Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters











Publication year range
1.
bioRxiv ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39229209

ABSTRACT

Background: Rabies, a re-emerging zoonosis with the highest known human case fatality rate, has been largely absent from Peru, except for endemic circulation in the Puno region on the Bolivian border and re-emergence in Arequipa City in 2015, where it has persisted. In 2021, an outbreak occurred in the rapidly expanding city of El Pedregal near Arequipa, followed by more cases in 2022 after nearly a year of epidemiological silence. While currently under control, questions persist regarding the origin of the El Pedregal outbreak and implications for maintaining rabies control in Peru. Methods: We sequenced 25 dog rabies virus (RABV) genomes from the El Pedregal outbreak (n=11) and Arequipa City (n=14) from 2021-2023 using Nanopore sequencing in Peru. Historical genomes from Puno (n=4, 2010-2012) and Arequipa (n=5, 2015-2019), were sequenced using an Illumina approach in the UK. In total, 34 RABV genomes were analyzed, including archived and newly obtained samples. The genomes were analyzed phylogenetically to understand the outbreak's context and origins. Results: Phylogenomic analysis identified two genetic clusters in El Pedregal: 2021 cases stemmed from a single introduction unrelated to Arequipa cases, while the 2022 sequence suggested a new introduction from Arequipa rather than persistence. In relation to canine RABV diversity in Latin America, all new sequences belonged to a new minor clade, Cosmopolitan Am5, sharing relatives from Bolivia, Argentina, and Brazil. Conclusion: Genomic insights into the El Pedregal outbreak revealed multiple introductions over a 2-year window. Eco-epidemiological conditions, including migratory worker patterns, suggest human-mediated movement drove introductions. Despite outbreak containment, El Pedregal remains at risk of dog-mediated rabies due to ongoing circulation in Arequipa, Puno, and Bolivia. Human-mediated movement of dogs presents a major risk for rabies re-emergence in Peru, jeopardizing regional dog-mediated rabies control. Additional sequence data is needed for comprehensive phylogenetic analyses.

2.
J Mol Diagn ; 26(9): 741-753, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38925458

ABSTRACT

Bloodstream infection is a major cause of morbidity and death worldwide. Timely and appropriate treatment can reduce mortality among critically ill patients. Current diagnostic methods are too slow to inform precise antibiotic choice, leading to the prescription of empirical antibiotics, which may fail to cover the resistance profile of the pathogen, risking poor patient outcomes. Additionally, overuse of broad-spectrum antibiotics may lead to more resistant organisms, putting further pressure on the dwindling pipeline of antibiotics, and risk transmission of these resistant organisms in the health care environment. Therefore, rapid diagnostics are urgently required to better inform antibiotic choice early in the course of treatment. Sequencing offers great promise in reducing time to microbiological diagnosis; however, the amount of host DNA compared with the pathogen in patient samples presents a significant obstacle. Various host-depletion and bacterial-enrichment strategies have been used in samples, such as saliva, urine, or tissue. However, these methods have yet to be collectively integrated and/or extensively explored for rapid bloodstream infection diagnosis. Although most of these workflows possess individual strengths, their lack of analytical/clinical sensitivity and/or comprehensiveness demands additional improvements or synergistic application. This review provides a distinctive classification system for various methods based on their working principles to guide future research, and discusses their strengths and limitations and explores potential avenues for improvement to assist the reader in workflow selection.


