Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(19): e2221440120, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37126706

ABSTRACT

Geraniol derived from essential oils of various plant species is widely used in the cosmetic and perfume industries. It is also an essential trait of the pleasant smell of rose flowers. In contrast to other monoterpenes which are produced in plastids via the methyl erythritol phosphate pathway, geraniol biosynthesis in roses relies on cytosolic NUDX1 hydrolase which dephosphorylates geranyl diphosphate (GPP). However, the metabolic origin of cytosolic GPP remains unknown. By feeding Rosa chinensis "Old Blush" flowers with pathway-specific precursors and inhibitors, combined with metabolic profiling and functional characterization of enzymes in vitro and in planta, we show that geraniol is synthesized through the cytosolic mevalonate (MVA) pathway by a bifunctional geranyl/farnesyl diphosphate synthase, RcG/FPPS1, producing both GPP and farnesyl diphosphate (FPP). The downregulation and overexpression of RcG/FPPS1 in rose petals affected not only geraniol and germacrene D emissions but also dihydro-ß-ionol, the latter due to metabolic cross talk of RcG/FPPS1-dependent isoprenoid intermediates trafficking from the cytosol to plastids. Phylogenetic analysis together with functional characterization of G/FPPS orthologs revealed that the G/FPPS activity is conserved among Rosaceae species. Site-directed mutagenesis and molecular dynamic simulations enabled to identify two conserved amino acids that evolved from ancestral FPPSs and contribute to GPP/FPP product specificity. Overall, this study elucidates the origin of the cytosolic GPP for NUDX1-dependent geraniol production, provides insights into the emergence of the RcG/FPPS1 GPPS activity from the ancestral FPPSs, and shows that RcG/FPPS1 plays a key role in the biosynthesis of volatile terpenoid compounds in rose flowers.


Subject(s)
Geranyltranstransferase , Rosa , Geranyltranstransferase/genetics , Mevalonic Acid/metabolism , Rosa/metabolism , Cytosol/metabolism , Phylogeny , Terpenes/metabolism , Flowers/metabolism
3.
Mol Biol Evol ; 39(2)2022 02 03.
Article in English | MEDLINE | ID: mdl-35022771

ABSTRACT

Nudix hydrolases are conserved enzymes ubiquitously present in all kingdoms of life. Recent research revealed that several Nudix hydrolases are involved in terpenoid metabolism in plants. In modern roses, RhNUDX1 is responsible for formation of geraniol, a major compound of rose scent. Nevertheless, this compound is produced by monoterpene synthases in many geraniol-producing plants. As a consequence, this raised the question about the origin of RhNUDX1 function and the NUDX1 gene evolution in Rosaceae, in wild roses or/and during the domestication process. Here, we showed that three distinct clades of NUDX1 emerged in the Rosoidae subfamily (Nudx1-1 to Nudx1-3 clades), and two subclades evolved in the Rosa genus (Nudx1-1a and Nudx1-1b subclades). We also showed that the Nudx1-1b subclade was more ancient than the Nudx1-1a subclade, and that the NUDX1-1a gene emerged by a trans-duplication of the more ancient NUDX1-1b gene. After the transposition, NUDX1-1a was cis-duplicated, leading to a gene dosage effect on the production of geraniol in different species. Furthermore, the NUDX1-1a appearance was accompanied by the evolution of its promoter, most likely from a Copia retrotransposon origin, leading to its petal-specific expression. Thus, our data strongly suggest that the unique function of NUDX1-1a in geraniol formation was evolved naturally in the genus Rosa before domestication.


Subject(s)
Rosa , Rosaceae , Acyclic Monoterpenes , Domestication , Rosa/genetics , Rosa/metabolism
4.
Plant J ; 104(1): 185-199, 2020 09.
Article in English | MEDLINE | ID: mdl-32639596

