Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 68
1.
Malar J ; 23(1): 137, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715035

BACKGROUND: Universal coverage with insecticide-treated nets (ITNs) is important for malaria control and elimination. The emergence and intensification of insecticide resistance threatens progress made through the deployment of these interventions and has required the development of newer, more expensive ITN types. Understanding malaria prevention behaviour, including barriers and facilitators to net access and use, can support effective decision-making for the promotion and distribution of ITNs. METHODS: In-depth interviews and focus group discussions were conducted in 3 to 4 villages per district, in 13 districts across Burkina Faso, Mozambique, Nigeria and Rwanda from 2019 to 2022. Interviews were conducted in the local language, translated and transcribed in English, French or Portuguese. Transcripts were coded and analysed using Nvivo and ATLAS.ti. RESULTS: ITNs were obtained from mass distribution campaigns, antenatal care and immunization visits, and purchased on the private market in some locations. While there were divergent perspectives in whether the number of distributed nets were adequate, participants consistently expressed concerns of bias, discrimination, and a lack of transparency with the distribution process. ITNs were frequently used alongside other malaria prevention methods. The primary motivation for use was malaria prevention. While some participants reported using nets nightly throughout the year, other participants reported seasonal use, both due to the perceived higher density of mosquitoes and discomfort of sleeping under a net in the increased heat. Other barriers to consistent net use included activities that take place away from the home, sleeping patterns and arrangements, and sensitivity to the insecticides on the nets. CONCLUSIONS: ITNs remain an important malaria control intervention. To ensure adequate and increased net access, distribution campaigns should consider family structures, available sleeping spaces, and other bed sharing preferences when identifying the number of nets needed for distribution. In addition, campaigns should allow for multiple options for net distribution points and timing to accommodate households remote to health services. Continuous distribution channels and complimentary distribution through the private sector could help fill gaps in coverage. Solutions are needed for outdoor malaria transmission, including alternative designs for ITNs, and improving access to complementary personal protective measures.


Insecticide-Treated Bednets , Malaria , Mosquito Control , Insecticide-Treated Bednets/statistics & numerical data , Nigeria , Malaria/prevention & control , Burkina Faso , Mosquito Control/methods , Mosquito Control/statistics & numerical data , Humans , Mozambique , Female , Rwanda , Male , Adult , Middle Aged , Young Adult , Focus Groups
2.
Am J Trop Med Hyg ; 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38266287

Mozambique addressed critical malaria surveillance system challenges by rolling out an integrated malaria information storage system (iMISS) at the district level in February 2021. The iMISS integrates malaria data from existing systems across thematic program areas to improve data availability and use. In seven districts, the platform was extended to health facilities (HFs), allowing HFs to access iMISS and use tablets to submit monthly malaria reports to a central database, eliminating the need for paper-based reporting to districts. A structured evaluation of the iMISS rollout to HFs was carried out in February-July 2021. The four evaluation areas were data quality (reporting rate, timeliness, and fidelity) of monthly malaria reports electronically submitted to the iMISS, adoption of the iMISS for data-informed decision-making, system maintenance, and acceptability of the iMISS among target users. All 94 HFs in the seven targeted districts were assessed. Over the 6-month period, 86.1% of reported cases on the iMISS were consistent with cases recorded in paper-based reports, allowing for up to 10% discrepancy. In addition, 69.0% of expected monthly district meetings were held, and information from iMISS was discussed during 58.6% of these meetings. Maintenance issues, mostly related to tablet access and internet connectivity, were experienced by 74.5% of HFs; 33.7% of issues were resolved within 1 month. The iMISS and electronic submission of malaria reports were well accepted by HF- and district-level users. Continued political commitment and timely execution of issue management workflows are crucial to ensure trust in the new platform and facilitate higher levels of data use.

3.
Malar J ; 23(1): 23, 2024 Jan 18.
Article En | MEDLINE | ID: mdl-38238774

BACKGROUND: Different anopheline species (even within a species group/complex) can differ in their feeding and resting behaviours, which impact both malaria transmission patterns as well as the efficacy of vector control interventions. While morphological identification of sampled specimens is an important first step towards understanding species diversity and abundance, misidentification can result in the implementation of less effective vector control measures, and consequently smaller reductions in the number of local malaria cases. Focusing on southern Mozambique, a malaria pre-elimination area where malaria remains persistent, the aims of this preliminary study were to use molecular identification (CO1 and ITS2 barcoding) to (1) validate the results from the morphological identification (with a particular focus on Anopheles pharoensis and Anopheles squamosus), and (2) have a closer look at the Anopheles coustani group (which includes Anopheles tenebrosus and Anopheles ziemanni). METHODS: Female anopheline mosquitoes (n = 81) were identified morphologically and subsequently sequenced at the ribosomal DNA internal transcribed spacer region 2 (ITS2) and/or cytochrome oxidase subunit 1 (CO1) loci towards species determination. RESULTS: Out of the 62 specimens that were identified morphologically to species, 4 (6.5%) were misidentified. Regarding the An. coustani group, morphological identification showed that several members are present in southern Mozambique, including An. coustani sensu lato (s.l.), An. ziemanni and An. tenebrosus. However, based on both ITS2 and CO1 sequences, the exact species remains unknown for the latter two members until voucher sequences are available for comparison. CONCLUSION: The reason(s) for morphological misidentification of anopheline mosquitoes need to be mitigated. This is usually related to both the capacity (i.e. training) of the microscopist to identify anopheline species, and the information provided in the dichotomous identification key. As the An. coustani complex contributes to (residual) malaria transmission in sub-Saharan Africa, it may play a role in the observed persistent malaria in southern Mozambique. A better baseline characterizing of the local anophelines species diversity and behaviours will allow us to improve entomological surveillance strategies, better understand the impact of vector control on each local vector species, and identify new approaches to target those vector species.