Subject(s)
Bacteremia , Humans , Bacteremia/diagnosis , Bacteremia/microbiology , Molecular Diagnostic Techniques/methods , High-Throughput Nucleotide Sequencing/methods , Sepsis/diagnosis , Sepsis/microbiology , Bacteria/genetics , Bacteria/isolation & purification
3.
Nat Rev Genet ; 25(8): 532, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38684856
4.
J Vis Exp ; (198)2023 08 18.
Article in English | MEDLINE | ID: mdl-37677046

ABSTRACT

Genomic data can be used to track the transmission and geographic spread of infectious diseases. However, the sequencing capacity required for genomic surveillance remains limited in many low- and middle-income countries (LMICs), where dog-mediated rabies and/or rabies transmitted by wildlife such as vampire bats pose major public health and economic concerns. We present here a rapid and affordable sample-to-sequence-to-interpretation workflow using nanopore technology. Protocols for sample collection and the diagnosis of rabies are briefly described, followed by details of the optimized whole genome sequencing workflow, including primer design and optimization for multiplex polymerase chain reaction (PCR), a modified, low-cost sequencing library preparation, sequencing with live and offline base calling, genetic lineage designation, and phylogenetic analysis. Implementation of the workflow is demonstrated, and critical steps are highlighted for local deployment, such as pipeline validation, primer optimization, inclusion of negative controls, and the use of publicly available data and genomic tools (GLUE, MADDOG) for classification and placement within regional and global phylogenies. The turnaround time for the workflow is 2-3 days, and the cost ranges from $25 per sample for a 96 sample run to $80 per sample for a 12 sample run. We conclude that setting up rabies virus genomic surveillance in LMICs is feasible and can support progress toward the global goal of zero dog-mediated human rabies deaths by 2030, as well as enhanced monitoring of wildlife rabies spread. Moreover, the platform can be adapted for other pathogens, helping to build a versatile genomic capacity that contributes to epidemic and pandemic preparedness.


Subject(s)
Chiroptera , Nanopores , Rabies virus , Rabies , Humans , Animals , Dogs , Rabies virus/genetics , Rabies/diagnosis , Rabies/veterinary , Phylogeny , Animals, Wild , Technology , Whole Genome Sequencing
5.
Mol Ecol ; 32(18): 5140-5155, 2023 09.
Article in English | MEDLINE | ID: mdl-37540190

ABSTRACT

In epidemiology, endemicity characterizes sustained pathogen circulation in a geographical area, which involves a circulation that is not being maintained by external introductions. Because it could potentially shape the design of public health interventions, there is an interest in fully uncovering the endemic pattern of a disease. Here, we use a phylogeographic approach to investigate the endemic signature of rabies virus (RABV) circulation in Cambodia. Cambodia is located in one of the most affected regions by rabies in the world, but RABV circulation between and within Southeast Asian countries remains understudied. Our analyses are based on a new comprehensive data set of 199 RABV genomes collected between 2014 and 2017 as well as previously published Southeast Asian RABV sequences. We show that most Cambodian sequences belong to a distinct clade that has been circulating almost exclusively in Cambodia. Our results thus point towards rabies circulation in Cambodia that does not rely on external introductions. We further characterize within-Cambodia RABV circulation by estimating lineage dispersal metrics that appear to be similar to other settings, and by performing landscape phylogeographic analyses to investigate environmental factors impacting the dispersal dynamic of viral lineages. The latter analyses do not lead to the identification of environmental variables that would be associated with the heterogeneity of viral lineage dispersal velocities, which calls for a better understanding of local dog ecology and further investigations of the potential drivers of RABV spread in the region. Overall, our study illustrates how phylogeographic investigations can be performed to assess and characterize viral endemicity in a context of relatively limited data.


Subject(s)
Rabies virus , Rabies , Animals , Dogs , Rabies/epidemiology , Rabies/veterinary , Cambodia/epidemiology , Rabies virus/genetics , Phylogeography , Sequence Analysis, DNA , Phylogeny
6.
Elife ; 122023 05 25.
Article in English | MEDLINE | ID: mdl-37227428

