Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 45
1.
Genome Med ; 16(1): 28, 2024 Feb 12.
Article En | MEDLINE | ID: mdl-38347552

BACKGROUND: Children with relapsed central nervous system (CNS tumors), neuroblastoma, sarcomas, and other rare solid tumors face poor outcomes. This prospective clinical trial examined the feasibility of combining genomic and transcriptomic profiling of tumor samples with a molecular tumor board (MTB) approach to make real­time treatment decisions for children with relapsed/refractory solid tumors. METHODS: Subjects were divided into three strata: stratum 1-relapsed/refractory neuroblastoma; stratum 2-relapsed/refractory CNS tumors; and stratum 3-relapsed/refractory rare solid tumors. Tumor samples were sent for tumor/normal whole-exome (WES) and tumor whole-transcriptome (WTS) sequencing, and the genomic data were used in a multi-institutional MTB to make real­time treatment decisions. The MTB recommended plan allowed for a combination of up to 4 agents. Feasibility was measured by time to completion of genomic sequencing, MTB review and initiation of treatment. Response was assessed after every two cycles using Response Evaluation Criteria in Solid Tumors (RECIST). Patient clinical benefit was calculated by the sum of the CR, PR, SD, and NED subjects divided by the sum of complete response (CR), partial response (PR), stable disease (SD), no evidence of disease (NED), and progressive disease (PD) subjects. Grade 3 and higher related and unexpected adverse events (AEs) were tabulated for safety evaluation. RESULTS: A total of 186 eligible patients were enrolled with 144 evaluable for safety and 124 evaluable for response. The average number of days from biopsy to initiation of the MTB-recommended combination therapy was 38 days. Patient benefit was exhibited in 65% of all subjects, 67% of neuroblastoma subjects, 73% of CNS tumor subjects, and 60% of rare tumor subjects. There was little associated toxicity above that expected for the MGT drugs used during this trial, suggestive of the safety of utilizing this method of selecting combination targeted therapy. CONCLUSIONS: This trial demonstrated the feasibility, safety, and efficacy of a comprehensive sequencing model to guide personalized therapy for patients with any relapsed/refractory solid malignancy. Personalized therapy was well tolerated, and the clinical benefit rate of 65% in these heavily pretreated populations suggests that this treatment strategy could be an effective option for relapsed and refractory pediatric cancers. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02162732. Prospectively registered on June 11, 2014.


Neuroblastoma , Child , Humans , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/etiology
2.
Vet Comp Oncol ; 22(1): 30-41, 2024 Mar.
Article En | MEDLINE | ID: mdl-38053317

A genomic understanding of the oncogenic processes and individual variability of human cancer has steadily fueled improvement in patient outcomes over the past 20 years. Mutations within tumour tissues are routinely assessed through clinical genomic diagnostic assays by academic and commercial laboratories to facilitate diagnosis, prognosis and effective treatment stratification. The application of genomics has unveiled a wealth of mutation-based biomarkers in canine cancers, suggesting that the transformative principles that have revolutionized human cancer medicine can be brought to bear in veterinary oncology. To advance clinical genomics and genomics-guided medicine in canine oncology, we have developed and validated a canine cancer next-generation sequencing gene panel for the identification of multiple mutation types in clinical specimens. With this panel, we examined the genomic landscapes of 828 tumours from 813 dogs, spanning 53 cancer types. We identified 7856 alterations, encompassing copy number variants, single nucleotide variants, indels and internal tandem duplications. Additionally, we evaluated the clinical utility of these alterations by incorporating a biomarker framework from comprehensive curation of primary canine literature and inferences from human cancer genomic biomarker literature and clinical diagnostics. Remarkably, nearly 90% of the cases exhibited mutations with diagnostic, prognostic or therapeutic implications. Our work represents a thorough assessment of genomic landscapes in a large cohort of canine cancers, the first of its kind for its comprehensive inclusion of multiple mutation types and structured annotation of biomarkers, demonstrating the clinical potential of leveraging mutation-based biomarkers in veterinary oncology.


Dog Diseases , Neoplasms , Dogs , Humans , Animals , Dog Diseases/genetics , Neoplasms/genetics , Neoplasms/veterinary , Genomics , Mutation , Biomarkers, Tumor/genetics
3.
Neoplasia ; 43: 100921, 2023 09.
Article En | MEDLINE | ID: mdl-37603953

