Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 359: 121008, 2024 May.
Article in English | MEDLINE | ID: mdl-38703654

ABSTRACT

Despite the high potential of seagrass restoration to reverse the trend of marine ecosystem degradation, there are still many limitations, especially when ecosystems are severely degraded. In particular, it is not known whether restoring polluted ecosystems can lead to potentially harmful effects associated with contaminant remobilisation. Here, we aimed to investigate the role of P. oceanica transplanted from a pristine meadow to a polluted site (Augusta Bay, Italy, Mediterranean Sea) in two seasons of the year, as a sink or source of trace elements to the environment. The main results showed i) higher accumulation of chromium (Cr), copper (Cu) and total mercury (THg) in plants transplanted in summer than in winter, as well as an increase in Cr and THg in plants from sites with higher trace element loads; ii) an increase in leaf phenolics and a decrease in rhizome soluble carbohydrates associated with As and THg accumulation, suggesting the occurrence of defence strategies to cope with pollution stress; iii) a different partitioning of trace elements between below- and above-ground tissues, with arsenic (As) and Cr accumulating in roots, whereas Cu and THg in both roots and leaves. These results suggest that P. oceanica transplanted to polluted sites can act as both a sink and a source, sequestering trace elements in the below-ground tissues thus reducing their bioavailability, but also potentially remobilising them. However, the amount of trace elements potentially exported from P. oceanica to the environment through transfer into food webs via leaves and detritus appeared to be low under the specific conditions of the study site. Although further research into seagrass restoration of polluted sites would improve current knowledge to support effective ecosystem-based coastal management, the benefits of restoring polluted sites through seagrass transplantation appear to outweigh the potential costs of inaction over time.


Subject(s)
Alismatales , Ecosystem , Trace Elements , Trace Elements/analysis , Mediterranean Sea , Water Pollutants, Chemical , Italy , Arsenic/analysis
2.
Mol Ecol ; 32(15): 4313-4328, 2023 08.
Article in English | MEDLINE | ID: mdl-37271924

ABSTRACT

Adaptation to local conditions is known to occur in seagrasses; however, knowledge of the genetic basis underlying this phenomenon remains scarce. Here, we analysed Posidonia oceanica from six sites within and around the Stagnone di Marsala, a semi-enclosed coastal lagoon where salinity and temperature exceed the generally described tolerance thresholds of the species. Sea surface temperatures (SSTs) were measured and plant samples were collected for the assessment of morphology, flowering rate and for screening genome-wide polymorphisms using double digest restriction-site-associated DNA sequencing. Results demonstrated more extreme SSTs and salinity levels inside the lagoon than the outer lagoon regions. Morphological results showed significantly fewer and shorter leaves and reduced rhizome growth of P. oceanica from the inner lagoon and past flowering events were recorded only for a meadow farthest away from the lagoon. Using an array of 51,329 single nucleotide polymorphisms, we revealed a clear genetic structure among the study sites and confirmed the genetic isolation and high clonality of the innermost site. In all, 14 outlier loci were identified and annotated with several proteins including those relate to plant stress response, protein transport and regulators of plant-specific developmental events. Especially, five outlier loci showed maximum allele frequency at the innermost site, likely reflecting adaptation to the extreme temperature and salinity regimes, possibly due to the selection of more resistant genotypes and the progressive restriction of gene flow. Overall, this study helps us to disentangle the genetic basis of seagrass adaptation to local environmental conditions and may support future works on assisted evolution in seagrasses.


Subject(s)
Alismatales , Salinity , Temperature , Oceans and Seas , Alismatales/genetics , Selection, Genetic , Mediterranean Sea
3.
Plants (Basel) ; 11(9)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35567139

ABSTRACT

The presence of endophytic fungi in the roots, rhizomes, and leaves of Posidonia oceanica was evaluated in different localities of the Sicilian coast. Samples of roots, rhizomes, and leaves were submitted to isolation techniques, and the obtained fungal colonies were identified by morphological and molecular (rRNA sequencing) analysis. Fungal endophytes occurred mainly in roots and occasionally in rhizomes and leaves. Lulwoana sp. was the most frequent of the isolated taxa, suggesting a strong interaction with the host. In addition, eight other fungal taxa were isolated. In particular, fungi of the genus Ochroconis and family Xylariaceae were identified as endophytes in healthy plants at all sampling stations, whereas Penicillium glabrum was isolated at only one sampling station. Thus, several organs, especially roots of Posidonia oceanica, harbor endophytic fungi, potentially involved in supporting the living host as ascertained for terrestrial plants.