ABSTRACT

Background: Dog-mediated rabies is endemic across Africa causing thousands of human deaths annually. A One Health approach to rabies is advocated, comprising emergency post-exposure vaccination of bite victims and mass dog vaccination to break the transmission cycle. However, the impacts and cost-effectiveness of these components are difficult to disentangle. Methods: We combined contact tracing with whole-genome sequencing to track rabies transmission in the animal reservoir and spillover risk to humans from 2010 to 2020, investigating how the components of a One Health approach reduced the disease burden and eliminated rabies from Pemba Island, Tanzania. With the resulting high-resolution spatiotemporal and genomic data, we inferred transmission chains and estimated case detection. Using a decision tree model, we quantified the public health burden and evaluated the impact and cost-effectiveness of interventions over a 10-year time horizon. Results: We resolved five transmission chains co-circulating on Pemba from 2010 that were all eliminated by May 2014. During this period, rabid dogs, human rabies exposures and deaths all progressively declined following initiation and improved implementation of annual islandwide dog vaccination. We identified two introductions to Pemba in late 2016 that seeded re-emergence after dog vaccination had lapsed. The ensuing outbreak was eliminated in October 2018 through reinstated islandwide dog vaccination. While post-exposure vaccines were projected to be highly cost-effective ($256 per death averted), only dog vaccination interrupts transmission. A combined One Health approach of routine annual dog vaccination together with free post-exposure vaccines for bite victims, rapidly eliminates rabies, is highly cost-effective ($1657 per death averted) and by maintaining rabies freedom prevents over 30 families from suffering traumatic rabid dog bites annually on Pemba island. Conclusions: A One Health approach underpinned by dog vaccination is an efficient, cost-effective, equitable, and feasible approach to rabies elimination, but needs scaling up across connected populations to sustain the benefits of elimination, as seen on Pemba, and for similar progress to be achieved elsewhere. Funding: Wellcome [207569/Z/17/Z, 095787/Z/11/Z, 103270/Z/13/Z], the UBS Optimus Foundation, the Department of Health and Human Services of the National Institutes of Health [R01AI141712] and the DELTAS Africa Initiative [Afrique One-ASPIRE/DEL-15-008] comprising a donor consortium of the African Academy of Sciences (AAS), Alliance for Accelerating Excellence in Science in Africa (AESA), the New Partnership for Africa's Development Planning and Coordinating (NEPAD) Agency, Wellcome [107753/A/15/Z], Royal Society of Tropical Medicine and Hygiene Small Grant 2017 [GR000892] and the UK government. The rabies elimination demonstration project from 2010-2015 was supported by the Bill & Melinda Gates Foundation [OPP49679]. Whole-genome sequencing was partially supported from APHA by funding from the UK Department for Environment, Food and Rural Affairs (Defra), Scottish government and Welsh government under projects SEV3500 and SE0421.


Subject(s)
Bites and Stings , Dog Diseases , Rabies Vaccines , Rabies , Dogs , Animals , Humans , Rabies/epidemiology , Rabies/prevention & control , Rabies/veterinary , Contact Tracing , Cost-Benefit Analysis , Rabies Vaccines/genetics , Tanzania/epidemiology , Genomics , Bites and Stings/epidemiology , Dog Diseases/epidemiology , Dog Diseases/prevention & control
7.
Virus Evol ; 8(2): veac078, 2022.
Article in English | MEDLINE | ID: mdl-36090771

ABSTRACT

The Omicron severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant led to a dramatic global epidemic wave following detection in South Africa in November 2021. The BA.1 Omicron lineage was dominant and responsible for most SARS-CoV-2 outbreaks in countries around the world during December 2021-January 2022, while other Omicron lineages, including BA.2, accounted for the minority of global isolates. Here, we describe the Omicron wave in the Philippines by analysing genomic data. Our results identify the presence of both BA.1 and BA.2 lineages in the Philippines in December 2021, before cases surged in January 2022. We infer that only the BA.2 lineage underwent sustained transmission in the country, with an estimated emergence around 18 November 2021 (95 per cent highest posterior density: 6-28 November), while despite multiple introductions, BA.1 transmission remained limited. These results suggest that the Philippines was one of the earliest areas affected by BA.2 and reiterate the importance of whole genome sequencing for monitoring outbreaks.