ABSTRACT

Roses use a non-canonical pathway involving a Nudix hydrolase, RhNUDX1, to synthesize their monoterpenes, especially geraniol. Here we report the characterization of another expressed NUDX1 gene from the rose cultivar Rosa x wichurana, RwNUDX1-2. In order to study the function of the RwNUDX1-2 protein, we analyzed the volatile profiles of an F1 progeny generated by crossing R. chinensis cv. 'Old Blush' with R. x wichurana. A correlation test of the volatilomes with gene expression data revealed that RwNUDX1-2 is involved in the biosynthesis of a group of sesquiterpenoids, especially E,E-farnesol, in addition to other sesquiterpenes. In vitro enzyme assays and heterologous in planta functional characterization of the RwNUDX1-2 gene corroborated this result. A quantitative trait locus (QTL) analysis was performed using the data of E,E-farnesol contents in the progeny and a genetic map was constructed based on gene markers. The RwNUDX1-2 gene co-localized with the QTL for E,E-farnesol content, thereby confirming its function in sesquiterpenoid biosynthesis in R. x wichurana. Finally, in order to understand the structural bases for the substrate specificity of rose NUDX proteins, the RhNUDX1 protein was crystallized, and its structure was refined to 1.7 Å. By molecular modeling of different rose NUDX1 protein complexes with their respective substrates, a structural basis for substrate discrimination by rose NUDX1 proteins is proposed.


Subject(s)
Plant Proteins/metabolism , Pyrophosphatases/metabolism , Rosa/metabolism , Sesquiterpenes/metabolism , Farnesol/metabolism , Genes, Plant/genetics , Genes, Plant/physiology , Phylogeny , Plant Proteins/genetics , Plant Proteins/physiology , Pyrophosphatases/genetics , Pyrophosphatases/physiology , Quantitative Trait Loci/genetics , Rosa/genetics , Sequence Alignment , Nudix Hydrolases
5.
Plant Physiol ; 179(3): 1064-1079, 2019 03.
Article in English | MEDLINE | ID: mdl-30622153

ABSTRACT

Floral scent is one of the most important characters in horticultural plants. Roses (Rosa spp.) have been cultivated for their scent since antiquity. However, probably by selecting for cultivars with long vase life, breeders have lost the fragrant character in many modern roses, especially the ones bred for the cut flower market. The genetic inheritance of scent characters has remained elusive so far. In-depth knowledge of this quantitative trait is thus very much needed to breed more fragrant commercial cultivars. Furthermore, rose hybrids harbor a composite genomic structure, which complexifies quantitative trait studies. To understand rose scent inheritance, we characterized a segregating population from two diploid cultivars, Rosa × hybrida cv H190 and Rosa wichurana, which have contrasting scent profiles. Several quantitative trait loci for the major volatile compounds in this progeny were identified. One among these loci contributing to the production of 2-phenylethanol, responsible for the characteristic odor of rose, was found to be colocalized with a candidate gene belonging to the 2-phenylethanol biosynthesis pathway: the PHENYLACETALDEHYDE SYNTHASE gene RhPAAS An in-depth allele-specific expression analysis in the progeny demonstrated that only one allele was highly expressed and was responsible for the production of 2-phenylethanol. Unexpectedly, its expression was found to start early during flower development, before the production of the volatile 2-phenylethanol, leading to the accumulation of glycosylated compounds in petals.


Subject(s)
Phenylethyl Alcohol/metabolism , Plant Proteins/physiology , Rosa/metabolism , Alleles , Biosynthetic Pathways , Flowers/genetics , Flowers/metabolism , Odorants , Phenylethyl Alcohol/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Quantitative Trait Loci , Rosa/genetics
6.
Front Plant Sci ; 9: 1435, 2018.
Article in English | MEDLINE | ID: mdl-30483274

ABSTRACT

Pelargonium genus contains about 280 species among which at least 30 species are odorant. Aromas produced by scented species are remarkably diverse such as rose, mint, lemon, nutmeg, ginger and many others scents. Amongst odorant species, rose-scented pelargoniums, also named pelargonium rosat, are the most famous hybrids for their production of essential oil (EO), widely used by perfume and cosmetic industries. Although EO composition has been extensively studied, the underlying biosynthetic pathways and their regulation, most notably of terpenes, are largely unknown. To gain a better understanding of the terpene metabolic pathways in pelargonium rosat, we generated a transcriptome dataset of pelargonium leaf and used a candidate gene approach to functionally characterise four terpene synthases (TPSs), including a geraniol synthase, a key enzyme responsible for the biosynthesis of the main rose-scented terpenes. We also report for the first time the characterisation of a novel sesquiterpene synthase catalysing the biosynthesis of 10-epi-γ-eudesmol. We found a strong correlation between expression of the four genes encoding the respective TPSs and accumulation of the corresponding products in several pelargonium cultivars and species. Finally, using publically available RNA-Seq data and de novo transcriptome assemblies, we inferred a maximum likelihood phylogeny from 270 pelargonium TPSs, including the four newly discovered enzymes, providing clues about TPS evolution in the Pelargonium genus. Notably, we show that, by contrast to other TPSs, geraniol synthases from the TPS-g subfamily conserved their molecular function throughout evolution.