Anopheles , Malaria , Animals , Female , Anopheles/genetics , Mozambique , Mosquito Vectors , Malaria/epidemiology , DNA, Ribosomal , Electron Transport Complex IV/genetics
4.
Commun Biol ; 6(1): 619, 2023 06 08.
Article En | MEDLINE | ID: mdl-37291425

Mozambique is one of the four African countries which account for over half of all malaria deaths worldwide, yet little is known about the parasite genetic structure in that country. We performed P. falciparum amplicon and whole genome sequencing on 2251 malaria-infected blood samples collected in 2015 and 2018 in seven provinces of Mozambique to genotype antimalarial resistance markers and interrogate parasite population structure using genome-wide microhaplotyes. Here we show that the only resistance-associated markers observed at frequencies above 5% were pfmdr1-184F (59%), pfdhfr-51I/59 R/108 N (99%) and pfdhps-437G/540E (89%). The frequency of pfdhfr/pfdhps quintuple mutants associated with sulfadoxine-pyrimethamine resistance increased from 80% in 2015 to 89% in 2018 (p < 0.001), with a lower expected heterozygosity and higher relatedness of microhaplotypes surrounding pfdhps mutants than wild-type parasites suggestive of recent selection. pfdhfr/pfdhps quintuple mutants also increased from 72% in the north to 95% in the south (2018; p < 0.001). This resistance gradient was accompanied by a concentration of mutations at pfdhps-436 (17%) in the north, a south-to-north increase in the genetic complexity of P. falciparum infections (p = 0.001) and a microhaplotype signature of regional differentiation. The parasite population structure identified here offers insights to guide antimalarial interventions and epidemiological surveys.


Antimalarials , Malaria, Falciparum , Malaria , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Mozambique , Plasmodium falciparum/genetics , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Malaria/drug therapy , Drug Resistance/genetics , Whole Genome Sequencing , Genetic Structures
5.
Malar J ; 22(1): 99, 2023 Mar 17.
Article En | MEDLINE | ID: mdl-36932384

BACKGROUND: While many malaria-endemic countries have health management information systems that can measure and report malaria trends in a timely manner, these routine systems have limitations. Periodic community cross-sectional household surveys are used to estimate malaria prevalence and intervention coverage but lack geographic granularity and are resource intensive. Incorporating malaria testing for all women at their first antenatal care (ANC) visit (i.e., ANC1) could provide a more timely and granular source of data for monitoring trends in malaria burden and intervention coverage. This article describes a protocol designed to assess if ANC-based surveillance could be a pragmatic tool to monitor malaria. METHODS: This is an observational, cross-sectional study conducted in Benin, Burkina Faso, Mozambique, Nigeria, Tanzania, and Zambia. Pregnant women attending ANC1 in selected health facilities will be tested for malaria infection by rapid diagnostic test and administered a brief questionnaire to capture key indicators of malaria control intervention coverage and care-seeking behaviour. In each location, contemporaneous cross-sectional household surveys will be leveraged to assess correlations between estimates obtained using each method, and the use of ANC data as a tool to track trends in malaria burden and intervention coverage will be validated. RESULTS: This study will assess malaria prevalence at ANC1 aggregated at health facility and district levels, and by gravidity relative to current pregnancy (i.e., gravida 1, gravida 2, and gravida 3 +). ANC1 malaria prevalence will be presented as monthly trends. Additionally, correlation between ANC1 and household survey-derived estimates of malaria prevalence, bed net ownership and use, and care-seeking will be assessed. CONCLUSION: ANC1-based surveillance has the potential to provide a cost-effective, localized measure of malaria prevalence that is representative of the general population and useful for tracking monthly changes in parasite prevalence, as well as providing population-representative estimates of intervention coverage and care-seeking behavior. This study will evaluate the representativeness of these measures and collect information on operational feasibility, usefulness for programmatic decision-making, and potential for scale-up of malaria ANC1 surveillance.