8.
PLoS Pathog ; 18(5): e1010023, 2022 05.
Article in English | MEDLINE | ID: mdl-35500026

ABSTRACT

The availability of pathogen sequence data and use of genomic surveillance is rapidly increasing. Genomic tools and classification systems need updating to reflect this. Here, rabies virus is used as an example to showcase the potential value of updated genomic tools to enhance surveillance to better understand epidemiological dynamics and improve disease control. Previous studies have described the evolutionary history of rabies virus, however the resulting taxonomy lacks the definition necessary to identify incursions, lineage turnover and transmission routes at high resolution. Here we propose a lineage classification system based on the dynamic nomenclature used for SARS-CoV-2, defining a lineage by phylogenetic methods for tracking virus spread and comparing sequences across geographic areas. We demonstrate this system through application to the globally distributed Cosmopolitan clade of rabies virus, defining 96 total lineages within the clade, beyond the 22 previously reported. We further show how integration of this tool with a new rabies virus sequence data resource (RABV-GLUE) enables rapid application, for example, highlighting lineage dynamics relevant to control and elimination programmes, such as identifying importations and their sources, as well as areas of persistence and routes of virus movement, including transboundary incursions. This system and the tools developed should be useful for coordinating and targeting control programmes and monitoring progress as countries work towards eliminating dog-mediated rabies, as well as having potential for broader application to the surveillance of other viruses.


Subject(s)
Phylogeny , Rabies virus , Rabies , Animals , Dogs , Genomics , Rabies/virology , Rabies virus/genetics
9.
Science ; 376(6592): 512-516, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35482879

ABSTRACT

How acute pathogens persist and what curtails their epidemic growth in the absence of acquired immunity remains unknown. Canine rabies is a fatal zoonosis that circulates endemically at low prevalence among domestic dogs in low- and middle-income countries. We traced rabies transmission in a population of 50,000 dogs in Tanzania from 2002 to 2016 and applied individual-based models to these spatially resolved data to investigate the mechanisms modulating transmission and the scale over which they operate. Although rabies prevalence never exceeded 0.15%, the best-fitting models demonstrated appreciable depletion of susceptible animals that occurred at local scales because of clusters of deaths and dogs already incubating infection. Individual variation in rabid dog behavior facilitated virus dispersal and cocirculation of virus lineages, enabling metapopulation persistence. These mechanisms have important implications for prediction and control of pathogens that circulate in spatially structured populations.


Subject(s)
Rabies , Animals , Dogs , Prevalence , Rabies/epidemiology , Rabies/prevention & control , Rabies/veterinary , Tanzania/epidemiology , Zoonoses
10.
J Infect ; 83(1): 96-103, 2021 07.
Article in English | MEDLINE | ID: mdl-33895226

ABSTRACT

OBJECTIVES: Patients requiring haemodialysis are at increased risk of serious illness with SARS-CoV-2 infection. To improve the understanding of transmission risks in six Scottish renal dialysis units, we utilised the rapid whole-genome sequencing data generated by the COG-UK consortium. METHODS: We combined geographical, temporal and genomic sequence data from the community and hospital to estimate the probability of infection originating from within the dialysis unit, the hospital or the community using Bayesian statistical modelling and compared these results to the details of epidemiological investigations. RESULTS: Of 671 patients, 60 (8.9%) became infected with SARS-CoV-2, of whom 16 (27%) died. Within-unit and community transmission were both evident and an instance of transmission from the wider hospital setting was also demonstrated. CONCLUSIONS: Near-real-time SARS-CoV-2 sequencing data can facilitate tailored infection prevention and control measures, which can be targeted at reducing risk in these settings.