4.
Mar Environ Res ; 159: 105011, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32662440

ABSTRACT

Understanding the response of species to disturbance and the ability to recover is crucial for preventing their potential collapse and ecosystem phase shifts. Explosive submarine activity, occurring in shallow volcanic vents, can be considered as a natural pulse disturbance, due to its suddenness and high intensity, potentially affecting nearby species and ecosystems. Here, we present the response of Posidonia oceanica, a long-lived seagrass, to an exceptional submarine volcanic explosion, which occurred in the Aeolian Archipelago (Italy, Mediterranean Sea) in 2002, and evaluate its resilience in terms of time required to recover after such a pulse event. The study was carried out in 2011 in the sea area off Panarea Island, in the vicinity of Bottaro Island by adopting a back-dating methodological approach, which allowed a retrospective analysis of the growth performance and stable carbon isotopes (δ13C) in sheaths and rhizomes of P. oceanica, during a 10-year period (2001-2010). After the 2002 explosion, a trajectory shift towards decreasing values for both growth performance and δ13C in sheaths and rhizomes was observed. The decreasing trend reversed in 2004 when recovery took place progressively for all the analysed variables. Full recovery of P. oceanica occurred 8 years after the explosive event with complete restoration of all the variables (rhizome growth performance and δ13C) by 2010. Given the ecological importance of this seagrass in marine coastal ecosystems and its documented large-scale decline, the understanding of its potential recovery in response to environmental changes is imperative.


Subject(s)
Alismatales , Ecosystem , Alismatales/growth & development , Italy , Mediterranean Sea , Retrospective Studies
5.
Mar Pollut Bull ; 158: 111395, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32568075

ABSTRACT

Alagna et al. (2019) suggest new transplantation methods for Posidonia oceanica (Linnaeus) Delile, inspired by its natural recovery process after disturbance due to dredging operations for gas-pipelines. They observe that P. oceanica vegetative fragments naturally settled only on loose calcareous stones deployed to fill the trenches of the gas-pipeline. No recovery was noted on dead matte, sand and large calcarenitic boulders. Following a new pilot restoration project currently ongoing in the same area, we demonstrate that natural recovery also occurs on dead matte. After examining other alternative transplantation methods for P. oceanica, the Authors suggest using their "habitat enhancement units" method for the restoration of seagrasses, not only on rocky bottom but also on sand and other bare substrate requiring general environmental restoration. Here we express disagreement on certain issues reported in the paper.


Subject(s)
Alismatales , Environmental Restoration and Remediation , Ecosystem , Grassland , Mediterranean Sea
6.
Am J Bot ; 99(10): 1592-608, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23032814

ABSTRACT

PREMISE OF THE STUDY: The predominantly aquatic order Alismatales displays a highly variable flower groundplan associated with a diverse range of developmental patterns. We present the first detailed description of flower anatomy and development in Posidonia, the sole genus of the seagrass family Posidoniaceae. Existing accounts provide conflicting interpretations of floral and inflorescence structure, so this investigation is important in clarifying morphological evolution within this early-divergent monocot order. • METHODS: We investigated two species of Posidonia using light microscopy and scanning electron microscopy. Our observations are interpreted in the framework of a recent molecular phylogeny. • KEY RESULTS: Partial inflorescences are bracteate spikes, which are arranged into a botryoid or a panicle. The flowers are perianthless. The gynoecium is monomerous with the ventral carpel side oriented abaxially. The carpel contains a single pendent bitegmic ovule with a nucellus and long chalaza, both extending along the carpel wall. The ovule develops an integumentary outgrowth. Each flower is supplied by a vascular bundle, whereas the flower-subtending bracts are nonvascularized. • CONCLUSIONS: Our data support a racemose interpretation for the partial inflorescence of Posidonia and the presence of flower-subtending bracts. In common with some other Alismatales, Posidonia has simultaneous development of the flower and its subtending bract and loss of the bract vascular supply accompanied by innervation of the flower by a single vascular strand. The unusual carpel orientation could be an evolutionary reduction of a formerly tricarpellate gynoecium. The ovule of Posidonia is campylotropous and unusual within Alismatales in possessing an integumentary outgrowth.


Subject(s)
Alismatales/anatomy & histology , Inflorescence/anatomy & histology , Alismatales/growth & development , Alismatales/ultrastructure , Fertilization , Inflorescence/growth & development , Inflorescence/ultrastructure , Organogenesis , Ovule/cytology , Ovule/ultrastructure , Phylogeny , Plant Vascular Bundle/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...