Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 184
1.
Mol Cell ; 84(8): 1512-1526.e9, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38508184

J-domain proteins (JDPs) constitute a large family of molecular chaperones that bind a broad spectrum of substrates, targeting them to Hsp70, thus determining the specificity of and activating the entire chaperone functional cycle. The malfunction of JDPs is therefore inextricably linked to myriad human disorders. Here, we uncover a unique mechanism by which chaperones recognize misfolded clients, present in human class A JDPs. Through a newly identified ß-hairpin site, these chaperones detect changes in protein dynamics at the initial stages of misfolding, prior to exposure of hydrophobic regions or large structural rearrangements. The JDPs then sequester misfolding-prone proteins into large oligomeric assemblies, protecting them from aggregation. Through this mechanism, class A JDPs bind destabilized p53 mutants, preventing clearance of these oncoproteins by Hsp70-mediated degradation, thus promoting cancer progression. Removal of the ß-hairpin abrogates this protective activity while minimally affecting other chaperoning functions. This suggests the class A JDP ß-hairpin as a highly specific target for cancer therapeutics.


Neoplasms , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , HSP70 Heat-Shock Proteins/metabolism , Protein Folding
2.
Cell Stress Chaperones ; 29(1): 21-33, 2024 Feb.
Article En | MEDLINE | ID: mdl-38320449

J-domain proteins (JDPs) are the largest family of chaperones in most organisms, but much of how they function within the network of other chaperones and protein quality control machineries is still an enigma. Here, we report on the latest findings related to JDP functions presented at a dedicated JDP workshop in Gdansk, Poland. The report does not include all (details) of what was shared and discussed at the meeting, because some of these original data have not yet been accepted for publication elsewhere or represented still preliminary observations at the time.


HSP70 Heat-Shock Proteins , Molecular Chaperones , HSP70 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Poland , HSP40 Heat-Shock Proteins/metabolism
3.
Nat Commun ; 15(1): 1382, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38360885

Cotranslational protein folding depends on general chaperones that engage highly diverse nascent chains at the ribosomes. Here we discover a dedicated ribosome-associated chaperone, Chp1, that rewires the cotranslational folding machinery to assist in the challenging biogenesis of abundantly expressed eukaryotic translation elongation factor 1A (eEF1A). Our results indicate that during eEF1A synthesis, Chp1 is recruited to the ribosome with the help of the nascent polypeptide-associated complex (NAC), where it safeguards eEF1A biogenesis. Aberrant eEF1A production in the absence of Chp1 triggers instant proteolysis, widespread protein aggregation, activation of Hsf1 stress transcription and compromises cellular fitness. The expression of pathogenic eEF1A2 variants linked to epileptic-dyskinetic encephalopathy is protected by Chp1. Thus, eEF1A is a difficult-to-fold protein that necessitates a biogenesis pathway starting with dedicated folding factor Chp1 at the ribosome to protect the eukaryotic cell from proteostasis collapse.


Calcium-Binding Proteins , Molecular Chaperones , Peptide Elongation Factor 1 , Protein Folding , Ribosomes , Protein Biosynthesis , Proteostasis , Ribosomes/genetics , Ribosomes/metabolism , Humans , Calcium-Binding Proteins/metabolism , Molecular Chaperones/metabolism , Peptide Elongation Factor 1/metabolism
4.
J Mol Biol ; : 168484, 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38331212

The Hsp70 chaperone system is a central component of cellular protein quality control (PQC) by acting in a multitude of protein folding processes ranging from the folding of newly synthesized proteins to the disassembly and refolding of protein aggregates. This multifunctionality of Hsp70 is governed by J-domain proteins (JDPs), which act as indispensable co-chaperones that target specific substrates to Hsp70. The number of distinct JDPs present in a species always outnumbers Hsp70, documenting JDP function in functional diversification of Hsp70. In this review, we describe the physiological roles of JDPs in the Saccharomyces cerevisiae PQC system, with a focus on the abundant JDP generalists, Zuo1, Ydj1 and Sis1, which function in fundamental cellular processes. Ribosome-bound Zuo1 cooperates with the Hsp70 chaperones Ssb1/2 in folding and assembly of nascent polypeptides. Ydj1 and Sis1 cooperate with the Hsp70 members Ssa1 to Ssa4 to exert overlapping functions in protein folding and targeting of newly synthesized proteins to organelles including mitochondria and facilitating the degradation of aberrant proteins by E3 ligases. Furthermore, they act in protein disaggregation reactions, though Ydj1 and Sis1 differ in their modes of Hsp70 cooperation and substrate specificities. This results in functional specialization as seen in prion propagation and the underlying dominant role of Sis1 in targeting Hsp70 for shearing of prion amyloid fibrils.