Subject(s)
COVID-19 , SARS-CoV-2 , Bayes Theorem , Hospitals , Humans , Molecular Epidemiology , Renal Dialysis/adverse effects
11.
PLoS Biol ; 19(2): e3001091, 2021 02.
Article in English | MEDLINE | ID: mdl-33630831

ABSTRACT

The recent emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the underlying cause of Coronavirus Disease 2019 (COVID-19), has led to a worldwide pandemic causing substantial morbidity, mortality, and economic devastation. In response, many laboratories have redirected attention to SARS-CoV-2, meaning there is an urgent need for tools that can be used in laboratories unaccustomed to working with coronaviruses. Here we report a range of tools for SARS-CoV-2 research. First, we describe a facile single plasmid SARS-CoV-2 reverse genetics system that is simple to genetically manipulate and can be used to rescue infectious virus through transient transfection (without in vitro transcription or additional expression plasmids). The rescue system is accompanied by our panel of SARS-CoV-2 antibodies (against nearly every viral protein), SARS-CoV-2 clinical isolates, and SARS-CoV-2 permissive cell lines, which are all openly available to the scientific community. Using these tools, we demonstrate here that the controversial ORF10 protein is expressed in infected cells. Furthermore, we show that the promising repurposed antiviral activity of apilimod is dependent on TMPRSS2 expression. Altogether, our SARS-CoV-2 toolkit, which can be directly accessed via our website at https://mrcppu-covid.bio/, constitutes a resource with considerable potential to advance COVID-19 vaccine design, drug testing, and discovery science.


Subject(s)
COVID-19 Vaccines , COVID-19/diagnosis , COVID-19/virology , Reverse Genetics , SARS-CoV-2/genetics , A549 Cells , Angiotensin-Converting Enzyme 2/metabolism , Animals , Chlorocebus aethiops , Codon , Humans , Hydrazones/pharmacology , Mice , Morpholines/pharmacology , Open Reading Frames , Plasmids/genetics , Pyrimidines/pharmacology , Serine Endopeptidases/metabolism , Vero Cells , Viral Proteins/metabolism
14.
Trans R Soc Trop Med Hyg ; 115(1): 3-5, 2021 01 07.
Article in English | MEDLINE | ID: mdl-32945867

ABSTRACT

Improvements in genetic and genomic technology have enabled field-deployable molecular laboratories and these have been deployed in a variety of epidemics that capture headlines. In this editorial, we highlight the importance of building physical and personnel capacity in low and middle income countries to deploy these technologies to improve diagnostics, understand transmission dynamics and provide feedback to endemic communities on actionable timelines. We describe our experiences with molecular field research on schistosomiasis, trypanosomiasis and rabies and urge the wider tropical medicine community to embrace these methods and help build capacity to benefit communities affected by endemic infectious diseases.


Subject(s)
Communicable Diseases , Schistosomiasis , Tropical Medicine , Humans , Molecular Epidemiology , Technology
15.
Nat Microbiol ; 6(1): 112-122, 2021 01.
Article in English | MEDLINE | ID: mdl-33349681

ABSTRACT

Coronavirus disease 2019 (COVID-19) was first diagnosed in Scotland on 1 March 2020. During the first month of the outbreak, 2,641 cases of COVID-19 led to 1,832 hospital admissions, 207 intensive care admissions and 126 deaths. We aimed to identify the source and number of introductions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into Scotland using a combined phylogenetic and epidemiological approach. Sequencing of 1,314 SARS-CoV-2 viral genomes from available patient samples enabled us to estimate that SARS-CoV-2 was introduced to Scotland on at least 283 occasions during February and March 2020. Epidemiological analysis confirmed that early introductions of SARS-CoV-2 originated from mainland Europe (the majority from Italy and Spain). We identified subsequent early outbreaks in the community, within healthcare facilities and at an international conference. Community transmission occurred after 2 March, 3 weeks before control measures were introduced. Earlier travel restrictions or quarantine measures, both locally and internationally, would have reduced the number of COVID-19 cases in Scotland. The risk of multiple reintroduction events in future waves of infection remains high in the absence of population immunity.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , Adult , Aged , Europe/epidemiology , Genome, Viral , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Molecular Epidemiology , Phylogeny , SARS-CoV-2/isolation & purification , Spain/epidemiology , Travel/statistics & numerical data
16.
Wellcome Open Res ; 5: 3, 2020.
Article in English | MEDLINE | ID: mdl-32090172