Malaria , Prenatal Care , Pregnancy , Female , Humans , Cross-Sectional Studies , Malaria/diagnosis , Malaria/epidemiology , Malaria/prevention & control , Gravidity , Tanzania/epidemiology , Observational Studies as Topic
6.
Am. j. trop. med. hyg ; : 1-7, jan. 23, 2023. ilus, mapas, graf
Article En | AIM, RSDM | ID: biblio-1531806

Mozambique addressed critical malaria surveillance system challenges by rolling out an integrated malaria information storage system (iMISS) at the district level in February 2021. The iMISS integrates malaria data from existing systems across thematic program areas to improve data availability and use. In seven districts, the platform was extended to health facilities (HFs), allowing HFs to access iMISS and use tablets to submit monthly malaria reports to a central database, eliminating the need for paper-based reporting to districts. A structured evaluation of the iMISS rollout to HFs was carried out in February-July 2021. The four evaluation areas were data quality (reporting rate, timeliness, and fidelity) of monthly malaria reports electronically submitted to the iMISS, adoption of the iMISS for data-informed decision-making, system maintenance, and acceptability of the iMISS among target users. All 94 HFs in the seven targeted districts were assessed. Over the 6-month period, 86.1% of reported cases on the iMISS were consistent with cases recorded in paper-based reports, allowing for up to 10% discrepancy. In addition, 69.0% of expected monthly district meetings were held, and information from iMISS was discussed during 58.6% of these meetings. Maintenance issues, mostly related to tablet access and internet connectivity, were experienced by 74.5% of HFs; 33.7% of issues were resolved within 1 month. The iMISS and electronic submission of malaria reports were well accepted by HF- and district-level users. Continued political commitment and timely execution of issue management workflows are crucial to ensure trust in the new platform and facilitate higher levels of data use.


Humans , Male , Female , Information Storage and Retrieval/statistics & numerical data , Malaria/epidemiology , Information Storage and Retrieval/trends , Health Information Systems/instrumentation , Mozambique
8.
Am J Trop Med Hyg ; 108(2_Suppl): 24-31, 2023 02 02.
Article En | MEDLINE | ID: mdl-36191871

In urban settings in malaria-endemic countries, malaria incidence is not well characterized and assumed to be typically very low and consisting largely of imported infections. In such contexts, surveillance systems should adapt to ensure that data are of sufficient spatial and temporal resolution to inform appropriate programmatic interventions. The aim of this research was to 1) assess spatial and temporal trends in reported malaria cases in Maputo City, Mozambique, using an expanded case notification form and 2) to determine how malaria surveillance can be optimized to characterize the local epidemiological context, which can then be used to inform targeted entomological investigations and guide implementation of localized malaria responses. This study took place in all six health facilities of KaMavota District in Maputo City, Mozambique. A questionnaire was administered to all confirmed cases from November 2019 to August 2021. Households of cases were retrospectively geolocated using local landmarks as reference. Overall, 2,380 malaria cases were reported, with the majority being uncomplicated (97.7%) and a median age of 21 years; 70.8% of cases had reported traveling outside the city in the past month with nine reporting traveling internationally. Maps of the 1,314 malaria cases that were geolocated showed distinct spatial patterns. The expanded case notification form enables a more granular overview of the malaria epidemiology in Maputo City; the geolocation data clearly show the areas where endemic transmission is likely, thus informing where resources should be prioritized. As urbanization is rapidly increasing in malaria endemic areas, identifying systems and key variables to collect ensures an operational way to characterize urban malaria through optimization of routine data to inform decision-making.


Communicable Diseases, Imported , Malaria , Humans , Young Adult , Adult , Mozambique/epidemiology , Retrospective Studies , Malaria/epidemiology , Travel
9.
Malar J ; 21(1): 387, 2022 Dec 17.
Article En | MEDLINE | ID: mdl-36528569

BACKGROUND: Insecticide treated bed nets (ITN) are considered a core malaria vector control tool by the WHO and are the main contributor to the large decline in malaria burden in sub-Saharan Africa over the past 20 years, but they are less effective if they are not broadly and regularly used. ITN use may depend on factors including temperature, relative humidity, mosquito density, seasonality, as well as ideational or psychosocial factors including perceptions of nets and perceptions of net use behaviours. METHODS: A cross-sectional household survey was conducted as part of a planned randomized controlled trial in Magoe District, Mozambique. Interviewers captured data on general malaria and ITN perceptions including ideational factors related to perceived ITN response efficacy, self-efficacy to use an ITN, and community norms around ITN using a standardized questionnaire. Only households with sufficient ITNs present for all children to sleep under (at least one ITN for every two children under the age of five years) were eligible for inclusion in the study. Additional questions were added about seasonality and frequency of ITN use. RESULTS: One-thousand six hundred sixteen mother-child dyads were interviewed. Responses indicated gaps in use of existing nets and net use was largely independent of ideational factors related to ITNs. Self-reported ITN use varied little by season nor meaningfully when different methods were used to solicit responses on net use behaviour. Mothers' perceived response efficacy of ITNS was negatively associated with net use (high perceived response efficacy reduced the log-odds of net use by 0.27 (95% CI - 0.04 to - 0.51), implying that stronger beliefs in the effectiveness of ITNs might result in reduced net use among their children. CONCLUSIONS: In this context, ITN use among children was not clearly related to mothers' ideational factors measured in the study. Scales used in solicitation of ideation around ITN use and beliefs need careful design and testing across a broader range of populations in order to identify ideational factors related to ITN use among those with access.


