Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 166
Filter
1.
Nat Biomed Eng ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103509

ABSTRACT

The mechanisms linking the brain's network structure to cognitively relevant activation patterns remain largely unknown. Here, by leveraging principles of network control, we show how the architecture of the human connectome shapes transitions between 123 experimentally defined cognitive activation maps (cognitive topographies) from the NeuroSynth meta-analytic database. Specifically, we systematically integrated large-scale multimodal neuroimaging data from functional magnetic resonance imaging, diffusion tractography, cortical morphometry and positron emission tomography to simulate how anatomically guided transitions between cognitive states can be reshaped by neurotransmitter engagement or by changes in cortical thickness. Our model incorporates neurotransmitter-receptor density maps (18 receptors and transporters) and maps of cortical thickness pertaining to a wide range of mental health, neurodegenerative, psychiatric and neurodevelopmental diagnostic categories (17,000 patients and 22,000 controls). The results provide a comprehensive look-up table charting how brain network organization and chemoarchitecture interact to manifest different cognitive topographies, and establish a principled foundation for the systematic identification of ways to promote selective transitions between cognitive topographies.

2.
PLoS One ; 19(8): e0308329, 2024.
Article in English | MEDLINE | ID: mdl-39116147

ABSTRACT

Finding an interpretable and compact representation of complex neuroimaging data is extremely useful for understanding brain behavioral mapping and hence for explaining the biological underpinnings of mental disorders. However, hand-crafted representations, as well as linear transformations, may inadequately capture the considerable variability across individuals. Here, we implemented a data-driven approach using a three-dimensional autoencoder on two large-scale datasets. This approach provides a latent representation of high-dimensional task-fMRI data which can account for demographic characteristics whilst also being readily interpretable both in the latent space learned by the autoencoder and in the original voxel space. This was achieved by addressing a joint optimization problem that simultaneously reconstructs the data and predicts clinical or demographic variables. We then applied normative modeling to the latent variables to define summary statistics ('latent indices') and establish a multivariate mapping to non-imaging measures. Our model, trained with multi-task fMRI data from the Human Connectome Project (HCP) and UK biobank task-fMRI data, demonstrated high performance in age and sex predictions and successfully captured complex behavioral characteristics while preserving individual variability through a latent representation. Our model also performed competitively with respect to various baseline models including several variants of principal components analysis, independent components analysis and classical regions of interest, both in terms of reconstruction accuracy and strength of association with behavioral variables.


Subject(s)
Brain , Cognition , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Male , Female , Cognition/physiology , Brain/physiology , Brain/diagnostic imaging , Adult , Connectome/methods , Brain Mapping/methods , Middle Aged , Behavior/physiology
3.
J Neurophysiol ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052236

ABSTRACT

The human cerebellum is increasingly recognized to be involved in non-motor and higher-order cognitive functions. Yet, its ties with the entire cerebral cortex have not been holistically studied in a whole-brain exploration with a unified analytical framework. Here, we characterized dissociable cortical-cerebellar structural covariation patterns based on regional gray matter volume (GMV) across the brain in n=38,527 UK Biobank participants. Our results invigorate previous observations in that important shares of cortical-cerebellar structural covariation are described as i) a dissociation between the higher-level cognitive system and lower-level sensorimotor system, as well as ii) an anticorrelation between the visual-attention system and advanced associative networks within the cerebellum. We also discovered a novel pattern of ipsilateral, rather than contralateral, cerebral-cerebellar associations. Furthermore, phenome-wide association assays revealed key phenotypes, including cognitive phenotypes, lifestyle, physical properties, and blood assays, associated with each decomposed covariation pattern, helping to understand their real-world implications. This systems neuroscience view paves the way for future studies to explore the implications of these structural covariations, potentially illuminating new pathways in our understanding of neurological and cognitive disorders.