7.
Nat Genet ; 50(6): 772-777, 2018 06.
Article in English | MEDLINE | ID: mdl-29713014

ABSTRACT

Roses have high cultural and economic importance as ornamental plants and in the perfume industry. We report the rose whole-genome sequencing and assembly and resequencing of major genotypes that contributed to rose domestication. We generated a homozygous genotype from a heterozygous diploid modern rose progenitor, Rosa chinensis 'Old Blush'. Using single-molecule real-time sequencing and a meta-assembly approach, we obtained one of the most comprehensive plant genomes to date. Diversity analyses highlighted the mosaic origin of 'La France', one of the first hybrids combining the growth vigor of European species and the recurrent blooming of Chinese species. Genomic segments of Chinese ancestry identified new candidate genes for recurrent blooming. Reconstructing regulatory and secondary metabolism pathways allowed us to propose a model of interconnected regulation of scent and flower color. This genome provides a foundation for understanding the mechanisms governing rose traits and should accelerate improvement in roses, Rosaceae and ornamentals.


Subject(s)
Genome, Plant , Rosa/genetics , Domestication , Flowers/genetics , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Plant Proteins/genetics , Sequence Analysis, DNA/methods , Whole Genome Sequencing/methods
8.
Plant Physiol Biochem ; 129: 21-26, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29787935

ABSTRACT

The floral volatile compound eugenol is an important constituent in many aromatic plants, being a floral attractant for pollinators as well as having antimicrobial activity. Rose flowers emit eugenol and its derivatives. We recently reported a eugenol synthase gene (RcEGS1) (JQ522949) that was present in petals of R. chinensis cv. Old Blush. RcEGS1 has its highest expression levels in the petals compared to other tissues; it has higher transcript levels at the developmental blooming stage and lower levels at budding and senescence stages. Here, we overexpressed the RcEGS1 protein in Escherichia coli, and showed by Western-blot analysis that its expression was mainly detected in stamens and petals at the flower opening stage. RcEGS1 was principally localized in the upper and lower epidermal layers, which are the major sites of scent emission in roses. Furthermore, we demonstrated that down-regulation of RcEGS1 expression in flowers by virus-induced gene silencing led to a reduction of the relative content of eugenol. We suggested that RcEGS1 was responsible for eugenol biosynthesis in roses.


Subject(s)
Eugenol/metabolism , Genes, Plant/genetics , Plant Proteins/genetics , Rosa/genetics , Blotting, Western , Down-Regulation , Escherichia coli , Flowers/metabolism , Gene Expression Regulation, Plant , Genes, Plant/physiology , Microorganisms, Genetically-Modified , Plant Proteins/physiology , Rosa/enzymology
9.
Trends Plant Sci ; 21(10): 884-894, 2016 10.
Article in English | MEDLINE | ID: mdl-27475252

ABSTRACT

Plant volatiles are crucial for various interactions with other organisms and their surrounding environment. A large number of these volatiles belong to the terpenoid and benzenoid/phenylpropanoid classes, which have long been considered to be exclusively synthesized from a few canonical pathways. However, several alternative pathways producing these plant volatiles have been discovered recently. This review summarizes the current knowledge about new pathways for these two major groups of plant volatiles, which open new perspectives for applications in metabolic engineering.


