Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
bioRxiv ; 2024 May 20.
Article En | MEDLINE | ID: mdl-38826293

Gastrointestinal (GI) B cells and plasma cells (PCs), critical to mucosal homeostasis, play an important role in the host response to HIV-1 infection. Here, high resolution mapping of human B cells and PCs from colon and ileum during both viremic and suppressed HIV-1 infection identified a significant reduction in germinal center (GC) B cells and Follicular Dendritic Cells (FDCs) during HIV-1 viremia. Further, IgA + PCs, the major cellular output of intestinal GCs were significantly reduced during viremic HIV-1 infection. PC-associated transcriptional perturbations, including type I interferon signaling persisted in antiretroviral therapy (ART) treated individuals, suggesting ongoing disruption of the intestinal immune milieu during ART. GI humoral immune perturbations associated with changes in intestinal microbiome composition and systemic inflammation. Herein, we highlight a key immune defect in the GI mucosa due to HIV-1 viremia, with major implications. One Sentence Summary: Major perturbations in intestinal GC dynamics in viremic HIV-1 infection relate to reduced IgA + plasma cells, systemic inflammation and microbiota changes.

2.
Sci Immunol ; 9(94): eadg7549, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38640252

Vedolizumab (VDZ) is a first-line treatment in ulcerative colitis (UC) that targets the α4ß7- mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1) axis. To determine the mechanisms of action of VDZ, we examined five distinct cohorts of patients with UC. A decrease in naïve B and T cells in the intestines and gut-homing (ß7+) plasmablasts in circulation of VDZ-treated patients suggested that VDZ targets gut-associated lymphoid tissue (GALT). Anti-α4ß7 blockade in wild-type and photoconvertible (KikGR) mice confirmed a loss of GALT size and cellularity because of impaired cellular entry. In VDZ-treated patients with UC, treatment responders demonstrated reduced intestinal lymphoid aggregate size and follicle organization and a reduction of ß7+IgG+ plasmablasts in circulation, as well as IgG+ plasma cells and FcγR-dependent signaling in the intestine. GALT targeting represents a previously unappreciated mechanism of action of α4ß7-targeted therapies, with major implications for this therapeutic paradigm in UC.


Colitis, Ulcerative , Humans , Animals , Mice , Colitis, Ulcerative/drug therapy , Integrins , Intestinal Mucosa , Peyer's Patches , Immunoglobulin G/therapeutic use
3.
Cell Host Microbe ; 31(10): 1595-1597, 2023 10 11.
Article En | MEDLINE | ID: mdl-37827118

In this issue of Cell Host & Microbe, Zhang et al. show that long-term oral administration of a pectin-derived prebiotic broadly enhanced IgA responses to commensals in the small intestine. This effect required T cells and involved Lachnospiraceae A2, suggesting that a few symbionts promote IgA responses to many commensals.


Immunoglobulin A , Intestine, Small , T-Lymphocytes , Prebiotics , Fear
4.
bioRxiv ; 2023 Jun 05.
Article En | MEDLINE | ID: mdl-37333091

Ulcerative colitis (UC) is an idiopathic chronic inflammatory disease of the colon with sharply rising global prevalence. Dysfunctional epithelial compartment (EC) dynamics are implicated in UC pathogenesis although EC-specific studies are sparse. Applying orthogonal high-dimensional EC profiling to a Primary Cohort (PC; n=222), we detail major epithelial and immune cell perturbations in active UC. Prominently, reduced frequencies of mature BEST4+OTOP2+ absorptive and BEST2+WFDC2+ secretory epithelial enterocytes were associated with the replacement of homeostatic, resident TRDC+KLRD1+HOPX+ γδ+ T cells with RORA+CCL20+S100A4+ TH17 cells and the influx of inflammatory myeloid cells. The EC transcriptome (exemplified by S100A8, HIF1A, TREM1, CXCR1) correlated with clinical, endoscopic, and histological severity of UC in an independent validation cohort (n=649). Furthermore, therapeutic relevance of the observed cellular and transcriptomic changes was investigated in 3 additional published UC cohorts (n=23, 48 and 204 respectively) to reveal that non-response to anti-Tumor Necrosis Factor (anti-TNF) therapy was associated with EC related myeloid cell perturbations. Altogether, these data provide high resolution mapping of the EC to facilitate therapeutic decision-making and personalization of therapy in patients with UC.