Constitutional mismatch repair deficiency (CMMRD) is a cancer predisposition syndrome associated with the development of hypermutant pediatric high-grade glioma, and confers a poor prognosis. While therapeutic histone deacetylase (HDAC) inhibition of diffuse intrinsic pontine glioma (DIPG) has been reported; here, we use a clinically relevant biopsy-derived hypermutant DIPG model (PBT-24FH) and a CRISPR-Cas9 induced genetic model to evaluate the efficacy of HDAC inhibition against hypermutant DIPG. We screened PBT-24FH cells for sensitivity to a panel of HDAC inhibitors (HDACis) in vitro, identifying two HDACis associated with low nanomolar IC50s, quisinostat (27 nM) and romidepsin (2 nM). In vivo, quisinostat proved more efficacious, inducing near-complete tumor regression in a PBT-24FH flank model. RNA sequencing revealed significant quisinostat-driven changes in gene expression, including upregulation of neural and pro-inflammatory genes. To validate the observed potency of quisinostat in vivo against additional hypermutant DIPG models, we tested quisinostat in genetically-induced mismatch repair (MMR)-deficient DIPG flank tumors, demonstrating that loss of MMR function increases sensitivity to quisinostat in vivo. Here, we establish the preclinical efficacy of quisinostat against hypermutant DIPG, supporting further investigation of epigenetic targeting of hypermutant pediatric cancers with the potential for clinical translation. These findings support further investigation of HDAC inhibitors against pontine high-grade gliomas, beyond only those with histone mutations, as well as against other hypermutant central nervous system tumors.


Diffuse Intrinsic Pontine Glioma , Glioma , Humans , Child , Diffuse Intrinsic Pontine Glioma/drug therapy , Diffuse Intrinsic Pontine Glioma/genetics , Histone Deacetylase Inhibitors/pharmacology , Histones , Hydroxamic Acids , Glioma/drug therapy , Glioma/genetics
4.
Vet Comp Oncol ; 21(3): 482-491, 2023 Sep.
Article En | MEDLINE | ID: mdl-37248814

The accrual of cancer mutation data and related functional and clinical associations have revolutionised human oncology, enabling the advancement of precision medicine and biomarker-guided clinical management. The catalogue of cancer mutations is also growing in canine cancers. However, without direct high-powered functional data in dogs, it remains challenging to interpret and utilise them in research and clinical settings. It is well-recognised that canine and human cancers share genetic, molecular and phenotypic similarities. Therefore, leveraging the massive wealth of human mutation data may help advance canine oncology. Here, we present a structured analysis of sequence conservation and conversion of human mutations to the canine genome through a 'caninisation' process. We applied this analysis to COSMIC, the Catalogue of Somatic Mutations in Cancer, the most prominent human cancer mutation database. For the project's initial phase, we focused on the subset of the COSMIC data corresponding to Cancer Gene Census (CGC) genes. A total of 670 canine orthologs were found for 721 CGC genes. In these genes, 365 K unique mutations across 160 tumour types were converted successfully to canine coordinates. We identified shared putative cancer-driving mutations, including pathogenic and hotspot mutations and mutations bearing similar biomarker associations with diagnostic, prognostic and therapeutic utility. Thus, this structured caninisation of human cancer mutations facilitates the interpretation and annotation of canine mutations and helps bridge the knowledge gap to enable canine precision medicine.


Dog Diseases , Neoplasms , Humans , Dogs , Animals , Biomarkers, Tumor/genetics , Precision Medicine/veterinary , Dog Diseases/genetics , Mutation , Neoplasms/genetics , Neoplasms/veterinary , Genomics
5.
Eur Urol Oncol ; 6(4): 447-450, 2023 08.
Article En | MEDLINE | ID: mdl-36609061

Stereotactic body radiation therapy (SBRT) has been shown to be safe and effective for delaying systemic treatment change among patients with metastatic renal cell carcinoma (mRCC). In this study, we sought to assess the genomic signatures of patients with mRCC who underwent SBRT for oligoprogression. A total of 30 patients with oligoprogressive disease were identified, the majority of whom had clear cell renal cell carcinoma (83.3%) and were receiving first-line treatment (53.3%). Genomic and transcriptomic sequencing were available in 20 and 16 patients, respectively. Duration of systemic treatment (DOT) was categorized as that prior (DOT[P]) and subsequent (DOT[S]) to radiation treatment. The median DOT(P) and DOT(S) were 15.1 and 18.3 mo, respectively, with a median DOT(S)/DOT(P) ratio of 1.4. Patients who had a DOT(S)/DOT(P) ratio of ≥1 had increased expression in pathways related to cell proliferation and development. In contrast, among patients with a ratio of ≤1, the reactive oxygen species pathway was enriched. This study highlights the potential role of genomics and transcriptomics to refine radiation treatment selection in patients with mRCC. PATIENT SUMMARY: In this study, we looked at mutations and genomic expressions among kidney cancer patients who responded better to stereotactic body radiotherapy. We found that enriched expression of certain pathways might play a role in response to radiotherapy.


Carcinoma, Renal Cell , Kidney Neoplasms , Radiosurgery , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/radiotherapy , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/radiotherapy , Radiosurgery/adverse effects , Transcriptome , Genomics
6.
Sci Transl Med ; 15(678): eabm6863, 2023 01 11.
Article En | MEDLINE | ID: mdl-36630480

Genome-wide fragmentation patterns in cell-free DNA (cfDNA) in plasma are strongly influenced by cellular origin due to variation in chromatin accessibility across cell types. Such differences between healthy and cancer cells provide the opportunity for development of novel cancer diagnostics. Here, we investigated whether analysis of cfDNA fragment end positions and their surrounding DNA sequences reveals the presence of tumor-derived DNA in blood. We performed genome-wide analysis of cfDNA from 521 samples and analyzed sequencing data from an additional 2147 samples, including healthy individuals and patients with 11 different cancer types. We developed a metric based on genome-wide differences in fragment positioning, weighted by fragment length and GC content [information-weighted fraction of aberrant fragments (iwFAF)]. We observed that iwFAF strongly correlated with tumor fraction, was higher for DNA fragments carrying somatic mutations, and was higher within genomic regions affected by copy number amplifications. We also calculated sample-level means of nucleotide frequencies observed at genomic positions spanning fragment ends. Using a combination of iwFAF and nine nucleotide frequencies from three positions surrounding fragment ends, we developed a machine learning model to differentiate healthy individuals from patients with cancer. We observed an area under the receiver operative characteristic curve (AUC) of 0.91 for detection of cancer at any stage and an AUC of 0.87 for detection of stage I cancer. Our findings remained robust with as few as 1 million fragments analyzed per sample, demonstrating that analysis of fragment ends can become a cost-effective and accessible approach for cancer detection and monitoring.


Cell-Free Nucleic Acids , Neoplasms , Humans , DNA/genetics , Neoplasms/genetics , Chromatin , Nucleotides , Biomarkers, Tumor/genetics , Sequence Analysis, DNA
7.
Methods Mol Biol ; 2590: 1-30, 2023.
Article En | MEDLINE | ID: mdl-36335489

Human DNA sequencing protocols have revolutionized human biology, biomedical science, and clinical practice, but still have very important limitations. One limitation is that most protocols do not separate or assemble (i.e., "phase") the nucleotide content of each of the maternally and paternally derived chromosomal homologs making up the 22 autosomal pairs and the chromosomal pair making up the pseudo-autosomal region of the sex chromosomes. This has led to a dearth of studies and a consequent underappreciation of many phenomena of fundamental importance to basic and clinical genomic science. We discuss a few protocols for obtaining phase information as well as their limitations, including those that could be used in tumor phasing settings. We then describe a number of biological and clinical phenomena that require phase information. These include phenomena that require precise knowledge of the nucleotide sequence in a chromosomal segment from germline or somatic cells, such as DNA binding events, and insight into unique cis vs. trans-acting functionally impactful variant combinations-for example, variants implicated in a phenotype governed by compound heterozygosity. In addition, we also comment on the need for reliable and consensus-based diploid-context computational workflows for variant identification as well as the need for laboratory-based functional verification strategies for validating cis vs. trans effects of variant combinations. We also briefly describe available resources, example studies, as well as areas of further research, and ultimately argue that the science behind the study of human diploidy, referred to as "diplomics," which will be enabled by nucleotide-level resolution of phased genomes, is a logical next step in the analysis of human genome biology.


Diploidy , Genome, Human , Humans , Haplotypes , Base Sequence , Nucleotides , Sequence Analysis, DNA , High-Throughput Nucleotide Sequencing/methods , Computational Biology
8.
Clin Cancer Res ; 28(18): 3965-3978, 2022 09 15.
Article En | MEDLINE | ID: mdl-35852795

PURPOSE: PNOC003 is a multicenter precision medicine trial for children and young adults with newly diagnosed diffuse intrinsic pontine glioma (DIPG). PATIENTS AND METHODS: Patients (3-25 years) were enrolled on the basis of imaging consistent with DIPG. Biopsy tissue was collected for whole-exome and mRNA sequencing. After radiotherapy (RT), patients were assigned up to four FDA-approved drugs based on molecular tumor board recommendations. H3K27M-mutant circulating tumor DNA (ctDNA) was longitudinally measured. Tumor tissue and matched primary cell lines were characterized using whole-genome sequencing and DNA methylation profiling. When applicable, results were verified in an independent cohort from the Children's Brain Tumor Network (CBTN). RESULTS: Of 38 patients enrolled, 28 patients (median 6 years, 10 females) were reviewed by the molecular tumor board. Of those, 19 followed treatment recommendations. Median overall survival (OS) was 13.1 months [95% confidence interval (CI), 11.2-18.4] with no difference between patients who followed recommendations and those who did not. H3K27M-mutant ctDNA was detected at baseline in 60% of cases tested and associated with response to RT and survival. Eleven cell lines were established, showing 100% fidelity of key somatic driver gene alterations in the primary tumor. In H3K27-altered DIPGs, TP53 mutations were associated with worse OS (TP53mut 11.1 mo; 95% CI, 8.7-14; TP53wt 13.3 mo; 95% CI, 11.8-NA; P = 3.4e-2), genome instability (P = 3.1e-3), and RT resistance (P = 6.4e-4). The CBTN cohort confirmed an association between TP53 mutation status, genome instability, and clinical outcome. CONCLUSIONS: Upfront treatment-naïve biopsy provides insight into clinically relevant molecular alterations and prognostic biomarkers for H3K27-altered DIPGs.


Astrocytoma , Brain Stem Neoplasms , Circulating Tumor DNA , Diffuse Intrinsic Pontine Glioma , Glioma , Biology , Biomarkers , Brain Stem Neoplasms/genetics , Brain Stem Neoplasms/metabolism , Brain Stem Neoplasms/therapy , Child , Circulating Tumor DNA/genetics , Diffuse Intrinsic Pontine Glioma/genetics , Female , Genomic Instability , Glioma/genetics , Glioma/metabolism , Glioma/therapy , Humans , Young Adult
9.
Cancer Rep (Hoboken) ; 5(11): e1616, 2022 11.
Article En | MEDLINE | ID: mdl-35355452

BACKGROUND: Survival for patients with high-risk neuroblastoma (HRNB) remains poor despite aggressive multimodal therapies. AIMS: To study the feasibility and safety of incorporating a genomic-based targeted agent to induction therapy for HRNB as well as the feasibility and safety of adding difluoromethylornithine (DFMO) to anti-GD2 immunotherapy. METHODS: Twenty newly diagnosed HRNB patients were treated on this multicenter pilot trial. Molecular tumor boards selected one of six targeted agents based on tumor-normal whole exome sequencing and tumor RNA-sequencing results. Treatment followed standard upfront HRNB chemotherapy with the addition of the selected targeted agent to cycles 3-6 of induction. Following consolidation, DFMO (750 mg/m2 twice daily) was added to maintenance with dinutuximab and isotretinoin, followed by continuation of DFMO alone for 2 years. DNA methylation analysis was performed retrospectively and compared to RNA expression. RESULTS: Of the 20 subjects enrolled, 19 started targeted therapy during cycle 3 and 1 started during cycle 5. Eighty-five percent of subjects met feasibility criteria (receiving 75% of targeted agent doses). Addition of targeted agents did not result in toxicities requiring dose reduction of chemotherapy or permanent discontinuation of targeted agent. Following standard consolidation, 15 subjects continued onto immunotherapy with DFMO. This combination was well-tolerated and resulted in no unexpected adverse events related to DFMO. CONCLUSION: This study demonstrates the safety and feasibility of adding targeted agents to standard induction therapy and adding DFMO to immunotherapy for HRNB. This treatment regimen has been expanded to a Phase II trial to evaluate efficacy.


Antineoplastic Agents , Neuroblastoma , Humans , Eflornithine/adverse effects , Pilot Projects , Induction Chemotherapy , Retrospective Studies , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Immunotherapy , Antineoplastic Agents/therapeutic use , Immunologic Factors , Genomics , RNA/therapeutic use
10.
Cancer Res ; 81(23): 5818-5832, 2021 12 01.
Article En | MEDLINE | ID: mdl-34610968

Children with treatment-refractory or relapsed (R/R) tumors face poor prognoses. As the genomic underpinnings driving R/R disease are not well defined, we describe here the genomic and transcriptomic landscapes of R/R solid tumors from 202 patients enrolled in Beat Childhood Cancer Consortium clinical trials. Tumor mutational burden (TMB) was elevated relative to untreated tumors at diagnosis, with one-third of tumors classified as having a pediatric high TMB. Prior chemotherapy exposure influenced the mutational landscape of these R/R tumors, with more than 40% of tumors demonstrating mutational signatures associated with platinum or temozolomide chemotherapy and two tumors showing treatment-associated hypermutation. Immunogenomic profiling found a heterogenous pattern of neoantigen and MHC class I expression and a general absence of immune infiltration. Transcriptional analysis and functional gene set enrichment analysis identified cross-pathology clusters associated with development, immune signaling, and cellular signaling pathways. While the landscapes of these R/R tumors reflected those of their corresponding untreated tumors at diagnosis, important exceptions were observed, suggestive of tumor evolution, treatment resistance mechanisms, and mutagenic etiologies of treatment. SIGNIFICANCE: Tumor heterogeneity, chemotherapy exposure, and tumor evolution contribute to the molecular profiles and increased mutational burden that occur in treatment-refractory and relapsed childhood solid tumors.


Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/genetics , Drug Resistance, Neoplasm , Immune Evasion , Mutation , Neoplasm Recurrence, Local/pathology , Neoplasms/pathology , Adolescent , Adult , Child , Child, Preschool , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Infant , Longitudinal Studies , Male , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/immunology , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/immunology , Prognosis , Survival Rate , Transcriptome , Young Adult
11.
PLoS One ; 16(4): e0248097, 2021.
Article En | MEDLINE | ID: mdl-33826614

Although combination BRAF and MEK inhibitors are highly effective for the 40-50% of cutaneous metastatic melanomas harboring BRAFV600 mutations, targeted agents have been ineffective for BRAFV600wild-type (wt) metastatic melanomas. The SU2C Genomics-Enabled Medicine for Melanoma Trial utilized a Simon two-stage optimal design to assess whether comprehensive genomic profiling improves selection of molecular-based therapies for BRAFV600wt metastatic melanoma patients who had progressed on standard-of-care therapy, which may include immunotherapy. Of the response-evaluable patients, binimetinib was selected for 20 patients randomized to the genomics-enabled arm, and nine were treated on the alternate treatment arm. Response rates for 27 patients treated with targeted recommendations included one (4%) partial response, 18 (67%) with stable disease, and eight (30%) with progressive disease. Post-trial genomic and protein pathway activation mapping identified additional drug classes that may be considered for future studies. Our results highlight the complexity and heterogeneity of metastatic melanomas, as well as how the lack of response in this trial may be associated with limitations including monotherapy drug selection and the dearth of available single and combination molecularly-driven therapies to treat BRAFV600wt metastatic melanomas.


Benzimidazoles/administration & dosage , Genomics , Melanoma , Proto-Oncogene Proteins B-raf , Skin Neoplasms , Adult , Aged , Female , Humans , Male , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Middle Aged , Neoplasm Metastasis , Pilot Projects , Prospective Studies , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Melanoma, Cutaneous Malignant
12.
Neurooncol Adv ; 2(1): vdaa078, 2020.
Article En | MEDLINE | ID: mdl-32743548

BACKGROUND: Tumor heterogeneity underlies resistance and disease progression in glioblastoma (GBM), and tumors most commonly recur adjacent to the surgical resection margins in contrast non-enhancing (NE) regions. To date, no targeted therapies have meaningfully altered overall patient survival in the up-front setting. The aim of this study was to characterize intratumoral heterogeneity in recurrent GBM using bulk samples from primary resection and recurrent samples taken from contrast-enhancing (EN) and contrast NE regions. METHODS: Whole exome and RNA sequencing were performed on matched bulk primary and multiple recurrent EN and NE tumor samples from 16 GBM patients who received standard of care treatment alone or in combination with investigational clinical trial regimens. RESULTS: Private mutations emerge across multi-region sampling in recurrent tumors. Genomic clonal analysis revealed increased enrichment in gene alterations regulating the G2M checkpoint, Kras signaling, Wnt signaling, and DNA repair in recurrent disease. Subsequent functional studies identified augmented PI3K/AKT transcriptional and protein activity throughout progression, validated by phospho-protein levels. Moreover, a mesenchymal transcriptional signature was observed in recurrent EN regions, which differed from the proneural signature in recurrent NE regions. CONCLUSIONS: Subclonal populations observed within bulk resected primary GBMs transcriptionally evolve across tumor recurrence (EN and NE regions) and exhibit aberrant gene expression of common signaling pathways that persist despite standard or targeted therapy. Our findings provide evidence that there are both adaptive and clonally mediated dependencies of GBM on key pathways, such as the PI3K/AKT axis, for survival across recurrences.

13.
J Immunother Cancer ; 8(2)2020 07.
Article En | MEDLINE | ID: mdl-32661119

BACKGROUND: The clinical significance of tumor-specific genomic alterations in metastatic renal cell carcinoma (mRCC) is emerging, with several studies suggesting an association between PBRM1 mutations and response with immunotherapy (IO). We sought to determine genomic predictors of differential response to vascular endothelial growth factor-tyrosine kinase inhibitors (VEGF-TKIs) and IO. METHODS: Consecutive patients who underwent genomic profiling were identified; patients receiving either VEGF-TKIs or IO were included. Clinical tumor-normal whole exome sequencing and tumor whole transcriptome sequencing test were performed using a Clinical Laboratory Improvement Amendments (CLIA)-certified assay (Ashion Analytics; Phoenix, Arizona, USA). Genomic findings were compared between patients with clinical benefit (CB; complete/partial response or stable disease for >6 months) and no clinical benefit (NCB) in VEGF-TKI-treated patient cohort and IO-treated patient cohort. RESULTS: 91 patients received genomic profiling and 58 patients received VEGF-TKI and/or IO therapy. 17 received sequenced treatment involving both VEGF-TKI and IO, resulting in 32 patients in the IO cohort and 43 patients in the VEGF-TKI cohort. The most commonly used IO and VEGF-TKIs were nivolumab (66%) and sunitinib (40%). The most frequently detected alterations in the overall cohort were in VHL (64%), PBRM1 (38%), SETD2 (24%), KDM5C (17%) and TERT (12%). TERT promoter mutations were associated with NCB in the IO cohort (p=0.038); transcriptomic analysis revealed multiple differentially regulated pathways downstream of TERT. TERT promoter mutations and PBRM1 mutations were found to be mutually exclusive. While PBRM1 mutations were more prevalent in patients with CB with IO and VEGF-TKIs, no statistically significant association was found. CONCLUSIONS: Our analysis found that TERT promoter mutations may be a negative predictor of outcome with IO and are mutually exclusive with PBRM1 loss-of-function mutations.


Carcinoma, Renal Cell/drug therapy , Genomics/methods , Immunotherapy/methods , Kidney Neoplasms/drug therapy , Transcriptome/genetics , Adult , Aged , Aged, 80 and over , Humans , Middle Aged
14.
PLoS One ; 14(12): e0219724, 2019.
Article En | MEDLINE | ID: mdl-31881020

Glioma is recognized to be a highly heterogeneous CNS malignancy, whose diverse cellular composition and cellular interactions have not been well characterized. To gain new clinical- and biological-insights into the genetically-bifurcated IDH1 mutant (mt) vs wildtype (wt) forms of glioma, we integrated data from protein, genomic and MR imaging from 20 treatment-naïve glioma cases and 16 recurrent GBM cases. Multiplexed immunofluorescence (MxIF) was used to generate single cell data for 43 protein markers representing all cancer hallmarks, Genomic sequencing (exome and RNA (normal and tumor) and magnetic resonance imaging (MRI) quantitative features (protocols were T1-post, FLAIR and ADC) from whole tumor, peritumoral edema and enhancing core vs equivalent normal region were also collected from patients. Based on MxIF analysis, 85,767 cells (glioma cases) and 56,304 cells (GBM cases) were used to generate cell-level data for 24 biomarkers. K-means clustering was used to generate 7 distinct groups of cells with divergent biomarker profiles and deconvolution was used to assign RNA data into three classes. Spatial and molecular heterogeneity metrics were generated for the cell data. All features were compared between IDH mt and IDHwt patients and were finally combined to provide a holistic/integrated comparison. Protein expression by hallmark was generally lower in the IDHmt vs wt patients. Molecular and spatial heterogeneity scores for angiogenesis and cell invasion also differed between IDHmt and wt gliomas irrespective of prior treatment and tumor grade; these differences also persisted in the MR imaging features of peritumoral edema and contrast enhancement volumes. A coherent picture of enhanced angiogenesis in IDHwt tumors was derived from multiple platforms (genomic, proteomic and imaging) and scales from individual proteins to cell clusters and heterogeneity, as well as bulk tumor RNA and imaging features. Longer overall survival for IDH1mt glioma patients may reflect mutation-driven alterations in cellular, molecular, and spatial heterogeneity which manifest in discernable radiological manifestations.


Glioma/genetics , Isocitrate Dehydrogenase/genetics , Adult , Aged , Biomarkers, Tumor/genetics , Brain Neoplasms/pathology , Case-Control Studies , Female , Fluorescent Antibody Technique/methods , Genetic Heterogeneity , Humans , Isocitrate Dehydrogenase/metabolism , Magnetic Resonance Imaging/methods , Male , Middle Aged , Mutation , Neoplasm Grading , Proteomics , Sequence Analysis, RNA/methods , Single-Cell Analysis , Exome Sequencing/methods
15.
JAMA Netw Open ; 2(10): e1913968, 2019 10 02.
Article En | MEDLINE | ID: mdl-31651965

Importance: Pediatric cancers are epigenetic diseases; therefore, considering tumor gene expression information is necessary for a complete understanding of the tumorigenic processes. Objective: To evaluate the feasibility and utility of incorporating comparative gene expression information into the precision medicine framework for difficult-to-treat pediatric and young adult patients with cancer. Design, Setting, and Participants: This cohort study was conducted as a consortium between the University of California, Santa Cruz (UCSC) Treehouse Childhood Cancer Initiative and clinical genomic trials. RNA sequencing (RNA-Seq) data were obtained from the following 4 clinical sites and analyzed at UCSC: British Columbia Children's Hospital (n = 31), Lucile Packard Children's Hospital at Stanford University (n = 80), CHOC Children's Hospital and Hyundai Cancer Institute (n = 46), and the Pacific Pediatric Neuro-Oncology Consortium (n = 24). The study dates were January 1, 2016, to March 22, 2017. Exposures: Participants underwent tumor RNA-Seq profiling as part of 4 separate clinical trials at partner hospitals. The UCSC either downloaded RNA-Seq data from a partner institution for analysis in the cloud or provided a Docker pipeline that performed the same analysis at a partner institution. The UCSC then compared each participant's tumor RNA-Seq profile with more than 11 000 uniformly analyzed tumor profiles from pediatric and young adult patients with cancer, downloaded from public data repositories. These comparisons were used to identify genes and pathways that are significantly overexpressed in each patient's tumor. Results of the UCSC analysis were presented to clinical partners. Main Outcomes and Measures: Feasibility of a third-party institution (UCSC Treehouse Childhood Cancer Initiative) to obtain tumor RNA-Seq data from patients, conduct comparative analysis, and present analysis results to clinicians; and proportion of patients for whom comparative tumor gene expression analysis provided useful clinical and biological information. Results: Among 144 samples from children and young adults (median age at diagnosis, 9 years; range, 0-26 years; 72 of 118 [61.0%] male [26 patients sex unknown]) with a relapsed, refractory, or rare cancer treated on precision medicine protocols, RNA-Seq-derived gene expression was potentially useful for 99 of 144 samples (68.8%) compared with DNA mutation information that was potentially useful for only 34 of 74 samples (45.9%). Conclusions and Relevance: This study's findings suggest that tumor RNA-Seq comparisons may be feasible and highlight the potential clinical utility of incorporating such comparisons into the clinical genomic interpretation framework for difficult-to-treat pediatric and young adult patients with cancer. The study also highlights for the first time to date the potential clinical utility of harmonized publicly available genomic data sets.