Subject(s)
Metabolic Networks and Pathways , Plants/metabolism , Volatile Organic Compounds/metabolism , Metabolic Networks and Pathways/physiology , Plants/enzymology
10.
Science ; 349(6243): 81-3, 2015 Jul 03.
Article in English | MEDLINE | ID: mdl-26138978

ABSTRACT

The scent of roses (Rosa x hybrida) is composed of hundreds of volatile molecules. Monoterpenes represent up to 70% percent of the scent content in some cultivars, such as the Papa Meilland rose. Monoterpene biosynthesis in plants relies on plastid-localized terpene synthases. Combining transcriptomic and genetic approaches, we show that the Nudix hydrolase RhNUDX1, localized in the cytoplasm, is part of a pathway for the biosynthesis of free monoterpene alcohols that contribute to fragrance in roses. The RhNUDX1 protein shows geranyl diphosphate diphosphohydrolase activity in vitro and supports geraniol biosynthesis in planta.


Subject(s)
Monoterpenes/metabolism , Odorants , Plastids/enzymology , Pyrophosphatases/biosynthesis , Rosa/enzymology , Terpenes/metabolism , Volatile Organic Compounds/metabolism , Acyclic Monoterpenes , Molecular Sequence Data , Pyrophosphatases/genetics , Rosa/genetics , Transcriptome , Nudix Hydrolases
11.
Naturwissenschaften ; 101(8): 623-35, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24925357

ABSTRACT

Staining and histochemistry of volatile organic compounds (VOCs) were performed at different inflorescence developmental stages on nine aroid species; one temperate, Arum italicum and eight tropical from the genera Caladium, Dieffenbachia and Philodendron. Moreover, a qualitative and quantitative analysis of VOCs constituting the scent of A. italicum, depending on the stage of development of inflorescences was also conducted. In all nine species, vesicles were observed in the conical cells of either the appendix or the stamens (thecae) and the staminodes. VOCs were localised in intracellular vesicles from the early stages of inflorescence development until their release during receptivity of gynoecium. This localisation was observed by the increase of both number and diameter of the vesicles during 1 week before receptivity. Afterwards, vesicles were fewer and smaller but rarely absent. In A. italicum, staining and gas chromatography analyses confirmed that the vesicles contained terpenes. The quantitatively most important ones were the sesquiterpenes, but monoterpenes were not negligible. Indeed, the quantities of terpenes matched the vesicles' size evolution during 1 week. Furthermore, VOCs from different biosynthetic pathways (sesquiterpenes and alkanes) were at their maximum quantity 2 days before gynoecium receptivity (sesquiterpenes and alkanes) or during receptivity (isobutylamine, monoterpenes, skatole and p-cresol). VOCs seemed to be emitted during gynoecium receptivity and/or during thermogenesis, and FADs are accumulated after thermogenesis in the spadix. These complex dynamics of the different VOCs could indicate specialisation of some VOCs and cell machinery to attract pollinators on the one hand and to repulse/protect against phytophagous organisms and pathogens after pollination on the other hand.


Subject(s)
Araceae/chemistry , Arum/chemistry , Pollination , Volatile Organic Compounds/analysis , Araceae/growth & development , Arum/growth & development , Chromatography, Gas , Plant Leaves/chemistry , Terpenes/analysis
12.
Gene ; 540(1): 96-103, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24530310

ABSTRACT

Rosa chinensis 'Pallida' (Rosa L.) is one of the most important ancient rose cultivars originating from China. It contributed the 'tea scent' trait to modern roses. However, little information is available on the gene regulatory networks involved in scent biosynthesis and metabolism in Rosa. In this study, the transcriptome of R. chinensis 'Pallida' petals at different developmental stages, from flower buds to senescent flowers, was investigated using Illumina sequencing technology. De novo assembly generated 89,614 clusters with an average length of 428bp. Based on sequence similarity search with known proteins, 62.9% of total clusters were annotated. Out of these annotated transcripts, 25,705 and 37,159 sequences were assigned to gene ontology and clusters of orthologous groups, respectively. The dataset provides information on transcripts putatively associated with known scent metabolic pathways. Digital gene expression (DGE) was obtained using RNA samples from flower bud, open flower and senescent flower stages. Comparative DGE and quantitative real time PCR permitted the identification of five transcripts encoding proteins putatively associated with scent biosynthesis in roses. The study provides a foundation for scent-related gene discovery in roses.