Anopheles , Insecticide-Treated Bednets , Insecticides , Malaria , Female , Animals , Humans , Child, Preschool , Malaria/prevention & control , Cross-Sectional Studies , Mozambique , Mosquito Vectors , Mosquito Control/methods
10.
JMIR Res Protoc ; 11(9): e36403, 2022 Sep 23.
Article En | MEDLINE | ID: mdl-36149743

BACKGROUND: Seasonal malaria chemoprevention (SMC) is a highly effective community-based intervention to prevent malaria infections in areas where the malaria burden is high and transmission occurs mainly during the rainy season. In Africa, so far, SMC has been implemented in the Sahel region. Mozambique contributes 4% of the global malaria cases, and malaria is responsible for one-quarter of all deaths in the country. Based on recommendations in the Malaria Strategic Plan, the Malaria Consortium, in partnership with the National Malaria Control Programme in Mozambique, initiated a phased SMC implementation study in the northern province of Nampula. The first phase of this 2-year implementation study was conducted in 2020-2021 and focused on the feasibility and acceptability of SMC. The second phase will focus on demonstrating impact. This paper describes phase 2 of the implementation study. OBJECTIVE: Specific objectives include the following: (1) to determine the effectiveness of SMC in terms of its reduction in incidence of malaria infection among children aged 3 to 59 months; (2) to determine the chemoprevention efficacy of sulfadoxine-pyrimethamine plus amodiaquine (SP+AQ) when used for SMC in Nampula Province, Mozambique, and the extent to which efficacy is impacted by drug resistance and drug concentrations; (3) to investigate the presence and change in SP+AQ- and piperaquine-resistance markers over time as a result of SMC implementation; and (4) to understand the impact of the SMC implementation model, determining the process and acceptability outcomes for the intervention. METHODS: This type 2, hybrid, effectiveness-implementation study uses a convergent mixed methods approach. SMC will be implemented in four monthly cycles between December 2021 and March 2022 in four districts of Nampula Province. Phase 2 will include four components: (1) a cluster randomized controlled trial to establish confirmed malaria cases, (2) a prospective cohort to determine the chemoprevention efficacy of the antimalarials used for SMC and whether drug concentrations or resistance influence the duration of protection, (3) a resistance marker study in children aged 3 to 59 months to describe changes in resistance marker prevalence over time, and (4) a process evaluation to determine feasibility and acceptability of SMC. RESULTS: Data collection began in mid-January 2022, and data analysis is expected to be completed by October 2022. CONCLUSIONS: This is the first effectiveness trial of SMC implemented in Mozambique. The findings from this trial will be crucial to policy change and program expansion to other suitable geographies outside of the Sahel. The chemoprevention efficacy cohort study is a unique opportunity to better understand SMC drug efficacy in this new SMC environment. TRIAL REGISTRATION: ClinicalTrials.gov NCT05186363; https://clinicaltrials.gov/ct2/show/NCT05186363. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/36403.

11.
BMJ Open ; 12(7): e063456, 2022 07 12.
Article En | MEDLINE | ID: mdl-35820756

INTRODUCTION: Genomic data constitute a valuable adjunct to routine surveillance that can guide programmatic decisions to reduce the burden of infectious diseases. However, genomic capacities remain low in Africa. This study aims to operationalise a functional malaria molecular surveillance system in Mozambique for guiding malaria control and elimination. METHODS AND ANALYSES: This prospective surveillance study seeks to generate Plasmodium falciparum genetic data to (1) monitor molecular markers of drug resistance and deletions in rapid diagnostic test targets; (2) characterise transmission sources in low transmission settings and (3) quantify transmission levels and the effectiveness of antimalarial interventions. The study will take place across 19 districts in nine provinces (Maputo city, Maputo, Gaza, Inhambane, Niassa, Manica, Nampula, Zambézia and Sofala) which span a range of transmission strata, geographies and malaria intervention types. Dried blood spot samples and rapid diagnostic tests will be collected across the study districts in 2022 and 2023 through a combination of dense (all malaria clinical cases) and targeted (a selection of malaria clinical cases) sampling. Pregnant women attending their first antenatal care visit will also be included to assess their value for molecular surveillance. We will use a multiplex amplicon-based next-generation sequencing approach targeting informative single nucleotide polymorphisms, gene deletions and microhaplotypes. Genetic data will be incorporated into epidemiological and transmission models to identify the most informative relationship between genetic features, sources of malaria transmission and programmatic effectiveness of new malaria interventions. Strategic genomic information will be ultimately integrated into the national malaria information and surveillance system to improve the use of the genetic information for programmatic decision-making. ETHICS AND DISSEMINATION: The protocol was reviewed and approved by the institutional (CISM) and national ethics committees of Mozambique (Comité Nacional de Bioética para Saúde) and Spain (Hospital Clinic of Barcelona). Project results will be presented to all stakeholders and published in open-access journals. TRIAL REGISTRATION NUMBER: NCT05306067.