6.
Methods Enzymol ; 684: 1-38, 2023.
Article En | MEDLINE | ID: mdl-37230585

The processing, membrane targeting and folding of newly synthesized polypeptides is closely linked to their synthesis at the ribosome. A network of enzymes, chaperones and targeting factors engages ribosome-nascent chain complexes (RNCs) to support these maturation processes. Exploring the modes of action of this machinery is critical for our understanding of functional protein biogenesis. Selective ribosome profiling (SeRP) is a powerful method for interrogating co-translational interactions of maturation factors with RNCs. It provides proteome-wide information on the factor's nascent chain interactome, the timing of factor binding and release during the progress of translation of individual nascent chain species, and the mechanisms and features controlling factor engagement. SeRP is based on the combination of two ribosome profiling (RP) experiments performed on the same cell population. In one experiment the ribosome-protected mRNA footprints of all translating ribosomes of the cell are sequenced (total translatome), while the other experiment detects only the ribosome footprints of the subpopulation of ribosomes engaged by the factor of interest (selected translatome). The codon-specific ratio of ribosome footprint densities from selected over total translatome reports on the factor enrichment at specific nascent chains. In this chapter, we provide a detailed SeRP protocol for mammalian cells. The protocol includes instructions on cell growth and cell harvest, stabilization of factor-RNC interactions, nuclease digest and purification of (factor-engaged) monosomes, as well as preparation of cDNA libraries from ribosome footprint fragments and deep sequencing data analysis. Purification protocols of factor-engaged monosomes and experimental results are exemplified for the human ribosomal tunnel exit-binding factor Ebp1 and chaperone Hsp90, but the protocols are readily adaptable to other co-translationally acting mammalian factors.


Ribosome Profiling , Ribosomes , Animals , Humans , Ribosomes/metabolism , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Peptides/chemistry , Base Sequence , Protein Biosynthesis , Mammals/genetics
7.
J Cell Biol ; 221(10)2022 10 03.
Article En | MEDLINE | ID: mdl-36069810

The chaperone-mediated sequestration of misfolded proteins into inclusions is a pivotal cellular strategy to maintain proteostasis in Saccharomyces cerevisiae, executed by small heat shock proteins (sHsps) Hsp42 and Btn2. Direct homologs of Hsp42 and Btn2 are absent in other organisms, questioning whether sequestration represents a conserved proteostasis strategy and, if so, which factors are involved. We examined sHsps from Escherchia coli, Caenorhabditis elegans, and humans for their ability to complement the defects of yeast sequestrase mutants. We show that sequestration of misfolded proteins is an original and widespread activity among sHsps executed by specific family members. Sequestrase positive C. elegans' sHsps harbor specific sequence features, including a high content of aromatic and methionine residues in disordered N-terminal extensions. Those sHsps buffer limitations in Hsp70 capacity in C. elegans WT animals and are upregulated in long-lived daf-2 mutants, contributing to lifespan extension. Cellular protection by sequestration of misfolded proteins is, therefore, an evolutionarily conserved activity of the sHsp family.


Evolution, Molecular , Heat-Shock Proteins, Small , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Heat-Shock Proteins, Small/genetics , Heat-Shock Proteins, Small/metabolism , Humans , Protein Folding , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
8.
EMBO J ; 41(16): e110410, 2022 08 16.
Article En | MEDLINE | ID: mdl-35698800

Although amyloid fibres are highly stable protein aggregates, a specific combination of human Hsp70 system chaperones can disassemble them, including fibres formed of α-synuclein, huntingtin, or Tau. Disaggregation requires the ATPase activity of the constitutively expressed Hsp70 family member, Hsc70, together with the J domain protein DNAJB1 and the nucleotide exchange factor Apg2. Clustering of Hsc70 on the fibrils appears to be necessary for disassembly. Here we use atomic force microscopy to show that segments of in vitro assembled α-synuclein fibrils are first coated with chaperones and then undergo bursts of rapid, unidirectional disassembly. Cryo-electron tomography and total internal reflection fluorescence microscopy reveal fibrils with regions of densely bound chaperones, preferentially at one end of the fibre. Sub-stoichiometric amounts of Apg2 relative to Hsc70 dramatically increase recruitment of Hsc70 to the fibres, creating localised active zones that then undergo rapid disassembly at a rate of ~ 4 subunits per second. The observed unidirectional bursts of Hsc70 loading and unravelling may be explained by differences between the two ends of the polar fibre structure.