Subject(s)
Flowers/metabolism , Rosa/metabolism , Transcriptome , Flowers/genetics , Flowers/growth & development , Gene Expression Regulation, Plant , Genes, Plant , Molecular Sequence Annotation , Multigene Family , Plant Proteins/genetics , Plant Proteins/metabolism , Rosa/genetics , Rosa/growth & development , Sequence Analysis, DNA , Transcription Factors/genetics , Transcription Factors/metabolism
13.
Plant Cell Environ ; 36(3): 528-41, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22889298

ABSTRACT

While nectaries are commonly found in flowers, some plants also form extrafloral nectaries on stems or leaves. For the first time in the family Brassicaceae, here we report extrafloral nectaries in Brassica juncea. The extrafloral nectar (EFN) was secreted from previously amorphic sites on stems, flowering stalks and leaf axils from the onset of flowering until silique formation. Transverse sections at the point of nectar secretion revealed a pocket-like structure whose opening was surrounded by modified stomatal guard cells. The EFN droplets were viscous and up to 50% of the total weight was sugars, 97% of which was sucrose in the five varieties of B. juncea examined. Threonine, glutamine, arginine and glutamate were the most abundant amino acids. EFN droplets also contained glucosinolates, mainly gluconapin and sinigrin. Nectar secretion was increased when the plants were damaged by chewing above- and belowground herbivores and sap-sucking aphids. Parasitoids of each herbivore species were tested for their preference, of which three parasitoids preferred EFN and sucrose solutions over water. Moreover, the survival and fecundity of parasitoids were positively affected by feeding on EFN. We conclude that EFN production in B. juncea may contribute to the indirect defence of this plant species.


Subject(s)
Herbivory , Host-Parasite Interactions , Insecta/physiology , Mustard Plant/physiology , Plant Nectar/physiology , Animals , Female , Fertility , Insecta/parasitology , Mustard Plant/anatomy & histology , Mustard Plant/chemistry , Plant Nectar/chemistry
14.
PLoS One ; 7(10): e48253, 2012.
Article in English | MEDLINE | ID: mdl-23133579

ABSTRACT

Sclareol is a high-value natural product obtained by solid/liquid extraction of clary sage (Salvia sclarea L.) inflorescences. Because processes of excretion and accumulation of this labdane diterpene are unknown, the aim of this work was to gain knowledge on its sites of accumulation in planta. Samples were collected in natura or during different steps of the industrial process of extraction (steam distillation and solid/liquid extraction). Samples were then analysed with a combination of complementary analytical techniques (gas chromatography coupled to a mass spectrometer, polarized light microscopy, environmental scanning electron microscopy, two-photon fluorescence microscopy, second harmonic generation microscopy). According to the literature, it is hypothesized that sclareol is localized in oil pockets of secretory trichomes. This study demonstrates that this is not the case and that sclareol accumulates in a crystalline epicuticular form, mostly on calyces.


Subject(s)
Salvia/metabolism , Chemistry, Organic/methods , Crystallization , Diterpenes/chemistry , Gas Chromatography-Mass Spectrometry/methods , Gene Expression Regulation, Plant , Ions , Mass Spectrometry/methods , Microscopy, Electron, Scanning/methods , Oils , Plant Extracts/chemistry , Plant Proteins/metabolism , Temperature , Terpenes
15.
New Phytol ; 188(2): 451-63, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20553385

ABSTRACT

• Floral scents and visual cues of the globeflower Trollius europaeus may play a key role in the attraction of Chiastocheta flies, involved in a highly specific nursery pollination mutualism. • Here, headspace collection and GC-MS were used to identify and quantify the volatile organic compounds emitted by the globeflower. • Scents are produced in three different floral parts by four structures: secretory glands and flat epidermis cells in the abaxial sepal epidermis, conical cells in the adaxial sepal epidermis, and pollen. The blend is made up of 16 compounds commonly found in floral scents. Geographical variation among populations is low compared with variation amongst individuals within populations. Electroantenno-graphic analyses revealed that six compounds emitted by both anthers and sepals are detected by Chiastocheta flies. Removing the anthers hidden inside the globe from flowers in the field decreased the number of fly visits to globeflowers. • A multivariate analysis of the effect of several floral traits on pollinator visitation rate conducted in the field showed that both floral scents and visual flower cues play a role in pollinator attraction. However, their relative roles and the intensity of the selective pressures exerted on floral traits by pollinators appear to vary in time and space.


