial Peptides , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
11.
Chemistry ; 28(70): e202202472, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36098094

ABSTRACT

Specific interactions with phospholipids are often critical for the function of proteins or drugs, but studying these interactions at high resolution remains difficult, especially in complex membranes that mimic biological conditions. In principle, molecular interactions with phospholipids could be directly probed by solid-state NMR (ssNMR). However, due to the challenge to detect specific lipids in mixed liposomes and limited spectral sensitivity, ssNMR studies of specific lipids in complex membranes are scarce. Here, by using purified biological 13 C,15 N-labeled phospholipids, we show that we can selectively detect traces of specific lipids in complex membranes. In combination with 1 H-detected ssNMR, we show that our approach provides unprecedented high-resolution insights into the mechanisms of drugs that target specific lipids. This broadly applicable approach opens new opportunities for the molecular characterization of specific lipid interactions with proteins or drugs in complex fluid membranes.


Subject(s)
Liposomes , Proteins , Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , Magnetic Resonance Spectroscopy , Liposomes/chemistry , Phospholipids , Lipid Bilayers/chemistry
12.
Nature ; 608(7922): 390-396, 2022 08.
Article in English | MEDLINE | ID: mdl-35922513

ABSTRACT

Antibiotics that use novel mechanisms are needed to combat antimicrobial resistance1-3. Teixobactin4 represents a new class of antibiotics with a unique chemical scaffold and lack of detectable resistance. Teixobactin targets lipid II, a precursor of peptidoglycan5. Here we unravel the mechanism of teixobactin at the atomic level using a combination of solid-state NMR, microscopy, in vivo assays and molecular dynamics simulations. The unique enduracididine C-terminal headgroup of teixobactin specifically binds to the pyrophosphate-sugar moiety of lipid II, whereas the N terminus coordinates the pyrophosphate of another lipid II molecule. This configuration favours the formation of a ß-sheet of teixobactins bound to the target, creating a supramolecular fibrillar structure. Specific binding to the conserved pyrophosphate-sugar moiety accounts for the lack of resistance to teixobactin4. The supramolecular structure compromises membrane integrity. Atomic force microscopy and molecular dynamics simulations show that the supramolecular structure displaces phospholipids, thinning the membrane. The long hydrophobic tails of lipid II concentrated within the supramolecular structure apparently contribute to membrane disruption. Teixobactin hijacks lipid II to help destroy the membrane. Known membrane-acting antibiotics also damage human cells, producing undesirable side effects. Teixobactin damages only membranes that contain lipid II, which is absent in eukaryotes, elegantly resolving the toxicity problem. The two-pronged action against cell wall synthesis and cytoplasmic membrane produces a highly effective compound targeting the bacterial cell envelope. Structural knowledge of the mechanism of teixobactin will enable the rational design of improved drug candidates.


Subject(s)
Anti-Bacterial Agents , Bacteria , Cell Membrane , Depsipeptides , Microbial Viability , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/cytology , Bacteria/drug effects , Cell Membrane/drug effects , Cell Wall/drug effects , Cell Wall/metabolism , Depsipeptides/chemistry , Depsipeptides/pharmacology , Diphosphates/chemistry , Drug Resistance, Bacterial/drug effects , Humans , Lipids/chemistry , Microbial Sensitivity Tests , Microbial Viability/drug effects , Microscopy, Atomic Force , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Secondary , Pyrrolidines/chemistry , Sugars/chemistry
13.
iScience ; 25(8): 104753, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35942089

ABSTRACT

N-Acetylglucosamine (GlcNAc) is an essential monosaccharide required in almost all organisms. Fluorescent labeling of the peptidoglycan (PG) on N-acetylglucosamine has been poorly explored. Here, we report on the labeling of the PG with a bioorthogonal handle on the GlcNAc. We developed a facile one-step synthesis of uridine diphosphate N-azidoacetylglucosamine (UDP-GlcNAz) using the glycosyltransferase OleD, followed by in vitro incorporation of GlcNAz into the peptidoglycan precursor Lipid II and fluorescent labeling of the azido group via click chemistry. In a PG synthesis assay, fluorescent GlcNAz-labeled Lipid II was incorporated into peptidoglycan by the DD-transpeptidase activity of bifunctional class A penicillin-binding proteins. We further demonstrate the incorporation of GlcNAz into the PG layer of OleD-expressed bacteria by feeding with 2-chloro-4-nitrophenyl GlcNAz (GlcNAz-CNP). Hence, our labeling method using the heterologous expression of OleD is useful to study PG synthesis and possibly other biological processes involving GlcNAc metabolism in vivo.