HSP70 Heat-Shock Proteins , alpha-Synuclein , Amyloid/metabolism , Amyloidogenic Proteins/metabolism , HSC70 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Humans , Molecular Chaperones/metabolism , Protein Aggregates , Protein Binding , alpha-Synuclein/metabolism
9.
Nature ; 603(7901): 509-514, 2022 03.
Article En | MEDLINE | ID: mdl-35264791

Ribosome stalling during translation is detrimental to cellular fitness, but how this is sensed and elicits recycling of ribosomal subunits and quality control of associated mRNA and incomplete nascent chains is poorly understood1,2. Here we uncover Bacillus subtilis MutS2, a member of the conserved MutS family of ATPases that function in DNA mismatch repair3, as an unexpected ribosome-binding protein with an essential function in translational quality control. Cryo-electron microscopy analysis of affinity-purified native complexes shows that MutS2 functions in sensing collisions between stalled and translating ribosomes and suggests how ribosome collisions can serve as platforms to deploy downstream processes: MutS2 has an RNA endonuclease small MutS-related (SMR) domain, as well as an ATPase/clamp domain that is properly positioned to promote ribosomal subunit dissociation, which is a requirement both for ribosome recycling and for initiation of ribosome-associated protein quality control (RQC). Accordingly, MutS2 promotes nascent chain modification with alanine-tail degrons-an early step in RQC-in an ATPase domain-dependent manner. The relevance of these observations is underscored by evidence of strong co-occurrence of MutS2 and RQC genes across bacterial phyla. Overall, the findings demonstrate a deeply conserved role for ribosome collisions in mounting a complex response to the interruption of translation within open reading frames.


Adenosine Triphosphatases , Ribosomes , Adenosine Triphosphatases/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Cryoelectron Microscopy , DNA Repair , Protein Biosynthesis , Proteins/metabolism , Ribosomes/metabolism
10.
J Mol Biol ; 434(1): 167157, 2022 01 15.
Article En | MEDLINE | ID: mdl-34271010

The protein quality control (PQC) system maintains protein homeostasis by counteracting the accumulation of misfolded protein conformers. Substrate degradation and refolding activities executed by ATP-dependent proteases and chaperones constitute major strategies of the proteostasis network. Small heat shock proteins represent ATP-independent chaperones that bind to misfolded proteins, preventing their uncontrolled aggregation. sHsps share the conserved α-crystallin domain (ACD) and gain functional specificity through variable and largely disordered N- and C-terminal extensions (NTE, CTE). They form large, polydisperse oligomers through multiple, weak interactions between NTE/CTEs and ACD dimers. Sequence variations of sHsps and the large variability of sHsp oligomers enable sHsps to fulfill diverse tasks in the PQC network. sHsp oligomers represent inactive yet dynamic resting states that are rapidly deoligomerized and activated upon stress conditions, releasing substrate binding sites in NTEs and ACDs Bound substrates are usually isolated in large sHsp/substrate complexes. This sequestration activity of sHsps represents a third strategy of the proteostasis network. Substrate sequestration reduces the burden for other PQC components during immediate and persistent stress conditions. Sequestered substrates can be released and directed towards refolding pathways by ATP-dependent Hsp70/Hsp100 chaperones or sorted for degradation by autophagic pathways. sHsps can also maintain the dynamic state of phase-separated stress granules (SGs), which store mRNA and translation factors, by reducing the accumulation of misfolded proteins inside SGs and preventing unfolding of SG components. This ensures SG disassembly and regain of translational capacity during recovery periods.