Antimalarials , Malaria , Antimalarials/pharmacology , Antimalarials/therapeutic use , Drug Resistance/genetics , Female , Gene Deletion , Humans , Malaria/epidemiology , Mozambique/epidemiology , Multicenter Studies as Topic , Plasmodium falciparum/genetics , Pregnancy , Prospective Studies
12.
J Virol ; 96(16): e0067222, 2022 08 24.
Article En | MEDLINE | ID: mdl-35894603

Rift Valley fever virus (RVFV) is endemic in sub-Saharan Africa (SSA), with outbreaks reported in the Arabian Peninsula and throughout SSA. The natural reservoir for RVFV are ruminants, with livestock populations exceeding 50% exposure rates in some areas of SSA. Transmission to humans can occur through exposure to infected livestock products or multiple species of mosquito vectors. In 2013 and 2014, cross-sectional surveys occurred in two districts of Nacala-a-Velha and Mecubúri in northern Mozambique, and participants provided blood samples for later serological assays. IgG against the N protein of RVFV was detected through multiplex bead assay (MBA). Of the 2,278 persons enrolled between the two surveys and study sites, 181 (7.9%, 95% confidence interval (CI): 6.9%-9.1%) were found to be IgG seropositive with increasing seroprevalence with older age and significantly higher seroprevalence in Nacala-a-Velha (10.5%, 8.8%-12.5%) versus Mecubúri (5.7%, 4.5%-7.1%). Seroprevalence estimates were not significantly different between the 2013 and 2014 surveys. Significant spatial clustering of IgG positive persons were consistent among surveys and within the two districts, pointing toward the consistency of serology data for making population-level assumptions regarding RVFV seroprevalence. A subset of persons (n = 539) provided samples for both the 2013 and 2014 surveys, and a low percentage (0.81%) of these were found to seroconvert between these two surveys. Including the RVFV N protein in an MBA antigen panel could assist elucidate RVFV exposure in SSA. IMPORTANCE Due to sporadic transmission, human contact with Rift Valley Fever Virus (RVFV) is difficult to ascertain at a population level. Detection of antibodies against RVFV antigens assist in estimating exposure as antibodies remain in the host long after the virus has been cleared. In this study, we show that antibodies against RVFV N protein can be detected from dried blood spot (DBS) samples being assayed by multiplex bead assay. DBS from two districts in northern Mozambique were tested for IgG against the N protein, and 7.9% of all enrolled persons were seropositive. Older persons, males, and persons residing closer to the coast had higher RVFV N protein seroprevalence. Spatial clustering of IgG positive persons was noted in both districts. These results show low exposure rates to RVFV in these two northern districts in Mozambique, and the ability to perform serology for the RVFV N protein from dried blood samples.


Microbiological Techniques/methods , Nucleocapsid Proteins/analysis , Rift Valley Fever , Rift Valley fever virus , Aged , Aged, 80 and over , Animals , Antibodies, Viral , Cross-Sectional Studies , Female , Humans , Immunoglobulin G , Livestock , Male , Mozambique/epidemiology , Rift Valley Fever/epidemiology , Rift Valley fever virus/physiology , Seroepidemiologic Studies
13.
Open Forum Infect Dis ; 9(7): ofac261, 2022 Jul.
Article En | MEDLINE | ID: mdl-35854985

The majority of symptomatic malaria in sub-Saharan Africa is caused by Plasmodium falciparum. Infection with Plasmodium ovale is often not recorded and not considered clinically relevant. Here, we describe 8 cases of P ovale infection from 3 African countries-all of which were misdiagnosed at the presenting health facility.

14.
Malar J ; 21(1): 185, 2022 Jun 11.
Article En | MEDLINE | ID: mdl-35690756

BACKGROUND: Malaria is a major cause of morbidity and mortality globally, especially in sub-Saharan Africa. Widespread resistance to pyrethroids threatens the gains achieved by vector control. To counter resistance to pyrethroids, third-generation indoor residual spraying (3GIRS) products have been developed. This study details the results of a multi-country cost and cost-effectiveness analysis of indoor residual spraying (IRS) programmes using Actellic®300CS, a 3GIRS product with pirimiphos-methyl, in sub-Saharan Africa in 2017 added to standard malaria control interventions including insecticide-treated bed nets versus standard malaria control interventions alone. METHODS: An economic evaluation of 3GIRS using Actellic®300CS in a broad range of sub-Saharan African settings was conducted using a variety of primary data collection and evidence synthesis methods. Four IRS programmes in Ghana, Mali, Uganda, and Zambia were included in the effectiveness analysis. Cost data come from six IRS programmes: one in each of the four countries where effect was measured plus Mozambique and a separate programme conducted by AngloGold Ashanti Malaria Control in Ghana. Financial and economic costs were quantified and valued. The main indicator for the cost was cost per person targeted. Country-specific case incidence rate ratios (IRRs), estimated by comparing IRS study districts to adjacent non-IRS study districts or facilities, were used to calculate cases averted in each study area. A deterministic analysis and sensitivity analysis were conducted in each of the four countries for which effectiveness evaluations were available. Probabilistic sensitivity analysis was used to generate plausibility bounds around the incremental cost-effectiveness ratio estimates for adding IRS to other standard interventions in each study setting as well as jointly utilizing data on effect and cost across all settings. RESULTS: Overall, IRRs from each country indicated that adding IRS with Actellic®300CS to the local standard intervention package was protective compared to the standard intervention package alone (IRR 0.67, [95% CI 0.50-0.91]). Results indicate that Actellic®300CS is expected to be a cost-effective (> 60% probability of being cost-effective in all settings) or highly cost-effective intervention across a range of transmission settings in sub-Saharan Africa. DISCUSSION: Variations in the incremental costs and cost-effectiveness likely result from several sources including: variation in the sprayed wall surfaces and house size relative to household population, the underlying malaria burden in the communities sprayed, the effectiveness of 3GIRS in different settings, and insecticide price. Programmes should be aware that current recommendations to rotate can mean variation and uncertainty in budgets; programmes should consider this in their insecticide-resistance management strategies. CONCLUSIONS: The optimal combination of 3GIRS delivery with other malaria control interventions will be highly context specific. 3GIRS using Actellic®300CS is expected to deliver acceptable value for money in a broad range of sub-Saharan African malaria transmission settings.