4.
medRxiv ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38826357

ABSTRACT

Our genetic makeup, together with environmental and social influences, shape our brain's development. Yet, the imaging genetics field has struggled to integrate all these modalities to investigate the interplay between genetic blueprint, environment, human health, daily living skills and outcomes. Hence, we interrogated the Adolescent Brain Cognitive Development (ABCD) cohort to outline the effects of rare high-effect genetic variants on brain architecture and corresponding implications on cognitive, behavioral, psychosocial, and socioeconomic traits. Specifically, we designed a holistic pattern-learning algorithm that quantitatively dissects the impacts of copy number variations (CNVs) on brain structure and 962 behavioral variables spanning 20 categories in 7,657 adolescents. Our results reveal associations between genetic alterations, higher-order brain networks, and specific parameters of the family well-being (increased parental and child stress, anxiety and depression) or neighborhood dynamics (decreased safety); effects extending beyond the impairment of cognitive ability or language capacity, dominantly reported in the CNV literature. Our investigation thus spotlights a far-reaching interplay between genetic variation and subjective life quality in adolescents and their families.

5.
Commun Biol ; 7(1): 591, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760483

ABSTRACT

Late onset Alzheimer's disease (AD) is a progressive neurodegenerative disease, with brain changes beginning years before symptoms surface. AD is characterized by neuronal loss, the classic feature of the disease that underlies brain atrophy. However, GWAS reports and recent single-nucleus RNA sequencing (snRNA-seq) efforts have highlighted that glial cells, particularly microglia, claim a central role in AD pathophysiology. Here, we tailor pattern-learning algorithms to explore distinct gene programs by integrating the entire transcriptome, yielding distributed AD-predictive modules within the brain's major cell-types. We show that these learned modules are biologically meaningful through the identification of new and relevant enriched signaling cascades. The predictive nature of our modules, especially in microglia, allows us to infer each subject's progression along a disease pseudo-trajectory, confirmed by post-mortem pathological brain tissue markers. Additionally, we quantify the interplay between pairs of cell-type modules in the AD brain, and localized known AD risk genes to enriched module gene programs. Our collective findings advocate for a transition from cell-type-specificity to gene modules specificity to unlock the potential of unique gene programs, recasting the roles of recently reported genome-wide AD risk loci.


Subject(s)
Alzheimer Disease , Disease Progression , Transcriptome , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Humans , Brain/metabolism , Brain/pathology , Microglia/metabolism , Microglia/pathology , Gene Expression Profiling , Gene Regulatory Networks
6.
Brain Commun ; 6(3): fcae129, 2024.
Article in English | MEDLINE | ID: mdl-38707712

ABSTRACT

Stroke is the leading cause of long-term disability worldwide. Incurred brain damage can disrupt cognition, often with persisting deficits in language and executive capacities. Yet, despite their clinical relevance, the commonalities and differences between language versus executive control impairments remain under-specified. To fill this gap, we tailored a Bayesian hierarchical modelling solution in a largest-of-its-kind cohort (1080 patients with stroke) to deconvolve language and executive control with respect to the stroke topology. Cognitive function was assessed with a rich neuropsychological test battery including global cognitive function (tested with the Mini-Mental State Exam), language (assessed with a picture naming task), executive speech function (tested with verbal fluency tasks), executive control functions (Trail Making Test and Digit Symbol Coding Task), visuospatial functioning (Rey Complex Figure), as well as verbal learning and memory function (Soul Verbal Learning). Bayesian modelling predicted interindividual differences in eight cognitive outcome scores three months after stroke based on specific tissue lesion topologies. A multivariate factor analysis extracted four distinct cognitive factors that distinguish left- and right-hemispheric contributions to ischaemic tissue lesions. These factors were labelled according to the neuropsychological tests that had the strongest factor loadings: One factor delineated language and general cognitive performance and was mainly associated with damage to left-hemispheric brain regions in the frontal and temporal cortex. A factor for executive control summarized mental flexibility, task switching and visual-constructional abilities. This factor was strongly related to right-hemispheric brain damage of posterior regions in the occipital cortex. The interplay of language and executive control was reflected in two distinct factors that were labelled as executive speech functions and verbal memory. Impairments on both factors were mainly linked to left-hemispheric lesions. These findings shed light onto the causal implications of hemispheric specialization for cognition; and make steps towards subgroup-specific treatment protocols after stroke.

8.
Commun Biol ; 7(1): 477, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637627

ABSTRACT

The amygdala nuclei modulate distributed neural circuits that most likely evolved to respond to environmental threats and opportunities. So far, the specific role of unique amygdala nuclei in the context processing of salient environmental cues lacks adequate characterization across neural systems and over time. Here, we present amygdala nuclei morphometry and behavioral findings from longitudinal population data (>1400 subjects, age range 40-69 years, sampled 2-3 years apart): the UK Biobank offers exceptionally rich phenotyping along with brain morphology scans. This allows us to quantify how 18 microanatomical amygdala subregions undergo plastic changes in tandem with coupled neural systems and delineating their associated phenome-wide profiles. In the context of population change, the basal, lateral, accessory basal, and paralaminar nuclei change in lockstep with the prefrontal cortex, a region that subserves planning and decision-making. The central, medial and cortical nuclei are structurally coupled with the insular and anterior-cingulate nodes of the salience network, in addition to the MT/V5, basal ganglia, and putamen, areas proposed to represent internal bodily states and mediate attention to environmental cues. The central nucleus and anterior amygdaloid area are longitudinally tied with the inferior parietal lobule, known for a role in bodily awareness and social attention. These population-level amygdala-brain plasticity regimes in turn are linked with unique collections of phenotypes, ranging from social status and employment to sleep habits and risk taking. The obtained structural plasticity findings motivate hypotheses about the specific functions of distinct amygdala nuclei in humans.


Subject(s)
Amygdala , Phenomics , Humans , Adult , Middle Aged , Aged , Amygdala/diagnostic imaging , Amygdala/anatomy & histology , Basal Ganglia , Prefrontal Cortex
9.
Elife ; 122024 Mar 21.
Article in English | MEDLINE | ID: mdl-38512130

ABSTRACT

For over a century, brain research narrative has mainly centered on neuron cells. Accordingly, most neurodegenerative studies focus on neuronal dysfunction and their selective vulnerability, while we lack comprehensive analyses of other major cell types' contribution. By unifying spatial gene expression, structural MRI, and cell deconvolution, here we describe how the human brain distribution of canonical cell types extensively predicts tissue damage in 13 neurodegenerative conditions, including early- and late-onset Alzheimer's disease, Parkinson's disease, dementia with Lewy bodies, amyotrophic lateral sclerosis, mutations in presenilin-1, and 3 clinical variants of frontotemporal lobar degeneration (behavioral variant, semantic and non-fluent primary progressive aphasia) along with associated three-repeat and four-repeat tauopathies and TDP43 proteinopathies types A and C. We reconstructed comprehensive whole-brain reference maps of cellular abundance for six major cell types and identified characteristic axes of spatial overlapping with atrophy. Our results support the strong mediating role of non-neuronal cells, primarily microglia and astrocytes, in spatial vulnerability to tissue loss in neurodegeneration, with distinct and shared across-disorder pathomechanisms. These observations provide critical insights into the multicellular pathophysiology underlying spatiotemporal advance in neurodegeneration. Notably, they also emphasize the need to exceed the current neuro-centric view of brain diseases, supporting the imperative for cell-specific therapeutic targets in neurodegeneration.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , Brain , Neurons , Brain Mapping
10.
Nat Commun ; 15(1): 2639, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531844

ABSTRACT

Asymmetry between the left and right hemisphere is a key feature of brain organization. Hemispheric functional specialization underlies some of the most advanced human-defining cognitive operations, such as articulated language, perspective taking, or rapid detection of facial cues. Yet, genetic investigations into brain asymmetry have mostly relied on common variants, which typically exert small effects on brain-related phenotypes. Here, we leverage rare genomic deletions and duplications to study how genetic alterations reverberate in human brain and behavior. We designed a pattern-learning approach to dissect the impact of eight high-effect-size copy number variations (CNVs) on brain asymmetry in a multi-site cohort of 552 CNV carriers and 290 non-carriers. Isolated multivariate brain asymmetry patterns spotlighted regions typically thought to subserve lateralized functions, including language, hearing, as well as visual, face and word recognition. Planum temporale asymmetry emerged as especially susceptible to deletions and duplications of specific gene sets. Targeted analysis of common variants through genome-wide association study (GWAS) consolidated partly diverging genetic influences on the right versus left planum temporale structure. In conclusion, our gene-brain-behavior data fusion highlights the consequences of genetically controlled brain lateralization on uniquely human cognitive capacities.


Subject(s)
DNA Copy Number Variations , Genome-Wide Association Study , Humans , Functional Laterality , Brain Mapping , Brain , Magnetic Resonance Imaging
12.
Neuron ; 112(5): 698-717, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38340718

ABSTRACT

Large language models (LLMs) are a new asset class in the machine-learning landscape. Here we offer a primer on defining properties of these modeling techniques. We then reflect on new modes of investigation in which LLMs can be used to reframe classic neuroscience questions to deliver fresh answers. We reason that LLMs have the potential to (1) enrich neuroscience datasets by adding valuable meta-information, such as advanced text sentiment, (2) summarize vast information sources to overcome divides between siloed neuroscience communities, (3) enable previously unthinkable fusion of disparate information sources relevant to the brain, (4) help deconvolve which cognitive concepts most usefully grasp phenomena in the brain, and much more.


Subject(s)
Data Science , Neurosciences , Brain , Language , Machine Learning
13.
bioRxiv ; 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38405815

ABSTRACT

A pervasive dilemma in neuroimaging is whether to prioritize sample size or scan duration given fixed resources. Here, we systematically investigate this trade-off in the context of brain-wide association studies (BWAS) using resting-state functional magnetic resonance imaging (fMRI). We find that total scan duration (sample size × scan duration per participant) robustly explains individual-level phenotypic prediction accuracy via a logarithmic model, suggesting that sample size and scan duration are broadly interchangeable. The returns of scan duration eventually diminish relative to sample size, which we explain with principled theoretical derivations. When accounting for fixed costs associated with each participant (e.g., recruitment, non-imaging measures), we find that prediction accuracy in small-scale BWAS might benefit from much longer scan durations (>50 min) than typically assumed. Most existing large-scale studies might also have benefited from smaller sample sizes with longer scan durations. Both logarithmic and theoretical models of the relationships among sample size, scan duration and prediction accuracy explain well-predicted phenotypes better than poorly-predicted phenotypes. The logarithmic and theoretical models are also undermined by individual differences in brain states. These results replicate across phenotypic domains (e.g., cognition and mental health) from two large-scale datasets with different algorithms and metrics. Overall, our study emphasizes the importance of scan time, which is ignored in standard power calculations. Standard power calculations inevitably maximize sample size at the expense of scan duration. The resulting prediction accuracies are likely lower than would be produced with alternate designs, thus impeding scientific discovery. Our empirically informed reference is available for future study design: WEB_APPLICATION_LINK.

14.
bioRxiv ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38260665

ABSTRACT

Individualized phenotypic prediction based on structural MRI is an important goal in neuroscience. Prediction performance increases with larger samples, but small-scale datasets with fewer than 200 participants are often unavoidable. We have previously proposed a "meta-matching" framework to translate models trained from large datasets to improve the prediction of new unseen phenotypes in small collection efforts. Meta-matching exploits correlations between phenotypes, yielding large improvement over classical machine learning when applied to prediction models using resting-state functional connectivity as input features. Here, we adapt the two best performing meta-matching variants ("meta-matching finetune" and "meta-matching stacking") from our previous study to work with T1-weighted MRI data by changing the base neural network architecture to a 3D convolution neural network. We compare the two meta-matching variants with elastic net and classical transfer learning using the UK Biobank (N = 36,461), Human Connectome Project Young Adults (HCP-YA) dataset (N = 1,017) and HCP-Aging dataset (N = 656). We find that meta-matching outperforms elastic net and classical transfer learning by a large margin, both when translating models within the same dataset, as well as translating models across datasets with different MRI scanners, acquisition protocols and demographics. For example, when translating a UK Biobank model to 100 HCP-YA participants, meta-matching finetune yielded a 136% improvement in variance explained over transfer learning, with an average absolute gain of 2.6% (minimum = -0.9%, maximum = 17.6%) across 35 phenotypes. Overall, our results highlight the versatility of the meta-matching framework.

15.
Article in English | MEDLINE | ID: mdl-38052266

ABSTRACT

BACKGROUND: Individual differences in reward processing are central to heightened risk-taking behaviors during adolescence, but there is inconsistent evidence for the relationship between risk-taking phenotypes and the neural substrates of these behaviors. METHODS: Here, we identify latent features of reward in an attempt to provide a unifying framework linking together aspects of the brain and behavior during early adolescence using a multivariate pattern learning approach. Data (N = 8295; n male = 4190; n female = 4105) were acquired as part of the Adolescent Brain Cognitive Development (ABCD) Study and included neuroimaging (regional neural activity responses during reward anticipation) and behavioral (e.g., impulsivity measures, delay discounting) variables. RESULTS: We revealed a single latent dimension of reward driven by shared covariation between striatal, thalamic, and anterior cingulate responses during reward anticipation, negative urgency, and delay discounting behaviors. Expression of these latent features differed among adolescents with attention-deficit/hyperactivity disorder and disruptive behavior disorder, compared with those without, and higher expression of these latent features was negatively associated with multiple dimensions of executive function and cognition. CONCLUSIONS: These results suggest that cross-domain patterns of anticipatory reward processing linked to negative features of impulsivity exist in both the brain and in behavior during early adolescence and that these are representative of 2 commonly diagnosed reward-related psychiatric disorders, attention-deficit/hyperactivity disorder and disruptive behavior disorder. Furthermore, they provide an explicit baseline from which multivariate developmental trajectories of reward processes may be tracked in later waves of the ABCD Study and other developmental cohorts.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Impulsive Behavior , Humans , Male , Female , Adolescent , Reward , Executive Function/physiology , Corpus Striatum
16.
Cell Rep ; 43(1): 113597, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38159275

ABSTRACT

This study examines the impact of sample size on predicting cognitive and mental health phenotypes from brain imaging via machine learning. Our analysis shows a 3- to 9-fold improvement in prediction performance when sample size increases from 1,000 to 1 M participants. However, despite this increase, the data suggest that prediction accuracy remains worryingly low and far from fully exploiting the predictive potential of brain imaging data. Additionally, we find that integrating multiple imaging modalities boosts prediction accuracy, often equivalent to doubling the sample size. Interestingly, the most informative imaging modality often varied with increasing sample size, emphasizing the need to consider multiple modalities. Despite significant performance reserves for phenotype prediction, achieving substantial improvements may necessitate prohibitively large sample sizes, thus casting doubt on the practical or clinical utility of machine learning in some areas of neuroimaging.


Subject(s)
Brain , Neuroimaging , Humans , Brain/diagnostic imaging , Neuroimaging/methods , Machine Learning , Phenotype , Emotions , Magnetic Resonance Imaging/methods
17.
bioRxiv ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38106085

ABSTRACT

Resting-state functional connectivity (RSFC) is widely used to predict phenotypic traits in individuals. Large sample sizes can significantly improve prediction accuracies. However, for studies of certain clinical populations or focused neuroscience inquiries, small-scale datasets often remain a necessity. We have previously proposed a "meta-matching" approach to translate prediction models from large datasets to predict new phenotypes in small datasets. We demonstrated large improvement of meta-matching over classical kernel ridge regression (KRR) when translating models from a single source dataset (UK Biobank) to the Human Connectome Project Young Adults (HCP-YA) dataset. In the current study, we propose two meta-matching variants ("meta-matching with dataset stacking" and "multilayer meta-matching") to translate models from multiple source datasets across disparate sample sizes to predict new phenotypes in small target datasets. We evaluate both approaches by translating models trained from five source datasets (with sample sizes ranging from 862 participants to 36,834 participants) to predict phenotypes in the HCP-YA and HCP-Aging datasets. We find that multilayer meta-matching modestly outperforms meta-matching with dataset stacking. Both meta-matching variants perform better than the original "meta-matching with stacking" approach trained only on the UK Biobank. All meta-matching variants outperform classical KRR and transfer learning by a large margin. In fact, KRR is better than classical transfer learning when less than 50 participants are available for finetuning, suggesting the difficulty of classical transfer learning in the very small sample regime. The multilayer meta-matching model is publicly available at GITHUB_LINK.

18.
bioRxiv ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38014199

ABSTRACT

The human brain is characterised by idiosyncratic patterns of spontaneous thought, rendering each brain uniquely identifiable from its neural activity. However, deep general anaesthesia suppresses subjective experience. Does it also suppress what makes each brain unique? Here we used functional MRI under the effects of the general anaesthetics sevoflurane and propofol to determine whether anaesthetic-induced unconsciousness diminishes the uniqueness of the human brain: both with respect to the brains of other individuals, and the brains of another species. We report that under anaesthesia individual brains become less self-similar and less distinguishable from each other. Loss of distinctiveness is highly organised: it co-localises with the archetypal sensory-association axis, correlating with genetic and morphometric markers of phylogenetic differences between humans and other primates. This effect is more evident at greater anaesthetic depths, reproducible across sevoflurane and propofol, and reversed upon recovery. Providing convergent evidence, we show that under anaesthesia the functional connectivity of the human brain becomes more similar to the macaque brain. Finally, anaesthesia diminishes the match between spontaneous brain activity and meta-analytic brain patterns aggregated from the NeuroSynth engine. Collectively, the present results reveal that anaesthetised human brains are not only less distinguishable from each other, but also less distinguishable from the brains of other primates, with specifically human-expanded regions being the most affected by anaesthesia.

19.
Addict Biol ; 28(11): e13339, 2023 11.
Article in English | MEDLINE | ID: mdl-37855075

ABSTRACT

Alcohol dependence (AD) is a debilitating disease associated with high relapse rates even after long periods of abstinence. Thus, elucidating neurobiological substrates of relapse risk is fundamental for the development of novel targeted interventions that could promote long-lasting abstinence. In the present study, we analysed resting-state functional magnetic resonance imaging (rsfMRI) data from a sample of recently detoxified patients with AD (n = 93) who were followed up for 12 months after rsfMRI assessment. Specifically, we employed graph theoretic analyses to compare functional brain network topology and functional connectivity between future relapsers (REL, n = 59), future abstainers (ABS, n = 28) and age- and gender-matched controls (CON, n = 83). Our results suggest increased whole-brain network segregation, decreased global network integration and overall blunted connectivity strength in REL compared with CON. Conversely, we found evidence for a comparable network architecture in ABS relative to CON. At the nodal level, REL exhibited decreased integration and decoupling between multiple brain systems compared with CON, encompassing regions associated with higher-order executive functions, sensory and reward processing. Among patients with AD, increased coupling between nodes implicated in reward valuation and salience attribution constitutes a particular risk factor for future relapse. Importantly, aberrant network organization in REL was consistently associated with shorter abstinence duration during follow-up, portending to a putative neural signature of relapse risk in AD. Future research should further evaluate the potential diagnostic value of the identified changes in network topology and functional connectivity for relapse prediction at the individual subject level.


Subject(s)
Alcoholism , Humans , Alcoholism/diagnostic imaging , Follow-Up Studies , Brain/diagnostic imaging , Ethanol , Brain Mapping/methods , Recurrence , Magnetic Resonance Imaging/methods
20.
bioRxiv ; 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37609325

ABSTRACT

Stroke is the leading cause of long-term disability worldwide. Incurred brain damage disrupts cognition, often with persisting deficits in language and executive capacities. Despite their clinical relevance, the commonalities, and differences of language versus executive control impairments remain under-specified. We tailored a Bayesian hierarchical modeling solution in a largest-of-its-kind cohort (1080 stroke patients) to deconvolve language and executive control in the brain substrates of stroke insults. Four cognitive factors distinguished left- and right-hemispheric contributions to ischemic tissue lesion. One factor delineated language and general cognitive performance and was mainly associated with damage to left-hemispheric brain regions in the frontal and temporal cortex. A factor for executive control summarized control and visual-constructional abilities. This factor was strongly related to right-hemispheric brain damage of posterior regions in the occipital cortex. The interplay of language and executive control was reflected in two factors: executive speech functions and verbal memory. Impairments on both were mainly linked to left-hemispheric lesions. These findings shed light onto the causal implications of hemispheric specialization for cognition; and make steps towards subgroup-specific treatment protocols after stroke.

SELECTION OF CITATIONS
SEARCH DETAIL