Heat-Shock Proteins, Small/metabolism , Proteostasis/physiology , Stress Granules/metabolism , Animals , Heat-Shock Proteins, Small/chemistry , Heat-Shock Proteins, Small/genetics , Humans , Molecular Chaperones/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Protein Aggregates , Protein Folding , Protein Multimerization
11.
Front Mol Biosci ; 9: 1106477, 2022.
Article En | MEDLINE | ID: mdl-36660429

To counteract proteotoxic stress and cellular aging, protein quality control (PQC) systems rely on the refolding, degradation and sequestration of misfolded proteins. In Saccharomyces cerevisiae the Hsp70 chaperone system plays a central role in protein refolding, while degradation is predominantly executed by the ubiquitin proteasome system (UPS). The sequestrases Hsp42 and Btn2 deposit misfolded proteins in cytosolic and nuclear inclusions, thereby restricting the accessibility of misfolded proteins to Hsp70 and preventing the exhaustion of limited Hsp70 resources. Therefore, in yeast, sequestrase mutants show negative genetic interactions with double mutants lacking the Hsp70 co-chaperone Fes1 and the Hsp104 disaggregase (fes1Δ hsp104Δ, ΔΔ) and suffering from low Hsp70 capacity. Growth of ΔΔbtn2Δ mutants is highly temperature-sensitive and results in proteostasis breakdown at non-permissive temperatures. Here, we probed for the role of the ubiquitin proteasome system in maintaining protein homeostasis in ΔΔbtn2Δ cells, which are affected in two major protein quality control branches. We show that ΔΔbtn2Δ cells induce expression of diverse stress-related pathways including the ubiquitin proteasome system to counteract the proteostasis defects. Ubiquitin proteasome system dependent degradation of the stringent Hsp70 substrate firefly Luciferase in the mutant cells mirrors such compensatory activities of the protein quality control system. Surprisingly however, the enhanced ubiquitin proteasome system activity does not improve but aggravates the growth defects of ΔΔbtn2Δ cells. Reducing ubiquitin proteasome system activity in the mutant by lowering the levels of functional 26S proteasomes improved growth, increased refolding yield of the Luciferase reporter and attenuated global stress responses. Our findings indicate that an imbalance between Hsp70-dependent refolding, sequestration and ubiquitin proteasome system-mediated degradation activities strongly affects protein homeostasis of Hsp70 capacity mutants and contributes to their severe growth phenotypes.

12.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article En | MEDLINE | ID: mdl-34911752

The presence of a single cluster of nonoptimal codons was found to decrease a transcript's half-life through the interaction of the ribosome-associated quality control machinery with stalled ribosomes in Saccharomyces cerevisiae The impact of multiple nonoptimal codon clusters on a transcript's half-life, however, is unknown. Using a kinetic model, we predict that inserting a second nonoptimal cluster near the 5' end can lead to synergistic effects that increase a messenger RNA's (mRNA's) half-life in S. cerevisiae Specifically, the 5' end cluster suppresses the formation of ribosome queues, reducing the interaction of ribosome-associated quality control factors with stalled ribosomes. We experimentally validate this prediction by introducing two nonoptimal clusters into three different genes and find that their mRNA half-life increases up to fourfold. The model also predicts that in the presence of two clusters, the cluster closest to the 5' end is the primary determinant of mRNA half-life. These results suggest the "translational ramp," in which nonoptimal codons are located near the start codon and increase translational efficiency, may have the additional biological benefit of allowing downstream slow-codon clusters to be present without decreasing mRNA half-life. These results indicate that codon usage bias plays a more nuanced role in controlling cellular protein levels than previously thought.


Protein Biosynthesis , RNA, Messenger/metabolism , Saccharomyces cerevisiae/metabolism , Fungal Proteins/biosynthesis , Half-Life , Models, Genetic
13.
Cell Rep ; 34(5): 108711, 2021 02 02.
Article En | MEDLINE | ID: mdl-33535049

N-terminal (Nt) acetylation is a highly prevalent co-translational protein modification in eukaryotes, catalyzed by at least five Nt acetyltransferases (Nats) with differing specificities. Nt acetylation has been implicated in protein quality control, but its broad biological significance remains elusive. We investigate the roles of the two major Nats of S. cerevisiae, NatA and NatB, by performing transcriptome, translatome, and proteome profiling of natAΔ and natBΔ mutants. Our results reveal a range of NatA- and NatB-specific phenotypes. NatA is implicated in systemic adaptation control, because natAΔ mutants display altered expression of transposons, sub-telomeric genes, pheromone response genes, and nuclear genes encoding mitochondrial ribosomal proteins. NatB predominantly affects protein folding, because natBΔ mutants, to a greater extent than natA mutants, accumulate protein aggregates, induce stress responses, and display reduced fitness in the absence of the ribosome-associated chaperone Ssb. These phenotypic differences indicate that controlling Nat activities may serve to elicit distinct cellular responses.


