Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Neurodegener ; 19(1): 50, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902734

ABSTRACT

BACKGROUND: The key pathological signature of ALS/ FTLD is the mis-localization of endogenous TDP-43 from the nucleus to the cytoplasm. However, TDP-43 gain of function in the cytoplasm is still poorly understood since TDP-43 animal models recapitulating mis-localization of endogenous TDP-43 from the nucleus to the cytoplasm are missing. METHODS: CRISPR/Cas9 technology was used to generate a zebrafish line (called CytoTDP), that mis-locates endogenous TDP-43 from the nucleus to the cytoplasm. Phenotypic characterization of motor neurons and the neuromuscular junction was performed by immunostaining, microglia were immunohistochemically localized by whole-mount tissue clearing and muscle ultrastructure was analyzed by scanning electron microscopy. Behavior was investigated by video tracking and quantitative analysis of swimming parameters. RNA sequencing was used to identify mis-regulated pathways with validation by molecular analysis. RESULTS: CytoTDP fish have early larval phenotypes resembling clinical features of ALS such as progressive motor defects, neurodegeneration and muscle atrophy. Taking advantage of zebrafish's embryonic development that solely relys on yolk usage until 5 days post fertilization, we demonstrated that microglia proliferation and activation in the hypothalamus is independent from food intake. By comparing CytoTDP to a previously generated TDP-43 knockout line, transcriptomic analyses revealed that mis-localization of endogenous TDP-43, rather than TDP-43 nuclear loss of function, leads to early onset metabolic dysfunction. CONCLUSIONS: The new TDP-43 model mimics the ALS/FTLD hallmark of progressive motor dysfunction. Our results suggest that functional deficits of the hypothalamus, the metabolic regulatory center, might be the primary cause of weight loss in ALS patients. Cytoplasmic gain of function of endogenous TDP-43 leads to metabolic dysfunction in vivo that are reminiscent of early ALS clinical non-motor metabolic alterations. Thus, the CytoTDP zebrafish model offers a unique opportunity to identify mis-regulated targets for therapeutic intervention early in disease progression.


Subject(s)
Amyotrophic Lateral Sclerosis , DNA-Binding Proteins , Disease Models, Animal , Motor Neurons , Zebrafish Proteins , Zebrafish , Animals , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Motor Neurons/metabolism , Motor Neurons/pathology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Animals, Genetically Modified , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology
2.
Neurobiol Aging ; 94: 164-175, 2020 10.
Article in English | MEDLINE | ID: mdl-32629311

ABSTRACT

Brain aging is a complex process, which involves multiple pathways including various components from cellular to molecular. This study aimed to investigate the gene expression changes in zebrafish brains through young-adult to adult, and adult to old age. RNA sequencing was performed on isolated neuronal cells from zebrafish brains. The cells were enriched in progenitor cell markers, which are known to diminish throughout the aging process. We found 176 statistically significant, differentially expressed genes among the groups, and identified a group of genes based on gene ontology descriptions, which were classified as cell adhesion molecules. The relevance of these genes was further tested in another set of zebrafish brains, human healthy, and Alzheimer's disease brain samples, as well as in Allen Brain Atlas data. We observed that the expression change of 2 genes, GJC2 and ALCAM, during the aging process was consistent in all experimental sets. Our findings provide a new set of markers for healthy brain aging and suggest new targets for therapeutic approaches to neurodegenerative diseases.


Subject(s)
Aging/genetics , Aging/metabolism , Brain/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , RNA/genetics , RNA/metabolism , Sequence Analysis, RNA/methods , Activated-Leukocyte Cell Adhesion Molecule/genetics , Activated-Leukocyte Cell Adhesion Molecule/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Connexins/genetics , Fetal Proteins/genetics , Fetal Proteins/metabolism , Gene Expression/genetics , Gene Expression Regulation, Developmental/genetics , Humans , Zebrafish
3.
Cells ; 9(2)2020 02 03.
Article in English | MEDLINE | ID: mdl-32028681

ABSTRACT

Granulins (GRN) are secreted factors that promote neuronal survival and regulate inflammation in various pathological conditions. However, their roles in physiological conditions in the brain remain poorly understood. To address this knowledge gap, we analysed the telencephalon in Grn-deficient zebrafish and identified morphological and transcriptional changes in microglial cells, indicative of a pro-inflammatory phenotype in the absence of any insult. Unexpectedly, activated mutant microglia shared part of their transcriptional signature with aged human microglia. Furthermore, transcriptome profiles of the entire telencephali isolated from young Grn-deficient animals showed remarkable similarities with the profiles of the telencephali isolated from aged wildtype animals. Additionally, 50% of differentially regulated genes during aging were regulated in the telencephalon of young Grn-deficient animals compared to their wildtype littermates. Importantly, the telencephalon transcriptome in young Grn-deficent animals changed only mildly with aging, further suggesting premature aging of Grn-deficient brain. Indeed, Grn loss led to decreased neurogenesis and oligodendrogenesis, and to shortening of telomeres at young ages, to an extent comparable to that observed during aging. Altogether, our data demonstrate a role of Grn in regulating aging kinetics in the zebrafish telencephalon, thus providing a valuable tool for the development of new therapeutic approaches to treat age-associated pathologies.


Subject(s)
Aging/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Telencephalon/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Aging, Premature/genetics , Animals , Cell Differentiation , Gene Expression Profiling , Intercellular Signaling Peptides and Proteins/deficiency , Kinetics , Microglia/metabolism , Microglia/pathology , Mutation/genetics , Neurogenesis/genetics , Oligodendroglia/metabolism , Phenotype , Stem Cells/metabolism , Telomere/metabolism , Transcriptome/genetics , Zebrafish/genetics , Zebrafish Proteins/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL