Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Nucleic Acids Res ; 50(10): 5443-5466, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35061895

ABSTRACT

Although recent regulatory approval of splice-switching oligonucleotides (SSOs) for the treatment of neuromuscular disease such as Duchenne muscular dystrophy has been an advance for the splice-switching field, current SSO chemistries have shown limited clinical benefit due to poor pharmacology. To overcome limitations of existing technologies, we engineered chimeric stereopure oligonucleotides with phosphorothioate (PS) and phosphoryl guanidine-containing (PN) backbones. We demonstrate that these chimeric stereopure oligonucleotides have markedly improved pharmacology and efficacy compared with PS-modified oligonucleotides, preventing premature death and improving median survival from 49 days to at least 280 days in a dystrophic mouse model with an aggressive phenotype. These data demonstrate that chemical optimization alone can profoundly impact oligonucleotide pharmacology and highlight the potential for continued innovation around the oligonucleotide backbone. More specifically, we conclude that chimeric stereopure oligonucleotides are a promising splice-switching modality with potential for the treatment of neuromuscular and other genetic diseases impacting difficult to reach tissues such as the skeletal muscle and heart.


Subject(s)
Muscular Dystrophy, Duchenne , Oligonucleotides, Antisense/chemistry , Phosphorothioate Oligonucleotides/chemistry , Animals , Exons , Mice , Muscle, Skeletal , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/therapy , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/pharmacology , Phosphorothioate Oligonucleotides/pharmacology , RNA Splicing/drug effects
2.
Nat Biotechnol ; 35(9): 845-851, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28829437

ABSTRACT

Whereas stereochemical purity in drugs has become the standard for small molecules, stereoisomeric mixtures containing as many as a half million components persist in antisense oligonucleotide (ASO) therapeutics because it has been feasible neither to separate the individual stereoisomers, nor to synthesize stereochemically pure ASOs. Here we report the development of a scalable synthetic process that yields therapeutic ASOs having high stereochemical and chemical purity. Using this method, we synthesized rationally designed stereopure components of mipomersen, a drug comprising 524,288 stereoisomers. We demonstrate that phosphorothioate (PS) stereochemistry substantially affects the pharmacologic properties of ASOs. We report that Sp-configured PS linkages are stabilized relative to Rp, providing stereochemical protection from pharmacologic inactivation of the drug. Further, we elucidated a triplet stereochemical code in the stereopure ASOs, 3'-SpSpRp, that promotes target RNA cleavage by RNase H1 in vitro and provides a more durable response in mice than stereorandom ASOs.


Subject(s)
Genetic Therapy/methods , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/pharmacokinetics , Phosphorothioate Oligonucleotides/chemistry , Animals , Drug Stability , Female , Humans , Hydrophobic and Hydrophilic Interactions , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oligonucleotides , Oligonucleotides, Antisense/therapeutic use , Rats , Rats, Sprague-Dawley , Ribonuclease H/metabolism , Stereoisomerism
3.
Org Lett ; 14(3): 894-7, 2012 Feb 03.
Article in English | MEDLINE | ID: mdl-22272556

ABSTRACT

The Friedel-Crafts reaction of (η(4)-tetraphenylcyclobutadiene)(η(5)-carbomethoxycyclopentadienyl)cobalt with acid chlorides/aluminum chloride resulted exclusively in para-phenyl acylation. Both monoacylated (1.1 equiv of RCOCl/AlCl(3)) and tetraacylated products (>4 equiv of RCOCl/AlCl(3)) were synthesized. Reaction of PhCC(o-RC(6)H(4)) (R = Me, i-Pr) with Na(C(5)H(4)CO(2)Me) and CoCl(PPh(3))(3) gave predominantly (η(4)-1,3-diaryl-2,4-diphenylcyclobutadiene)(η(5)-carbomethoxycyclopentadienyl)cobalt metallocenes (1,3-[trans] vs 1,2-[cis] selectivity up to 6:1). Conformational control of Friedel-Crafts reactions on the major isomers gave exclusively para-acylation of the unsubstituted phenyl groups.

4.
Org Lett ; 8(4): 769-72, 2006 Feb 16.
Article in English | MEDLINE | ID: mdl-16468763

ABSTRACT

[reaction: see text] A highly active chiral 4-aminopyridine nucleophilic catalyst, available in three steps from (S,S)-hexane-2,5-diol, was applied to the asymmetric Steglich rearrangement of O-aceylated azlactones (1 mol % loading, up to 76% ee).

SELECTION OF CITATIONS
SEARCH DETAIL