Acetyltransferases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Acetylation
14.
Science ; 371(6524): 57-64, 2021 01 01.
Article En | MEDLINE | ID: mdl-33384371

Accurate assembly of newly synthesized proteins into functional oligomers is crucial for cell activity. In this study, we investigated whether direct interaction of two nascent proteins, emerging from nearby ribosomes (co-co assembly), constitutes a general mechanism for oligomer formation. We used proteome-wide screening to detect nascent chain-connected ribosome pairs and identified hundreds of homomer subunits that co-co assemble in human cells. Interactions are mediated by five major domain classes, among which N-terminal coiled coils are the most prevalent. We were able to reconstitute co-co assembly of nuclear lamin in Escherichia coli, demonstrating that dimer formation is independent of dedicated assembly machineries. Co-co assembly may thus represent an efficient way to limit protein aggregation risks posed by diffusion-driven assembly routes and ensure isoform-specific homomer formation.


Protein Biosynthesis , Protein Multimerization , Ribosomes/metabolism , Escherichia coli , HEK293 Cells , Humans , Lamins/chemistry , Lamins/metabolism , Protein Domains , Proteome
16.
Nature ; 587(7834): 483-488, 2020 11.
Article En | MEDLINE | ID: mdl-33177717

The deposition of highly ordered fibrillar-type aggregates into inclusion bodies is a hallmark of neurodegenerative diseases such as Parkinson's disease. The high stability of such amyloid fibril aggregates makes them challenging substrates for the cellular protein quality-control machinery1,2. However, the human HSP70 chaperone and its co-chaperones DNAJB1 and HSP110 can dissolve preformed fibrils of the Parkinson's disease-linked presynaptic protein α-synuclein in vitro3,4. The underlying mechanisms of this unique activity remain poorly understood. Here we use biochemical tools and nuclear magnetic resonance spectroscopy to determine the crucial steps of the disaggregation process of amyloid fibrils. We find that DNAJB1 specifically recognizes the oligomeric form of α-synuclein via multivalent interactions, and selectively targets HSP70 to fibrils. HSP70 and DNAJB1 interact with the fibril through exposed, flexible amino and carboxy termini of α-synuclein rather than the amyloid core itself. The synergistic action of DNAJB1 and HSP110 strongly accelerates disaggregation by facilitating the loading of several HSP70 molecules in a densely packed arrangement at the fibril surface, which is ideal for the generation of 'entropic pulling' forces. The cooperation of DNAJB1 and HSP110 in amyloid disaggregation goes beyond the classical substrate targeting and recycling functions that are attributed to these HSP70 co-chaperones and constitutes an active and essential contribution to the remodelling of the amyloid substrate. These mechanistic insights into the essential prerequisites for amyloid disaggregation may provide a basis for new therapeutic interventions in neurodegeneration.


Amyloid/chemistry , Amyloid/metabolism , HSP70 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/metabolism , Protein Aggregates , Protein Aggregation, Pathological , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , Adenosine Triphosphate/metabolism , Entropy , HSP110 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/analysis , Humans , Hydrolysis , Models, Biological , Parkinson Disease/metabolism
17.
Nature ; 587(7834): 489-494, 2020 11.
Article En | MEDLINE | ID: mdl-33177718

The ubiquitous heat shock protein 70 (HSP70) family consists of ATP-dependent molecular chaperones, which perform numerous cellular functions that affect almost all aspects of the protein life cycle from synthesis to degradation1-3. Achieving this broad spectrum of functions requires precise regulation of HSP70 activity. Proteins of the HSP40 family, also known as J-domain proteins (JDPs), have a key role in this process by preselecting substrates for transfer to their HSP70 partners and by stimulating the ATP hydrolysis of HSP70, leading to stable substrate binding3,4. In humans, JDPs constitute a large and diverse family with more than 40 different members2, which vary in their substrate selectivity and in the nature and number of their client-binding domains5. Here we show that JDPs can also differ fundamentally in their interactions with HSP70 chaperones. Using nuclear magnetic resonance spectroscopy6,7 we find that the major class B JDPs are regulated by an autoinhibitory mechanism that is not present in other classes. Although in all JDPs the interaction of the characteristic J-domain is responsible for the activation of HSP70, in DNAJB1 the HSP70-binding sites in this domain are intrinsically blocked by an adjacent glycine-phenylalanine rich region-an inhibition that can be released upon the interaction of a second site on DNAJB1 with the HSP70 C-terminal tail. This regulation, which controls substrate targeting to HSP70, is essential for the disaggregation of amyloid fibres by HSP70-DNAJB1, illustrating why no other class of JDPs can substitute for class B in this function. Moreover, this regulatory layer, which governs the functional specificities of JDP co-chaperones and their interactions with HSP70s, could be key to the wide range of cellular functions of HSP70.