ABSTRACT

Genomic surveillance is an important aspect of contemporary disease management but has yet to be used routinely to monitor endemic disease transmission and control in low- and middle-income countries. Rabies is an almost invariably fatal viral disease that causes a large public health and economic burden in Asia and Africa, despite being entirely vaccine preventable. With policy efforts now directed towards achieving a global goal of zero dog-mediated human rabies deaths by 2030, establishing effective surveillance tools is critical. Genomic data can provide important and unique insights into rabies spread and persistence that can direct control efforts. However, capacity for genomic research in low- and middle-income countries is held back by limited laboratory infrastructure, cost, supply chains and other logistical challenges. Here we present and validate an end-to-end workflow to facilitate affordable whole genome sequencing for rabies surveillance utilising nanopore technology. We used this workflow in Kenya, Tanzania and the Philippines to generate rabies virus genomes in two to three days, reducing costs to approximately £60 per genome. This is over half the cost of metagenomic sequencing previously conducted for Tanzanian samples, which involved exporting samples to the UK and a three- to six-month lag time. Ongoing optimization of workflows are likely to reduce these costs further. We also present tools to support routine whole genome sequencing and interpretation for genomic surveillance. Moreover, combined with training workshops to empower scientists in-country, we show that local sequencing capacity can be readily established and sustainable, negating the common misperception that cutting-edge genomic research can only be conducted in high resource laboratories. More generally, we argue that the capacity to harness genomic data is a game-changer for endemic disease surveillance and should precipitate a new wave of researchers from low- and middle-income countries.

17.
Trends Microbiol ; 26(10): 886-887, 2018 10.
Article in English | MEDLINE | ID: mdl-30072086

ABSTRACT

This infographic describes the transmission cycle of rabies virus in domestic dogs and the necessity of a One Health approach, integrating medical and veterinary interventions, to control and eliminate human rabies deaths. Rabies virus (RABV) causes an acute, fatal neurological infection in humans and other mammals, transmitted through the saliva of rabid animals via a bite or scratch. From the site of infection the virus travels along neurons to the central nervous system (CNS), where viral replication leads to symptoms and systemic spread. Once symptomatic, the disease is nearly 100% fatal. However, the disease is 100% vaccine-preventable through the prompt administration of human postexposure prophylaxis (PEP) and vaccination of animal reservoirs. While RABV has a broad host range, domestic dogs cause over 99% of all human cases, killing 59000 people every year. Human PEP is costly (US$11-150 per dose) and often difficult to obtain. Dog vaccination is a considerably more cost-effective and feasible method to reduce the incidence of human rabies. With this in mind, the World Health Organisation (WHO) and partners have set a target for the global elimination of dog-mediated human rabies, through control of the disease in dogs, by 2030.


Subject(s)
Dog Diseases/transmission , Rabies virus , Rabies/veterinary , Animals , Cost-Benefit Analysis , Dog Diseases/prevention & control , Dog Diseases/virology , Dogs , Humans , One Health , Post-Exposure Prophylaxis , Rabies/economics , Rabies/prevention & control , Rabies/transmission , Vaccination , Zoonoses/prevention & control , Zoonoses/virology
18.
Mol Ecol ; 27(3): 773-788, 2018 02.
Article in English | MEDLINE | ID: mdl-29274171