Insecticides , Malaria , Organothiophosphorus Compounds , Pyrethrins , Cost-Benefit Analysis , Data Collection , Humans , Malaria/epidemiology , Mali , Mosquito Control/methods
15.
Malar J ; 21(1): 76, 2022 Mar 05.
Article En | MEDLINE | ID: mdl-35248078

BACKGROUND: Mozambique is a malaria endemic country with an estimated prevalence of malaria in children 6-59 months old that is twice as high in rural areas (46.0%) as in urban areas (18.0%). However, only 46.0% of women aged 15-49 years had complete knowledge about malaria in 2018. This study aimed to identify the factors associated with malaria knowledge among women of reproductive age in a high malaria burden district. METHODS: Data from a cross-sectional study, using a population-based malaria research study in Mágoe District, 2019, were analysed. This analysis included women aged 15-49 years. A multivariate logistic regression model was developed to determine factors associated with complete knowledge of malaria that calculated adjusted odds ratio (aOR) and 95% confidence interval (CI) at a p < 0.05 significance level. Complete malaria knowledge was defined as when a woman correctly identified: fever as a malaria symptom, mosquito bites as the means of malaria transmission, mosquito nets as a tool for malaria prevention, malaria as curable, and were able to name an anti-malarial. RESULTS: A total of 1899 women were included in this analysis. There was complete malaria knowledge among 49% of the respondents. Seventy one percent mentioned fever as one of malaria symptoms, 92% mentioned mosquito bite as the cause of malaria infection, 94% identified that mosquito nets prevent malaria, 92% agreed that malaria has cure, and 76% were able to name at least one anti-malarial medicine. In the multivariate analysis, the following characteristics were associated with significantly higher odds of having complete malaria knowledge: having a secondary school or above education level (adjusted Odds Ratio, aOR = 2.5 CI [1.3-4.6] p = 0.005), being from the middle socioeconomic status group (aOR = 1.5 CI [1.1-2.1] p = 0.005), being from older age group of 35-39 (aOR = 1.9; CI [1.1-3.1] p < 0.001), having 1-2 children (aOR = 1.8; CI [1.2-2.6] p = 0.003), and having interviews completed in Portuguese or Cinyungwe (aOR = 2.3; CI [1.3-4.1] p = 0.004 and aOR = 2.1; CI [1.5-2.8] p < 0.001, respectively). CONCLUSION: Most women in this study had some malaria knowledge, but gaps in complete knowledge remained. In order to broaden knowledge, educational messages about malaria prevention should be more effectively targeted to reach younger, less-educated women and in non-dominant languages.


Antimalarials , Malaria , Adolescent , Adult , Aged , Child , Child, Preschool , Cross-Sectional Studies , Female , Health Knowledge, Attitudes, Practice , Humans , Infant , Malaria/epidemiology , Malaria/prevention & control , Middle Aged , Mosquito Nets , Mozambique/epidemiology , Young Adult
16.
Malar J ; 21(1): 19, 2022 Jan 10.
Article En | MEDLINE | ID: mdl-35012559