HSP40 Heat-Shock Proteins/chemistry , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/metabolism , Amyloid/chemistry , Amyloid/metabolism , Binding Sites , Glycine/metabolism , HSP70 Heat-Shock Proteins/genetics , Humans , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Mutation , Phenylalanine/metabolism , Protein Aggregates , Protein Aggregation, Pathological , Protein Binding/genetics , Protein Domains , Sequence Deletion , Substrate Specificity , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism
18.
J Mol Biol ; 432(24): 166696, 2020 12 04.
Article En | MEDLINE | ID: mdl-33152326

Variation in translation-elongation kinetics along a transcript's coding sequence plays an important role in the maintenance of cellular protein homeostasis by regulating co-translational protein folding, localization, and maturation. Translation-elongation speed is influenced by molecular factors within mRNA and protein sequences. For example, the presence of proline in the ribosome's P- or A-site slows down translation, but the effect of other pairs of amino acids, in the context of all 400 possible pairs, has not been characterized. Here, we study Saccharomyces cerevisiae using a combination of bioinformatics, mutational experiments, and evolutionary analyses, and show that many different pairs of amino acids and their associated tRNA molecules predictably and causally encode translation rate information when these pairs are present in the A- and P-sites of the ribosome independent of other factors known to influence translation speed including mRNA structure, wobble base pairing, tripeptide motifs, positively charged upstream nascent chain residues, and cognate tRNA concentration. The fast-translating pairs of amino acids that we identify are enriched four-fold relative to the slow-translating pairs across Saccharomyces cerevisiae's proteome, while the slow-translating pairs are enriched downstream of domain boundaries. Thus, the chemical identity of amino acid pairs contributes to variability in translation rates, elongation kinetics are causally encoded in the primary structure of proteins, and signatures of evolutionary selection indicate their potential role in co-translational processes.


Amino Acids/genetics , Peptide Chain Elongation, Translational/genetics , Protein Biosynthesis , RNA, Transfer/genetics , Ribosomes/genetics , Computational Biology , Kinetics , Mutation/genetics , Protein Folding , Proteome/genetics , RNA, Messenger/genetics , Saccharomyces cerevisiae/genetics
20.
Nat Commun ; 11(1): 4676, 2020 09 16.
Article En | MEDLINE | ID: mdl-32938922

Translation efficiency varies considerably between different mRNAs, thereby impacting protein expression. Translation of the stress response master-regulator ATF4 increases upon stress, but the molecular mechanisms are not well understood. We discover here that translation factors DENR, MCTS1 and eIF2D are required to induce ATF4 translation upon stress by promoting translation reinitiation in the ATF4 5'UTR. We find DENR and MCTS1 are only needed for reinitiation after upstream Open Reading Frames (uORFs) containing certain penultimate codons, perhaps because DENR•MCTS1 are needed to evict only certain tRNAs from post-termination 40S ribosomes. This provides a model for how DENR and MCTS1 promote translation reinitiation. Cancer cells, which are exposed to many stresses, require ATF4 for survival and proliferation. We find a strong correlation between DENR•MCTS1 expression and ATF4 activity across cancers. Furthermore, additional oncogenes including a-Raf, c-Raf and Cdk4 have long uORFs and are translated in a DENR•MCTS1 dependent manner.


Activating Transcription Factor 4/genetics , Eukaryotic Initiation Factors/metabolism , Protein Biosynthesis , Ribosomes/metabolism , 5' Untranslated Regions , Activating Transcription Factor 4/metabolism , Cell Cycle Proteins/genetics , Codon , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factors/genetics , Gene Expression Regulation , HeLa Cells , Humans , Neoplasms/genetics , Oncogene Proteins/genetics , Oncogenes , Open Reading Frames , RNA, Messenger , RNA, Transfer/genetics , RNA, Transfer/metabolism , Ribosome Subunits, Small, Eukaryotic/genetics , Ribosome Subunits, Small, Eukaryotic/metabolism , Ribosomes/genetics
...