Subject(s)
Diptera/physiology , Flowers/anatomy & histology , Pheromones/metabolism , Pigments, Biological/metabolism , Pollination/physiology , Ranunculaceae/anatomy & histology , Volatile Organic Compounds/analysis , Animals , Chromatography, Gas , Confidence Intervals , Electrophysiological Phenomena , Flowers/cytology , Least-Squares Analysis , Linear Models , Odorants/analysis , Quantitative Trait, Heritable , Ranunculaceae/cytology , Species Specificity
16.
Gene ; 450(1-2): 55-62, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-19840835

ABSTRACT

The outermost floral whorl, composed of sepals, is generally thought to function in the protection of reproductive tissues. In the plant family Lamiaceae, sepals are fused into a tube that is densely covered by hairs for mechanical defence and contains secondary metabolites for chemical defence against insects and abiotic stresses. Despite the importance of this tissue in plant fitness, virtually no study has addressed the basic aspects of sepal development and functioning. Because of its large size and its impressive metabolic activity (both in terms of quantity and diversity of secondary metabolites), we have used clary sage calyx as a model system to generate the first high throughput sequencing of the transcriptome of an angiosperm calyx. We applied massive parallel 454 pyrosequencing technology to a normalized cDNA extract and unveiled potential candidate genes for all steps of secondary metabolite pathways (phenylpropanoids and terpenoids). It also proved efficient in predicting the expression of large numbers of transcription factors and, with the use of bioinformatics tools, it predicted in the same sequencing run the presence of a novel class of gene transcription regulatory elements, miRNAs, without the need to generate a separate miRNA library. In our clary sage EST library, 18 conserved miRNAs were predicted. Among them, 15 were present in most studied plant species while the others were only shared with limited or discrete plant lineages. A separate data mining of the same clary sage EST library suggested the presence of 19 potential target genes to the 18 predicted conserved miRNAs. These coded for only 6 transcription factors or F-box proteins, 11 metabolism or abiotic stress response related proteins and 2 products with no known predicted function. All in all, this study provides novel genomic information on an angiosperm calyx and an experimental framework to predict in a single step metabolic pathway enzymes and regulator genes including miRNAs.


Subject(s)
Conserved Sequence , Flowers/genetics , Metabolic Networks and Pathways/genetics , MicroRNAs/genetics , Salvia/genetics , Sequence Analysis, DNA/methods , Transcription Factors/genetics , Base Sequence , DNA, Complementary/genetics , DNA, Plant/genetics , Expressed Sequence Tags , Gene Library , Salvia/metabolism
17.
Planta ; 226(4): 853-66, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17520281

ABSTRACT

The localization and timing of production and emission of scent was studied in different Rosa x hybrida cultivars, focusing on three particular topics. First, it was found that petals represent the major source of scent in R. x hybrida. In heavily scented cultivars, the spectrum and levels of volatiles emitted by the flower broadly correlated with the spectrum and levels of volatiles contained within the petal, throughout petal development. Secondly, analysis of rose cultivars that lacked a detectable scent indicated that the absence of fragrance was due to a reduction in both the biosynthesis and emission of scent volatiles. A cytological study, conducted on scented and non-scented rose cultivars showed that no major difference was visible in the anatomy of the petals either at small magnification in optical sections or in ultrathin sections observed by TEM. In particular, the cuticle of epidermal cells was not thicker in scentless cultivars. Thirdly, using two different techniques, solid/liquid phase extraction and headspace collection of volatiles, we showed that in roses, both epidermal layers are capable of producing and emitting scent volatiles, despite the different morphologies of the cells of these two tissues. Moreover, OOMT, an enzyme involved in scent molecule biosynthesis was localized in both epidermal layers.