BACKGROUND: Vector control tools have contributed significantly to a reduction in malaria burden since 2000, primarily through insecticidal-treated bed nets (ITNs) and indoor residual spraying. In the face of increasing insecticide resistance in key malaria vector species, global progress in malaria control has stalled. Innovative tools, such as dual active ingredient (dual-AI) ITNs that are effective at killing insecticide-resistant mosquitoes have recently been introduced. However, large-scale uptake has been slow for several reasons, including higher costs and limited evidence on their incremental effectiveness and cost-effectiveness. The present report describes the design of several observational studies aimed to determine the effectiveness and cost-effectiveness of dual-AI ITNs, compared to standard pyrethroid-only ITNs, at reducing malaria transmission across a variety of transmission settings. METHODS: Observational pilot studies are ongoing in Burkina Faso, Mozambique, Nigeria, and Rwanda, leveraging dual-AI ITN rollouts nested within the 2019 and 2020 mass distribution campaigns in each country. Enhanced surveillance occurring in select study districts include annual cross-sectional surveys during peak transmission seasons, monthly entomological surveillance, passive case detection using routine health facility surveillance systems, and studies on human behaviour and ITN use patterns. Data will compare changes in malaria transmission and disease burden in districts receiving dual-AI ITNs to similar districts receiving standard pyrethroid-only ITNs over three years. The costs of net distribution will be calculated using the provider perspective including financial and economic costs, and a cost-effectiveness analysis will assess incremental cost-effectiveness ratios for Interceptor® G2, Royal Guard®, and piperonyl butoxide ITNs in comparison to standard pyrethroid-only ITNs, based on incidence rate ratios calculated from routine data. CONCLUSIONS: Evidence of the effectiveness and cost-effectiveness of the dual-AI ITNs from these pilot studies will complement evidence from two contemporary cluster randomized control trials, one in Benin and one in Tanzania, to provide key information to malaria control programmes, policymakers, and donors to help guide decision-making and planning for local malaria control and elimination strategies. Understanding the breadth of contexts where these dual-AI ITNs are most effective and collecting robust information on factors influencing comparative effectiveness could improve uptake and availability and help maximize their impact.


Cost of Illness , Insecticide-Treated Bednets/statistics & numerical data , Malaria/prevention & control , Mosquito Control/statistics & numerical data , Africa South of the Sahara/epidemiology , Humans , Incidence , Insecticide-Treated Bednets/classification , Malaria/epidemiology , Pilot Projects , Prevalence
17.
PLOS Glob Public Health ; 2(4): e0000248, 2022.
Article En | MEDLINE | ID: mdl-36962318

Malaria was the leading cause of post-neonatal deaths in Mozambique in 2017. The use of insecticide treated nets (ITNs) is recognized as one of the most effective ways to reduce malaria mortality in children. No previous analyses have estimated changes in mortality attributable to the scale-up of ITNs, accounting for provincial differences in mortality rates and coverage of health interventions. Based upon annual provincial ownership coverage of ITNs, the Lives Saved Tool (LiST), a multi-cause mathematical model, estimated under-5 lives saved attributable to increased household ITN coverage in 10 provinces of Mozambique between 2012 and 2018, and projected lives saved from 2019 to 2025 if 2018 coverage levels are sustained. An estimated 14,040 under-5 child deaths were averted between 2012 and 2018. If 2018 coverage levels are maintained until 2025, an additional 33,277 child deaths could be avoided. If coverage reaches at least 85% in all ten provinces by 2022, then a projected 36,063 child lives can be saved. From 2012 to 2018, the estimated number of lives saved was highest in Zambezia and Tete provinces. Increases in ITN coverage can save a substantial number of child lives in Mozambique. Without continued investment, thousands of avoidable child deaths will occur.

18.
Malar J ; 20(1): 398, 2021 Oct 12.
Article En | MEDLINE | ID: mdl-34641867

BACKGROUND: Due to the threat of emerging anti-malarial resistance, the World Health Organization recommends incorporating surveillance for molecular markers of anti-malarial resistance into routine therapeutic efficacy studies (TESs). In 2018, a TES of artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ) was conducted in Mozambique, and the prevalence of polymorphisms in the pfk13, pfcrt, and pfmdr1 genes associated with drug resistance was investigated. METHODS: Children aged 6-59 months were enrolled in four study sites. Blood was collected and dried on filter paper from participants who developed fever within 28 days of initial malaria treatment. All samples were first screened for Plasmodium falciparum using a multiplex real-time PCR assay, and polymorphisms in the pfk13, pfcrt, and pfmdr1 genes were investigated by Sanger sequencing. RESULTS: No pfk13 mutations, associated with artemisinin partial resistance, were observed. The only pfcrt haplotype observed was the wild type CVMNK (codons 72-76), associated with chloroquine sensitivity. Polymorphisms in pfmdr1 were only observed at codon 184, with the mutant 184F in 43/109 (39.4%) of the samples, wild type Y184 in 42/109 (38.5%), and mixed 184F/Y in 24/109 (22.0%). All samples possessed N86 and D1246 at these two codons. CONCLUSION: In 2018, no markers of artemisinin resistance were documented. Molecular surveillance should continue to monitor the prevalence of these markers to inform decisions on malaria treatment in Mozambique.