6.
JCI Insight ; 8(13)2023 07 10.
Article En | MEDLINE | ID: mdl-37252802

SARS-CoV-2 mRNA vaccination generates protective B cell responses targeting the SARS-CoV-2 spike glycoprotein. Whereas anti-spike memory B cell responses are long lasting, the anti-spike humoral antibody response progressively wanes, making booster vaccinations necessary for maintaining protective immunity. Here, we qualitatively investigated the plasmablast responses by measuring from single cells within hours of sampling the affinity of their secreted antibody for the SARS-CoV-2 spike receptor binding domain (RBD) in cohorts of BNT162b2-vaccinated naive and COVID-19-recovered individuals. Using a droplet microfluidic and imaging approach, we analyzed more than 4,000 single IgG-secreting cells, revealing high interindividual variability in affinity for RBD, with variations over 4 logs. High-affinity plasmablasts were induced by BNT162b2 vaccination against Hu-1 and Omicron RBD but disappeared quickly thereafter, whereas low-affinity plasmablasts represented more than 65% of the plasmablast response at all time points. Our droplet-based method thus proves efficient at fast and qualitative immune monitoring and should be helpful for optimization of vaccination protocols.


BNT162 Vaccine , COVID-19 , Humans , SARS-CoV-2/genetics , Microfluidics , COVID-19/prevention & control , RNA, Messenger
7.
bioRxiv ; 2023 Jan 20.
Article En | MEDLINE | ID: mdl-36711839

Targeting the α4ß7-MAdCAM-1 axis with vedolizumab (VDZ) is a front-line therapeutic paradigm in ulcerative colitis (UC). However, mechanism(s) of action (MOA) of VDZ remain relatively undefined. Here, we examined three distinct cohorts of patients with UC (n=83, n=60, and n=21), to determine the effect of VDZ on the mucosal and peripheral immune system. Transcriptomic studies with protein level validation were used to study drug MOA using conventional and transgenic murine models. We found a significant decrease in colonic and ileal naïve B and T cells and circulating gut-homing plasmablasts (ß7+) in VDZ-treated patients, pointing to gut-associated lymphoid tissue (GALT) targeting by VDZ. Murine Peyer's patches (PP) demonstrated a significant loss cellularity associated with reduction in follicular B cells, including a unique population of epithelium-associated B cells, following anti-α4ß7 antibody (mAb) administration. Photoconvertible (KikGR) mice unequivocally demonstrated impaired cellular entry into PPs in anti-α4ß7 mAb treated mice. In VDZ-treated, but not anti-tumor necrosis factor-treated UC patients, lymphoid aggregate size was significantly reduced in treatment responders compared to non-responders, with an independent validation cohort further confirming these data. GALT targeting represents a novel MOA of α4ß7-targeted therapies, with major implications for this therapeutic paradigm in UC, and for the development of new therapeutic strategies.

8.
Proc Natl Acad Sci U S A ; 120(2): e2213056120, 2023 01 10.
Article En | MEDLINE | ID: mdl-36595686

Despite the essential role of plasma cells in health and disease, the cellular mechanisms controlling their survival and secretory capacity are still poorly understood. Here, we identified the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) Sec22b as a unique and critical regulator of plasma cell maintenance and function. In the absence of Sec22b, plasma cells were hardly detectable and serum antibody titers were dramatically reduced. Accordingly, Sec22b-deficient mice fail to mount a protective immune response. At the mechanistic level, we demonstrated that Sec22b contributes to efficient antibody secretion and is a central regulator of plasma cell maintenance through the regulation of their transcriptional identity and of the morphology of the endoplasmic reticulum and mitochondria. Altogether, our results unveil an essential and nonredundant role for Sec22b as a regulator of plasma cell fitness and of the humoral immune response.


Plasma Cells , SNARE Proteins , Mice , Animals , Plasma Cells/metabolism , R-SNARE Proteins/metabolism , SNARE Proteins/metabolism , Endoplasmic Reticulum/metabolism , Biological Transport
9.
J Clin Invest ; 132(12)2022 06 15.
Article En | MEDLINE | ID: mdl-35503254

The major therapeutic goal for immune thrombocytopenic purpura (ITP) is to restore normal platelet counts using drugs to promote platelet production or by interfering with mechanisms responsible for platelet destruction. Eighty percent of patients with ITP possess anti-integrin αIIbß3 IgG autoantibodies that cause platelet opsonization and phagocytosis. The spleen is considered the primary site of autoantibody production by autoreactive B cells and platelet destruction. The immediate failure in approximately 50% of patients to recover a normal platelet count after anti-CD20 rituximab-mediated B cell depletion and splenectomy suggests that autoreactive, rituximab-resistant, IgG-secreting B cells (IgG-SCs) reside in other anatomical compartments. We analyzed more than 3,300 single IgG-SCs from spleen, bone marrow, and/or blood of 27 patients with ITP, revealing high interindividual variability in affinity for αIIbß3, with variations over 3 logs. IgG-SC dissemination and range of affinities were, however, similar for each patient. Longitudinal analysis of autoreactive IgG-SCs upon treatment with the anti-CD38 mAb daratumumab demonstrated variable outcomes, from complete remission to failure with persistence of high-affinity anti-αIIbß3 IgG-SCs in the bone marrow. This study demonstrates the existence and dissemination of high-affinity autoreactive plasma cells in multiple anatomical compartments of patients with ITP that may cause the failure of current therapies.


Purpura, Thrombocytopenic, Idiopathic , Autoantibodies , Blood Platelets , Humans , Immunoglobulin G , Plasma Cells , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Rituximab/therapeutic use , Splenectomy
11.
Nat Biotechnol ; 38(6): 715-721, 2020 06.
Article En | MEDLINE | ID: mdl-32231335

Mining the antibody repertoire of plasma cells and plasmablasts could enable the discovery of useful antibodies for therapeutic or research purposes1. We present a method for high-throughput, single-cell screening of IgG-secreting primary cells to characterize antibody binding to soluble and membrane-bound antigens. CelliGO is a droplet microfluidics system that combines high-throughput screening for IgG activity, using fluorescence-based in-droplet single-cell bioassays2, with sequencing of paired antibody V genes, using in-droplet single-cell barcoded reverse transcription. We analyzed IgG repertoire diversity, clonal expansion and somatic hypermutation in cells from mice immunized with a vaccine target, a multifunctional enzyme or a membrane-bound cancer target. Immunization with these antigens yielded 100-1,000 IgG sequences per mouse. We generated 77 recombinant antibodies from the identified sequences and found that 93% recognized the soluble antigen and 14% the membrane antigen. The platform also allowed recovery of ~450-900 IgG sequences from ~2,200 IgG-secreting activated human memory B cells, activated ex vivo, demonstrating its versatility.


Antibodies/genetics , High-Throughput Nucleotide Sequencing , Microfluidic Analytical Techniques/instrumentation , Single-Cell Analysis , Animals , Antigens/immunology , B-Lymphocytes/immunology , Cancer Vaccines/immunology , DNA/analysis , DNA/genetics , High-Throughput Nucleotide Sequencing/instrumentation , High-Throughput Nucleotide Sequencing/methods , Humans , Immunoglobulin G/genetics , Mice , Single-Cell Analysis/instrumentation , Single-Cell Analysis/methods
12.
mBio ; 10(6)2019 11 05.
Article En | MEDLINE | ID: mdl-31690674

Gut-derived immunoglobulin A (IgA) is the most abundant antibody secreted in the gut that shapes gut microbiota composition and functionality. However, most of the microbial antigens targeted by gut IgA remain unknown, and the functional effects of IgA targeting these antigens are currently understudied. This study provides a framework for identifying and characterizing gut microbiota antigens targeted by gut IgA. We developed a small intestinal ex vivo culture assay to harvest lamina propria IgA from gnotobiotic mice, with the aim of identifying antigenic targets in a model human gut commensal, Bacteroides thetaiotaomicron VPI-5482. Colonization by B. thetaiotaomicron induced a microbe-specific IgA response that was reactive against diverse antigens, including capsular polysaccharides, lipopolysaccharides, and proteins. IgA against microbial protein antigens targeted membrane and secreted proteins with diverse functionalities, including an IgA specific against proteins of the polysaccharide utilization locus (PUL) that are necessary for utilization of fructan, which is an important dietary polysaccharide. Further analyses demonstrated that the presence of dietary fructan increased the production of fructan PUL-specific IgA, which then downregulated the expression of fructan PUL in B. thetaiotaomicron, both in vivo and in vitro Since the expression of fructan PUL has been associated with the ability of B. thetaiotaomicron to colonize the gut in the presence of dietary fructans, our work suggests a novel role for gut IgA in regulating microbial colonization by modulating their metabolism.IMPORTANCE Given the significant impact that gut microbes have on our health, it is essential to identify key host and environmental factors that shape this diverse community. While many studies have highlighted the impact of diet on gut microbiota, little is known about how the host regulates this critical diet-microbiota interaction. In our present study, we discovered that gut IgA targeted a protein complex involved in the utilization of an important dietary polysaccharide: fructan. While the presence of dietary fructans was previously thought to allow unrestricted growth of fructan-utilizing bacteria, our work shows that gut IgA, by targeting proteins responsible for fructan utilization, provides the host with tools that can restrict the microbial utilization of such polysaccharides, thereby controlling their growth.