Subject(s)
Flowers/physiology , Odorants/analysis , Plant Epidermis/physiology , Plant Extracts/chemistry , Rosa/physiology , Flowers/chemistry , Flowers/ultrastructure , Plant Epidermis/chemistry , Plant Epidermis/ultrastructure , Rosa/chemistry , Rosa/ultrastructure
18.
Plant Signal Behav ; 2(6): 525-6, 2007 Nov.
Article in English | MEDLINE | ID: mdl-19704548

ABSTRACT

We localized the tissues and cells that contribute to scent biosynthesis in scented and non-scented Rosa x hybrida cultivars as part of a detailed cytological analysis of the rose petal. Adaxial petal epidermal cells have a typical conical, papillate shape whereas abaxial petal epidermal cells are flat. Using two different techniques, solid/liquid phase extraction and headspace collection of volatiles, we showed that, in roses, both epidermal layers are capable of producing and emitting scent volatiles, despite the different morphologies of the cells of these two tissues. Moreover, OOMT, an enzyme involved in scent molecule biosynthesis, was localized in both epidermal layers. These results are discussed in view of results found in others species such as Antirrhinum majus, where it has been shown that the adaxial epidermis is the preferential site of scent production and emission.

19.
Ann Bot ; 97(2): 231-8, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16344264

ABSTRACT

BACKGROUND AND AIMS: Moss roses are old garden roses covered with a mossy growth on flower pedicel and calyx. This moss releases a pine-scented oleoresin that is very sticky and odoriferous. Rosa x centifolia 'muscosa' was the first moss rose to be obtained by bud-mutation but, interestingly, R. x damascena 'Quatre Saisons Blanc Mousseux' was the first repeat-blooming cultivar, thus interesting breeders. In the present study, the anatomy of these sports (i.e. bud-mutations) is characterized and the volatile organic compounds (VOCs) produced by the moss versus the petals are identified. They are compared between the two lines and their respective parents. METHODS: Anatomy of the moss is studied by environmental scanning electron microscopy and histochemical light microscopy. Sudan Red IV and Fluorol Yellow 088 are used to detect lipids, and 1-naphthol reaction with N,N-dimethyl-p-phenylenediamine to detect terpenes (Nadi reaction). Head-space or solid/liquid extraction followed by gas chromatography and mass spectrometry are used to identify VOCs in moss, trichomes and petals. KEY RESULTS: Moss of the two cultivars has the same structure with trichomes on other trichomes but not exactly the same VOCs. These VOCs are specific to the moss, with lots of terpenes. An identical VOC composition is found in leaves but not in petals. They are nearly the same in the moss mutants and in the respective wild types. CONCLUSIONS: Sepals of moss roses and their parents have a specific VOC pattern, different from that of the petals. The moss corresponds to a heterochronic mutation with trichomes developing on other trichomes. Such a mutation has probably appeared twice and independently in the two lines.


Subject(s)
Rosa/chemistry , Chromatography, Gas , Crosses, Genetic , Flowers/anatomy & histology , Flowers/chemistry , Gas Chromatography-Mass Spectrometry , Monoterpenes/analysis , Phylogeny , Plant Extracts/chemistry , Plant Leaves/anatomy & histology , Plant Leaves/chemistry , Rosa/anatomy & histology , Rosa/classification
20.
J Exp Bot ; 56(419): 2487-94, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16014363

ABSTRACT

A DNA regulatory fragment was isolated from the promoter region of the OASA1 gene, encoding the cytosolic O-acetylserine(thiol)lyase enzyme that is highly expressed in Arabidopsis thaliana trichomes. This DNA fragment has been named an ATP fragment and comprises 1435 bp of the genomic region upstream of the OASA1 gene and 375 bp of the transcriptional initiation start site containing the first intron of the gene. The ATP fragment, fused to the green fluorescent protein (GFP) and beta-glucuronidase (GUS) reporter genes, is able to drive high-level gene expression in A. thaliana trichomes. Deletion analysis of the ATP fragment determined that the region from -266 to -66 contains regulatory elements required for trichome expression. In addition, the region from +112 to +375, comprising the first intronic region of the gene, is also essential for trichome gene expression. Expression of the full-length ATP fragment in tobacco and peppermint shows that this fragment is also able to drive expression in glandular trichomes and suggests additional biotechnological applications for this promoter.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins/genetics , Plants/genetics , Promoter Regions, Genetic , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Genes, Reporter , Mentha piperita/genetics , Plants, Genetically Modified/genetics , Sequence Deletion , Nicotiana/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...