14.
PLoS Genet ; 18(1): e1009993, 2022 01.
Article in English | MEDLINE | ID: mdl-34986161

ABSTRACT

SEDS (Shape, Elongation, Division and Sporulation) proteins are widely conserved peptidoglycan (PG) glycosyltransferases that form complexes with class B penicillin-binding proteins (bPBPs, with transpeptidase activity) to synthesize PG during bacterial cell growth and division. Because of their crucial roles in bacterial morphogenesis, SEDS proteins are one of the most promising targets for the development of new antibiotics. However, how SEDS proteins recognize their substrate lipid II, the building block of the PG layer, and polymerize it into glycan strands is still not clear. In this study, we isolated and characterized dominant-negative alleles of FtsW, a SEDS protein critical for septal PG synthesis during bacterial cytokinesis. Interestingly, most of the dominant-negative FtsW mutations reside in extracellular loops that are highly conserved in the SEDS family. Moreover, these mutations are scattered around a central cavity in a modeled FtsW structure, which has been proposed to be the active site of SEDS proteins. Consistent with this, we found that these mutations blocked septal PG synthesis but did not affect FtsW localization to the division site, interaction with its partners nor its substrate lipid II. Taken together, these results suggest that the residues corresponding to the dominant-negative mutations likely constitute the active site of FtsW, which may aid in the design of FtsW inhibitors.


Subject(s)
Bacteria/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Mutation , Amino Acid Substitution , Bacteria/genetics , Bacterial Proteins/genetics , Catalytic Domain , Membrane Proteins/genetics , Models, Molecular , Mutagenesis, Site-Directed , Peptidoglycan/biosynthesis , Protein Conformation , Uridine Diphosphate N-Acetylmuramic Acid/analogs & derivatives , Uridine Diphosphate N-Acetylmuramic Acid/metabolism
15.
Front Microbiol ; 12: 694847, 2021.
Article in English | MEDLINE | ID: mdl-34335524

ABSTRACT

Lipo-tridecapeptides, a class of bacterial non-ribosomally produced peptides, show strong antimicrobial activity against Gram-positive pathogens, including antibiotic-resistant Staphylococcus aureus and Enterococcus spp. However, many of these lipo-tridecapeptides have shown high hemolytic activity and cytotoxicity, which has limited their potential to be developed into antibiotics. Recently, we reported a novel antimicrobial lipo-tridecapeptide, brevibacillin 2V, which showed no hemolytic activity against human red blood cells at a high concentration of 128 mg/L, opposite to other brevibacillins and lipo-tridecapeptides. In addition, brevibacillin 2V showed much lower cytotoxicity than the other members of the brevibacillin family. In this study, we set out to elucidate the antimicrobial mode of action of brevibacillin 2V. The results show that brevibacillin 2V acts as bactericidal antimicrobial agent against S. aureus (MRSA). Further studies show that brevibacillin 2V exerts its bactericidal activity by binding to the bacterial cell wall synthesis precursor Lipid II and permeabilizing the bacterial membrane. Combined solid-state NMR, circular dichroism, and isothermal titration calorimetry assays indicate that brevibacillin 2V binds to the GlcNAc-MurNAc moiety and/or the pentapeptide of Lipid II. This study provides an insight into the antimicrobial mode of action of brevibacillin 2V. As brevibacillin 2V is a novel and promising antibiotic candidate with low hemolytic activity and cytotoxicity, the here-elucidated mode of action will help further studies to develop it as an alternative antimicrobial agent.