Neoplasms/genetics , RNA, Neoplasm/analysis , Sequence Analysis, RNA , Canada , Child , Child, Preschool , Female , Gene Expression , Humans , Infant , Infant, Newborn , Male , Precision Medicine , United States , Young Adult
16.
Cancer Treat Res ; 178: 137-169, 2019.
Article En | MEDLINE | ID: mdl-31209844

Genomic information is increasingly being incorporated into clinical cancer care. Large-scale sequencing efforts have deepened our understanding of the genomic landscape of cancer and contributed to the expanding catalog of alterations being leveraged to aid in cancer diagnosis, prognosis, and treatment. Genomic profiling can provide clinically relevant information regarding somatic point mutations, copy number alterations, translocations, and gene fusions. Genomic features, such as mutational burden, can also be measured by more comprehensive sequencing strategies and have shown value in informing potential treatment options. Ongoing clinical trials are evaluating the use of molecularly targeted agents in genomically defined subsets of cancers within and across tumor histologies. Continued advancements in clinical genomics promise to further expand the application of genomics-enabled medicine to a broader spectrum of oncology patients.


Genomics , Neoplasms , Precision Medicine , High-Throughput Nucleotide Sequencing , Humans , Mutation , Neoplasms/genetics , Prognosis
17.
Front Oncol ; 9: 119, 2019.
Article En | MEDLINE | ID: mdl-30949446

Archival tumor samples represent a rich resource of annotated specimens for translational genomics research. However, standard variant calling approaches require a matched normal sample from the same individual, which is often not available in the retrospective setting, making it difficult to distinguish between true somatic variants and individual-specific germline variants. Archival sections often contain adjacent normal tissue, but this tissue can include infiltrating tumor cells. As existing comparative somatic variant callers are designed to exclude variants present in the normal sample, a novel approach is required to leverage adjacent normal tissue with infiltrating tumor cells for somatic variant calling. Here we present lumosVar 2.0, a software package designed to jointly analyze multiple samples from the same patient, built upon our previous single sample tumor only variant caller lumosVar 1.0. The approach assumes that the allelic fraction of somatic variants and germline variants follow different patterns as tumor content and copy number state change. lumosVar 2.0 estimates allele specific copy number and tumor sample fractions from the data, and uses a to model to determine expected allelic fractions for somatic and germline variants and to classify variants accordingly. To evaluate the utility of lumosVar 2.0 to jointly call somatic variants with tumor and adjacent normal samples, we used a glioblastoma dataset with matched high and low tumor content and germline whole exome sequencing data (for true somatic variants) available for each patient. Both sensitivity and positive predictive value were improved when analyzing the high tumor and low tumor samples jointly compared to analyzing the samples individually or in-silico pooling of the two samples. Finally, we applied this approach to a set of breast and prostate archival tumor samples for which tumor blocks containing adjacent normal tissue were available for sequencing. Joint analysis using lumosVar 2.0 detected several variants, including known cancer hotspot mutations that were not detected by standard somatic variant calling tools using the adjacent tissue as presumed normal reference. Together, these results demonstrate the utility of leveraging paired tissue samples to improve somatic variant calling when a constitutional sample is not available.

18.
Int J Cancer ; 145(7): 1889-1901, 2019 10 01.
Article En | MEDLINE | ID: mdl-30861105

This clinical trial evaluated whether whole exome sequencing (WES) and RNA sequencing (RNAseq) of paired normal and tumor tissues could be incorporated into a personalized treatment plan for newly diagnosed patients (<25 years of age) with diffuse intrinsic pontine glioma (DIPG). Additionally, whole genome sequencing (WGS) was compared to WES to determine if WGS would further inform treatment decisions, and whether circulating tumor DNA (ctDNA) could detect the H3K27M mutation to allow assessment of therapy response. Patients were selected across three Pacific Pediatric Neuro-Oncology Consortium member institutions between September 2014 and January 2016. WES and RNAseq were performed at diagnosis and recurrence when possible in a CLIA-certified laboratory. Patient-derived cell line development was attempted for each subject. Collection of blood for ctDNA was done prior to treatment and with each MRI. A specialized tumor board generated a treatment recommendation including up to four FDA-approved agents based upon the genomic alterations detected. A treatment plan was successfully issued within 21 business days from tissue collection for all 15 subjects, with 14 of the 15 subjects fulfilling the feasibility criteria. WGS results did not significantly deviate from WES-based therapy recommendations; however, WGS data provided further insight into tumor evolution and fidelity of patient-derived cell models. Detection of the H3F3A or HIST1H3B K27M (H3K27M) mutation using ctDNA was successful in 92% of H3K27M mutant cases. A personalized treatment recommendation for DIPG can be rendered within a multicenter setting using comprehensive next-generation sequencing technology in a clinically relevant timeframe.


Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Brain Stem Neoplasms/drug therapy , Diffuse Intrinsic Pontine Glioma/drug therapy , Exome Sequencing/methods , Sequence Analysis, RNA/methods , Whole Genome Sequencing/methods , Adolescent , Adult , Brain Stem Neoplasms/genetics , Child , Child, Preschool , Circulating Tumor DNA , Diffuse Intrinsic Pontine Glioma/genetics , Feasibility Studies , Female , Histones/genetics , Humans , Male , Molecular Targeted Therapy/methods , Pilot Projects , Precision Medicine , Young Adult
19.
Invest New Drugs ; 37(4): 636-645, 2019 08.
Article En | MEDLINE | ID: mdl-30264293

Malignant melanoma (MM) exhibits a high propensity for central nervous system dissemination with ~50% of metastatic MM patients developing brain metastases (BM). Targeted therapies and immune checkpoint inhibitors have improved overall survival for MM patients with BM. However, responses are usually of short duration and new agents that effectively penetrate the blood brain barrier (BBB) are needed. Here, we report a MM patient with BM who experienced an exceptional response to E6201, an ATP-competitive MEK1 inhibitor, on a Phase 1 study, with ongoing near-complete response and overall survival extending beyond 8 years. Whole exome and transcriptome sequencing revealed a high mutational burden tumor (22 mutations/Megabase) with homozygous BRAF V600E mutation. Correlative preclinical studies demonstrated broad activity for E6201 across BRAF V600E mutant melanoma cell lines and effective BBB penetration in vivo. Together, these results suggest that E6201 may represent a potential new treatment option for BRAF-mutant MM patients with BM.


Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Lactones/therapeutic use , Melanoma/drug therapy , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Skin Neoplasms/drug therapy , Aged, 80 and over , Animals , Antineoplastic Agents/blood , Antineoplastic Agents/pharmacokinetics , Brain/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/secondary , Cell Line, Tumor , Female , Gene Expression Profiling , Humans , Lactones/blood , Lactones/pharmacokinetics , Male , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Mice, Knockout , Mutation , Protein Kinase Inhibitors/blood , Protein Kinase Inhibitors/pharmacokinetics , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Treatment Outcome , Exome Sequencing
20.
Mol Oncol ; 13(4): 738-756, 2019 04.
Article En | MEDLINE | ID: mdl-30537101

Endometrial cancer is the most commonly diagnosed gynaecological malignancy. Unfortunately, 15-20% of women demonstrate persistent or recurrent tumours that are refractory to current chemotherapies. We previously identified activating mutations in fibroblast growth factor receptor 2 (FGFR2) in 12% (stage I/II) to 17% (stage III/IV) endometrioid ECs and found that these mutations are associated with shorter progression-free and cancer-specific survival. Although FGFR inhibitors are undergoing clinical trials for treatment of several cancer types, little is known about the mechanism by which they induce cell death. We show that treatment with BGJ398, AZD4547 and PD173074 causes mitochondrial depolarization, cytochrome c release and impaired mitochondrial respiration in two FGFR2-mutant EC cell lines (AN3CA and JHUEM2). Despite this mitochondrial dysfunction, we were unable to detect caspase activation following FGFR inhibition; in addition, the pan-caspase inhibitor Z-VAD-FMK was unable to prevent cell death, suggesting that the cell death is caspase-independent. Furthermore, while FGFR inhibition led to an increase in LC3 puncta, treatment with bafilomycin did not further increase lipidated LC3, suggesting that FGFR inhibition led to a block in autophagosome degradation. We confirmed that cell death is mitochondrial-dependent as it can be blocked by overexpression of Bcl-2 and/or Bcl-XL. Importantly, we show that combining FGFR inhibitors with the BH3 mimetics ABT737/ABT263 markedly increased cell death in vitro and is more effective than BGJ398 alone in vivo, where it leads to marked tumour regression. This work may have implications for the design of clinical trials to treat a wide range of patients with FGFR-dependent malignancies.


Apoptosis , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Mitochondria/metabolism , Mutation/genetics , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Animals , Autophagosomes/metabolism , Caspases/metabolism , Cell Line, Tumor , Enzyme Activation , Female , Humans , Inhibitory Concentration 50 , Mice , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptor, Fibroblast Growth Factor, Type 2/metabolism
...