ABSTRACT

Landscape heterogeneity plays an important role in disease spread and persistence, but quantifying landscape influences and their scale dependence is challenging. Studies have focused on how environmental features or global transport networks influence pathogen invasion and spread, but their influence on local transmission dynamics that underpin the persistence of endemic diseases remains unexplored. Bayesian phylogeographic frameworks that incorporate spatial heterogeneities are promising tools for analysing linked epidemiological, environmental and genetic data. Here, we extend these methodological approaches to decipher the relative contribution and scale-dependent effects of landscape influences on the transmission of endemic rabies virus in Serengeti district, Tanzania (area ~4,900 km2 ). Utilizing detailed epidemiological data and 152 complete viral genomes collected between 2004 and 2013, we show that the localized presence of dogs but not their density is the most important determinant of diffusion, implying that culling will be ineffective for rabies control. Rivers and roads acted as barriers and facilitators to viral spread, respectively, and vaccination impeded diffusion despite variable annual coverage. Notably, we found that landscape effects were scale-dependent: rivers were barriers and roads facilitators on larger scales, whereas the distribution of dogs was important for rabies dispersal across multiple scales. This nuanced understanding of the spatial processes that underpin rabies transmission can be exploited for targeted control at the scale where it will have the greatest impact. Moreover, this research demonstrates how current phylogeographic frameworks can be adapted to improve our understanding of endemic disease dynamics at different spatial scales.


Subject(s)
Dogs/virology , Rabies virus/physiology , Zoonoses/transmission , Zoonoses/virology , Animals , Movement , Phylogeography , Tanzania
19.
Annu Rev Phytopathol ; 55: 139-160, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28525307

ABSTRACT

During the past decade, knowledge of pathogen life history has greatly benefited from the advent and development of molecular epidemiology. This branch of epidemiology uses information on pathogen variation at the molecular level to gain insights into a pathogen's niche and evolution and to characterize pathogen dispersal within and between host populations. Here, we review molecular epidemiology approaches that have been developed to trace plant virus dispersal in landscapes. In particular, we highlight how virus molecular epidemiology, nourished with powerful sequencing technologies, can provide novel insights at the crossroads between the blooming fields of landscape genetics, phylogeography, and evolutionary epidemiology. We present existing approaches and their limitations and contributions to the understanding of plant virus epidemiology.


Subject(s)
Plant Diseases/virology , Plant Viruses/genetics , Molecular Epidemiology , Phylogeography
20.
Virus Evol ; 1(1): vev011, 2015.
Article in English | MEDLINE | ID: mdl-27774283

ABSTRACT

Many of the pathogens perceived to pose the greatest risk to humans are viral zoonoses, responsible for a range of emerging and endemic infectious diseases. Phylogeography is a useful tool to understand the processes that give rise to spatial patterns and drive dynamics in virus populations. Increasingly, whole-genome information is being used to uncover these patterns, but the limits of phylogenetic resolution that can be achieved with this are unclear. Here, whole-genome variation was used to uncover fine-scale population structure in endemic canine rabies virus circulating in Tanzania. This is the first whole-genome population study of rabies virus and the first comprehensive phylogenetic analysis of rabies virus in East Africa, providing important insights into rabies transmission in an endemic system. In addition, sub-continental scale patterns of population structure were identified using partial gene data and used to determine population structure at larger spatial scales in Africa. While rabies virus has a defined spatial structure at large scales, increasingly frequent levels of admixture were observed at regional and local levels. Discrete phylogeographic analysis revealed long-distance dispersal within Tanzania, which could be attributed to human-mediated movement, and we found evidence of multiple persistent, co-circulating lineages at a very local scale in a single district, despite on-going mass dog vaccination campaigns. This may reflect the wider endemic circulation of these lineages over several decades alongside increased admixture due to human-mediated introductions. These data indicate that successful rabies control in Tanzania could be established at a national level, since most dispersal appears to be restricted within the confines of country borders but some coordination with neighbouring countries may be required to limit transboundary movements. Evidence of complex patterns of rabies circulation within Tanzania necessitates the use of whole-genome sequencing to delineate finer scale population structure that can that can guide interventions, such as the spatial scale and design of dog vaccination campaigns and dog movement controls to achieve and maintain freedom from disease.

SELECTION OF CITATIONS
SEARCH DETAIL