16.
Front Microbiol ; 12: 693725, 2021.
Article in English | MEDLINE | ID: mdl-34220785

ABSTRACT

Bacterial non-ribosomally produced peptides (NRPs) form a rich source of antibiotics, including more than 20 of these antibiotics that are used in the clinic, such as penicillin G, colistin, vancomycin, and chloramphenicol. Here we report the identification, purification, and characterization of a novel NRP, i.e., brevibacillin 2V (lipo-tridecapeptide), from Brevibacillus laterosporus DSM 25. Brevibacillin 2V has a strong antimicrobial activity against Gram-positive bacterial pathogens (minimum inhibitory concentration = 2 mg/L), including difficult-to-treat antibiotic-resistant Enterococcus faecium, Enterococcus faecalis, and Staphylococcus aureus. Notably, brevibacillin 2V has a much lower hemolytic activity (HC50 > 128 mg/L) and cytotoxicity (CC50 = 45.49 ± 0.24 mg/L) to eukaryotic cells than previously reported NRPs of the lipo-tridecapeptide family, including other brevibacillins, which makes it a promising candidate for antibiotic development. In addition, our results demonstrate that brevibacillins display a synergistic action with established antibiotics against Gram-negative bacterial pathogens. Probably due to the presence of non-canonical amino acids and D-amino acids, brevibacillin 2V showed good stability in human plasma. Thus, we identified and characterized a novel and promising antimicrobial candidate (brevibacillin 2V) with low hemolytic activity and cytotoxicity, which can be used either on its own or as a template for further total synthesis and modification.

17.
Biochim Biophys Acta Gen Subj ; 1865(9): 129951, 2021 09.
Article in English | MEDLINE | ID: mdl-34147544

ABSTRACT

BACKGROUND: Antimicrobial peptides are considered potential alternatives to antibiotics. Here we describe the antibacterial properties of a family of novel cathelicidin-related (CR-) peptides, which we named PepBiotics, against bacteria typically present in cystic fibrosis (CF) patients. METHODS: Broth dilution assays were used to determine antibacterial activity of PepBiotics under physiological conditions, as well as development of bacterial resistance against these peptides. Toxicity was tested in mice and cell cultures while molecular interactions of PepBiotics with bacterial membrane components was determined using CD, ITC and LPS/LTA induced macrophage studies. RESULTS: A relatively small number of PepBiotics remained highly antibacterial against CF-related respiratory pathogens Pseudomonas aeruginosa and Staphylococcus aureus, at high ionic strength and low pH. Interestingly, these PepBiotics also prevented LPS/LTA induced activation of macrophages and was shown to be non-toxic to primary human nasal epithelial cells. Furthermore, both P. aeruginosa and S. aureus were unable to induce resistance against CR-163 and CR-172, two PepBiotics selected for their excellent antimicrobial and immunomodulatory properties. Toxicity studies in mice indicated that intratracheal administration of CR-163 was well tolerated in vivo. Finally, interaction of CR-163 with bacterial-type anionic membranes but not with mammalian-type (zwitterionic lipid) membranes was confirmed using ITC and 31P solid state NMR. CONCLUSIONS: PepBiotics are a promising novel class of highly active antimicrobial peptides, of which CR-163 showed the most potential for treatment of clinically relevant (CF-) pathogens in physiological conditions. GENERAL SIGNIFICANCE: These observations emphasize the therapeutic potential of PepBiotics against CF-related bacterial respiratory infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Bacterial Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/administration & dosage , Antimicrobial Cationic Peptides/chemistry , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Injections, Spinal , Male , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests , Cathelicidins
18.
Cell Surf ; 7: 100053, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34036206

ABSTRACT

Bacteria encase their cytoplasmic membrane with peptidoglycan (PG) to maintain the shape of the cell and protect it from bursting. The enlargement of the PG layer is facilitated by the coordinated activities of PG synthesising and -cleaving enzymes. In Escherichia coli, the cytoplasmic membrane-bound lytic transglycosylase MltG associates with PG synthases and was suggested to terminate the polymerisation of PG glycan strands. Using pull-down and surface plasmon resonance, we detected interactions between MltG from Bacillus subtilis and two PG synthases; the class A PBP1 and the class B PBP2B. Using in vitro PG synthesis assays with radio-labelled or fluorophore-labelled B. subtilis-type and/or E. coli-type lipid II, we showed that both, BsMltG and EcMltG, are lytic tranglycosylases and that their activity is higher during ongoing glycan strand polymerisation. MltG competed with the transpeptidase activity of class A PBPs, but had no effect on their glycosyltransferase activity, and produced glycan strands with a length of 7 disaccharide units from cleavage in the nascent strands. We hypothesize that MltG cleaves the nascent strands to produce short glycan strands that are used in the cell for a yet unknown process.