Bacteroides thetaiotaomicron/immunology , Dietary Carbohydrates/immunology , Fructans/immunology , Gastrointestinal Microbiome/immunology , Immunoglobulin A/immunology , Intestines/immunology , Intestines/microbiology , Animals , Diet/methods , Germ-Free Life/immunology , Mice , Mice, Inbred C57BL
13.
Microbiology (Reading) ; 165(10): 1107-1116, 2019 10.
Article En | MEDLINE | ID: mdl-31329095

Azotobacter vinelandii is a soil bacterium that is able to synthesize poly-ß-hydroxybutyrate (PHB), a polymer used to produce biodegradable plastic. PHB is stored in the cytoplasm as granules surrounded by several proteins such as the major phasin PhbP, PHB synthase and PHB depolymerase, among others. Many studies have reported the presence of membrane proteins on PHB granules due to contamination during the polymer extraction procedures. Previously, the outer membrane protein I (OprI) was detected on the polymer granules in A. vinelandii. In this study, by using random transposon mutagenesis, we identified that a mutation in the oprI gene diminished PHB accumulation in A. vinelandii on solid medium. Electron microscopy confirmed the low polymer production by the oprI mutant. Analysis of PHB granules by Tricine-SDS-PAGE revealed that the absence of OprI affected the protein profile of the granules, suggesting that OprI could have a structural role in A. vinelandii. Thus, some membrane proteins on PHB granules may not be artefacts as previously described.


Azotobacter vinelandii/metabolism , Bacterial Proteins/metabolism , Biopolymers/metabolism , Hydroxybutyrates/metabolism , Lipoproteins/metabolism , Polyesters/metabolism , Amino Acid Sequence , Azotobacter vinelandii/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Culture Media , Cytoplasmic Granules/metabolism , Lipoproteins/chemistry , Lipoproteins/genetics , Mutation , Protein Binding
14.
Pharm Res ; 33(11): 2644-52, 2016 11.
Article En | MEDLINE | ID: mdl-27387170

PURPOSE: Information on genetic variants that affect the pharmacokinetics and pharmacodynamics (PK/PD) of drugs in different populations from Mexico is still an ongoing endeavor. Here, we investigate allele frequencies on pharmacogenetic targets in Mexican Mestizos and Natives from three different States and its association with drug efficacy in individuals receiving either anticoagulants or antipsychotic drugs. METHODS: Natives from three different states and Mestizo patients receiving acenocoumarol or antipsychotics were genotyped using the DMET microarray (Affymetrix). RESULTS: We provide a collection of genetic variants that indicate that there are 3-times more variation than similarities between populations from Mexico and major continental groups. These differences were observed in several relevant targets including ABCB1, SLCO1A1, NAT2, UGTs, TYMS, VKORC1, and NR1I3. Moreover, Mexican Mestizos also showed allele frequency differences when compared to Natives for variants on DPYD, ADH1A, CYP3A4, SLC28A3, and SLC28A1. Significant allele differences also arose among the three Native groups here studied, mostly for transporters of the ABC-binding cassette and the solute carrier gene family. Finally, we explored genotype-drug response associations and pinpointed variants on FMOs (coumarins), and GSTM1 (haloperidol). CONCLUSIONS: These findings confirm previous results and further delve into the pharmacogenetics of Mexican populations including different Native groups.


Anticoagulants/therapeutic use , Antipsychotic Agents/therapeutic use , Pharmacogenomic Variants , Acenocoumarol/therapeutic use , Adolescent , Adult , Aged , Aged, 80 and over , Constitutive Androstane Receptor , Female , Gene Frequency , Genetics, Population , Genotype , Humans , Indians, North American , Male , Mexico , Middle Aged , Phenotype , Young Adult
...