Antimalarials/therapeutic use , Artemisinins/therapeutic use , Drug Resistance/genetics , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Polymorphism, Genetic/genetics , Antimalarials/pharmacology , Artemisinins/pharmacology , Child, Preschool , Drug Therapy, Combination , Female , Genetic Markers , Humans , Infant , Male , Mozambique , Plasmodium falciparum/isolation & purification
19.
Malar J ; 20(1): 390, 2021 Oct 02.
Article En | MEDLINE | ID: mdl-34600544

BACKGROUND: Artemisinin-based combination therapy (ACT) has been the recommended first-line treatment for uncomplicated malaria in Mozambique since 2006, with artemether-lumefantrine (AL) and amodiaquine-artesunate (AS-AQ) as the first choice. To assess efficacy of currently used ACT, an in vivo therapeutic efficacy study was conducted. METHODS: The study was conducted in four sentinel sites: Montepuez, Moatize, Mopeia and Massinga. Patients between 6 and 59 months old with uncomplicated Plasmodium falciparum malaria (2000-200,000 parasites/µl) were enrolled between February and September of 2018, assigned to either an AL or AS-AQ treatment arm, and monitored for 28 days. A Bayesian algorithm was applied to differentiate recrudescence from new infection using genotyping data of seven neutral microsatellites. Uncorrected and PCR-corrected efficacy results at day 28 were calculated. RESULTS: Totals of 368 and 273 patients were enrolled in the AL and AS-AQ arms, respectively. Of these, 9.5% (35/368) and 5.1% (14/273) were lost to follow-up in the AL and AS-AQ arms, respectively. There were 48 and 3 recurrent malaria infections (late clinical and late parasitological failures) in the AL and AS-AQ arms, respectively. The day 28 uncorrected efficacy was 85.6% (95% confidence interval (CI) 81.3-89.2%) for AL and 98.8% (95% CI 96.7-99.8%) for AS-AQ, whereas day 28 PCR-corrected efficacy was 97.9% (95% CI 95.6-99.2%) for AL and 99.6% (95% CI 97.9-100%) for AS-AQ. Molecular testing confirmed that 87.4% (42/48) and 33.3% (1/3) of participants with a recurrent malaria infection in the AL and AS-AQ arms were new infections; an expected finding in a high malaria transmission area. Adverse events were documented in less than 2% of participants for both drugs. CONCLUSION: Both AL and AS-AQ have therapeutic efficacies well above the 90% WHO recommended threshold and remain well-tolerated in Mozambique. Routine monitoring of therapeutic efficacy should continue to ensure the treatments remain efficacious. Trial registration Clinicaltrials.gov: NCT04370977.


Amodiaquine/therapeutic use , Antimalarials/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Artemisinins/therapeutic use , Malaria, Falciparum/drug therapy , Amodiaquine/standards , Antimalarials/standards , Artemether, Lumefantrine Drug Combination/standards , Artemisinins/standards , Child, Preschool , Drug Combinations , Humans , Infant , Mozambique , Parasitemia/drug therapy , Safety , Treatment Outcome
20.
Malar. j. (Online) ; 20(1): 1-12, out 2, 2021. ilus, graf, mapa
Article En | AIM, RSDM | ID: biblio-1532088

Artemisinin-based combination therapy (ACT) has been the recommended first-line treatment for uncomplicated malaria in Mozambique since 2006, with artemether-lumefantrine (AL) and amodiaquine-artesunate (AS-AQ) as the first choice. To assess efficacy of currently used ACT, an in vivo therapeutic efficacy study was conducted. Methods: The study was conducted in four sentinel sites: Montepuez, Moatize, Mopeia and Massinga. Patients between 6 and 59 months old with uncomplicated Plasmodium falciparum malaria (2000-200,000 parasites/µl) were enrolled between February and September of 2018, assigned to either an AL or AS-AQ treatment arm, and monitored for 28 days. A Bayesian algorithm was applied to differentiate recrudescence from new infection using genotyping data of seven neutral microsatellites. Uncorrected and PCR-corrected efficacy results at day 28 were calculated. Results: Totals of 368 and 273 patients were enrolled in the AL and AS-AQ arms, respectively. Of these, 9.5% (35/368) and 5.1% (14/273) were lost to follow-up in the AL and AS-AQ arms, respectively. There were 48 and 3 recurrent malaria infections (late clinical and late parasitological failures) in the AL and AS-AQ arms, respectively. The day 28 uncorrected efficacy was 85.6% (95% confidence interval (CI) 81.3-89.2%) for AL and 98.8% (95% CI 96.7-99.8%) for AS-AQ, whereas day 28 PCR-corrected efficacy was 97.9% (95% CI 95.6-99.2%) for AL and 99.6% (95% CI 97.9-100%) for AS-AQ. Molecular testing confirmed that 87.4% (42/48) and 33.3% (1/3) of participants with a recurrent malaria infection in the AL and AS-AQ arms were new infections; an expected finding in a high malaria transmission area. Adverse events were documented in less than 2% of participants for both drugs. Conclusion: Both AL and AS-AQ have therapeutic efficacies well above the 90% WHO recommended threshold and remain well-tolerated in Mozambique. Routine monitoring of therapeutic efficacy should continue to ensure the treatments remain efficacious. Trial registration Clinicaltrials.gov


Humans , Adult , Young Adult , Malaria, Falciparum/therapy , Antimalarials/therapeutic use , Treatment Outcome , Parasitemia , Parasitemia/drug therapy , Drug Combinations , Artemether, Lumefantrine Drug Combination/therapeutic use , Artemether, Lumefantrine Drug Combination/pharmacology , Amodiaquine , Mozambique/epidemiology , Antimalarials/standards
...