19.
Elife ; 102021 02 24.
Article in English | MEDLINE | ID: mdl-33625355

ABSTRACT

Peptidoglycan is an essential component of the bacterial cell envelope that surrounds the cytoplasmic membrane to protect the cell from osmotic lysis. Important antibiotics such as ß-lactams and glycopeptides target peptidoglycan biosynthesis. Class A penicillin-binding proteins (PBPs) are bifunctional membrane-bound peptidoglycan synthases that polymerize glycan chains and connect adjacent stem peptides by transpeptidation. How these enzymes work in their physiological membrane environment is poorly understood. Here, we developed a novel Förster resonance energy transfer-based assay to follow in real time both reactions of class A PBPs reconstituted in liposomes or supported lipid bilayers and applied this assay with PBP1B homologues from Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii in the presence or absence of their cognate lipoprotein activator. Our assay will allow unravelling the mechanisms of peptidoglycan synthesis in a lipid-bilayer environment and can be further developed to be used for high-throughput screening for new antimicrobials.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli/metabolism , Penicillin-Binding Proteins/genetics , Peptidoglycan Glycosyltransferase/genetics , Peptidoglycan/biosynthesis , Serine-Type D-Ala-D-Ala Carboxypeptidase/genetics , Cell Wall/metabolism , Escherichia coli Proteins/metabolism , Penicillin-Binding Proteins/metabolism , Peptidoglycan Glycosyltransferase/metabolism , Serine-Type D-Ala-D-Ala Carboxypeptidase/metabolism
20.
mBio ; 11(6)2020 11 03.
Article in English | MEDLINE | ID: mdl-33144379

ABSTRACT

Sporulation-related repeat (SPOR) domains are present in many bacterial cell envelope proteins and are known to bind peptidoglycan. Escherichia coli contains four SPOR proteins, DamX, DedD, FtsN, and RlpA, of which FtsN is essential for septal peptidoglycan synthesis. DamX and DedD may also play a role in cell division, based on mild cell division defects observed in strains lacking these SPOR domain proteins. Here, we show by nuclear magnetic resonance (NMR) spectroscopy that the periplasmic part of DedD consists of a disordered region followed by a canonical SPOR domain with a structure similar to that of the SPOR domains of FtsN, DamX, and RlpA. The absence of DamX or DedD decreases the functionality of the bifunctional transglycosylase-transpeptidase penicillin-binding protein 1B (PBP1B). DamX and DedD interact with PBP1B and stimulate its glycosyltransferase activity, and DamX also stimulates the transpeptidase activity. DedD also binds to PBP1A and stimulates its glycosyltransferase activity. Our data support a direct role of DamX and DedD in enhancing the activity of PBP1B and PBP1A, presumably during the synthesis of the cell division septum.IMPORTANCEEscherichia coli has four SPOR proteins that bind peptidoglycan, of which FtsN is essential for cell division. DamX and DedD are suggested to have semiredundant functions in cell division based on genetic evidence. Here, we solved the structure of the SPOR domain of DedD, and we show that both DamX and DedD interact with and stimulate the synthetic activity of the peptidoglycan synthases PBP1A and PBP1B, suggesting that these class A PBP enzymes act in concert with peptidoglycan-binding proteins during cell division.


Subject(s)
Escherichia coli Infections/microbiology , Escherichia coli Proteins/metabolism , Escherichia coli/physiology , Penicillin-Binding Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Cefsulodin/pharmacology , Escherichia coli/drug effects , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Models, Molecular , Penicillin-Binding Proteins/chemistry , Peptidoglycan/metabolism , Peptidoglycan Glycosyltransferase/metabolism , Protein Binding , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...