Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 29(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38474647

ABSTRACT

A chemical study of Aesculus wilsonii Rehd. (also called Suo Luo Zi) and the in vitro anti-inflammatory effects of the obtained compounds was conducted. Retrieving results through SciFinder showed that there were four unreported compounds, aeswilosides I-IV (1-4), along with fourteen known isolates (5-18). Their structures were elucidated by extensive spectroscopic methods such as UV, IR, NMR, [α]D, and MS spectra, as well as acid hydrolysis. Among the known ones, compounds 5, 6, 8-10, and 12-16 were obtained from the Aesculus genus for the first time; compounds 7, 11, 17, and 18 were first identified from this plant. The NMR data of 5 and 18 were reported first. The effects of 1-18 on the release of nitric oxide (NO) from lipopolysaccharide (LPS)-induced RAW264.7 cells were determined. The results showed that at concentrations of 10, 25, and 50 µM, the novel compounds, aeswilosides I (1) and IV (4), along with the known ones, 1-(2-methylbutyryl)phloroglucinyl-glucopyranoside (10) and pisuminic acid (15), displayed significant inhibitory effects on NO production in a concentration-dependent manner. It is worth mentioning that compound 10 showed the best NO inhibitory effect with a relative NO production of 88.1%, which was close to that of the positive drug dexamethasone. The Elisa experiment suggested that compounds 1, 4, 10, and 15 suppressed the release of TNF-α and IL-1ß as well. In conclusion, this study enriches the spectra of compounds with potential anti-inflammatory effects in A. wilsonii and provides new references for the discovery of anti-inflammatory lead compounds, but further mechanistic research is still needed.


Subject(s)
Aesculus , Mice , Animals , Aesculus/chemistry , Anti-Inflammatory Agents/pharmacology , RAW 264.7 Cells , Tumor Necrosis Factor-alpha , Seeds/chemistry , Lipopolysaccharides/pharmacology , Nitric Oxide/analysis
2.
ACS Sens ; 9(3): 1447-1457, 2024 03 22.
Article in English | MEDLINE | ID: mdl-38412069

ABSTRACT

Developing high-performance chemiresistive gas sensors with mechanical compliance for environmental or health-related biomarker monitoring has recently drawn increasing research attention. Among them, two-dimensional MXene materials hold great potential for room-temperature hazardous gas (e.g., NH3) monitoring regardless of the complicated fabrication process, insufficient 2D/3D flexibilities, and poor environmental sustainability. Herein, a Ti3C2Tx MXene/gelatin ink was developed for patterning electrodes through a facile spray coating. Particularly, the patterned Ti3C2Tx-based coating exhibited good adhesion on the paper substrate against repeated peeling-off and excellent mechanical flexibility against 1000 cyclic stretching. The porous morphology of the coating facilitated the NH3 sensing ability. As a result, the 2D kirigami-shaped NH3 sensor exhibited a good response of 7% to 50 ppm of NH3 with detectable concentrations ranging from 5-500 ppm, decent selectivity over interferences, etc., which could be well-maintained even at 50% stretched state. In addition, with the help of mechanically guided compressive buckling, 3D mesostructured MXene origamis could be obtained, holding promise for detecting the coming direction and height distribution of hazardous gas, e.g., the NH3. More importantly, the as-fabricated MXene/gelatin origami paper could be fully degraded in PBS/H2O2/cellulase solution within 19 days, demonstrating its potential as a high-performance, shape morphable, and environmentally friendly wearable gas sensor.


Subject(s)
Ammonia , Cellulase , Nitrites , Transition Elements , Gelatin , Hydrogen Peroxide
3.
Fitoterapia ; 172: 105783, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38110127

ABSTRACT

Eight nitrogenous compounds including five undescribed ones, aeswilnitrousol A (1), aeswilnitrousosides BD (2-4), and 6-(2-hydroxy-3-methylbutylamino)-8-oxoadenine (5) were isolated from the seeds of Aesculus wilsonii. Their structures and absolute configurations were established based on spectroscopic determination, calculated electronic circular dichroism (ECD) analysis, as well as chemical reaction methods. Among the three known compounds, 7 and 8 were obtained from the Aesculus genus for the first time, and 6 was gained from this plant initially. The 13C NMR data of 7 and 8 were reported for the first time. Moreover, the inhibitory effect of all the isolates against LPS-induced nitric oxide production in RAW264.7 macrophages was evaluated. As a result, compounds 2 and 8 exhibited anti-inflammatory activity in a concentration-dependent manner at 10, 25, and 50 µM.


Subject(s)
Aesculus , Molecular Structure , Aesculus/chemistry , Nitrogen Compounds/analysis , Anti-Inflammatory Agents/pharmacology , Seeds/chemistry , Nitric Oxide
4.
Exp Dermatol ; 32(9): 1371-1382, 2023 09.
Article in English | MEDLINE | ID: mdl-37157235

ABSTRACT

Hematoporphyrin monomethyl ether-photodynamic therapy (HMME-PDT) has achieved encouraging clinical outcomes in adult port-wine stain (PWS). Optimal treatment option for children with PWS was minimal. To compare whether the clinical effectiveness of HMME-PDT with the 5-min (fast) administration treatment regimen (FATR) was better than the 20-min (slow) administration treatment regimen (SATR) for PWS of children in vivo and in vitro. Thirty-four children with PWS were divided into two groups including FATR and SATR. The two groups received three times HMME-PDT, respectively. Treatment efficacy and safety were evaluated in vivo and in vitro. Erythema index (EI) was used to evaluate the clinical outcomes. Both FATR and SATR were effective and safe in children with PWS after HMME-PDT. There were significance differences between the two groups in reductions of EI after the second treatment (p < 0.001) and the third treatment (p < 0.001) with HMME-PDT. The serum HMME concentration reach the peak level at short time compare with SATR group. A significance increased superoxide levels were observed in FATR group compare to SATR groups in vitro (p < 0.05). Our study suggested that HMME-PDT was effective and safe for children with PWS, the therapy regimen with FATR was better in clinical efficacy than that of the SATR.


Subject(s)
Hemangioma, Capillary , Photochemotherapy , Port-Wine Stain , Child , Humans , East Asian People , Hemangioma, Capillary/drug therapy , Photochemotherapy/adverse effects , Photosensitizing Agents/adverse effects , Port-Wine Stain/drug therapy , Treatment Outcome
5.
Phytochemistry ; 196: 113076, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35007935

ABSTRACT

As one of raw materials, the rhizome of Imperata cylindrica var. major (Nees) C.E. Hubb. is used in kinds of preparations curing inflammation related diseases, while its effective substances are not yet clear. In this paper, its chemical constituents and their anti-inflammatory activities were investigated. As results, ten compounds, named as imperphenoside A (1), imperphenols B (2) and C (3), imperphenosides D-F (4-6), and imperlignanosides A-D (7-10), along with previously reported thirty-seven known ones (11-47) were obtained from it. Their structures were ascertained basing on the extensive spectroscopic methods and electronic circular dichroism data analysis. Meanwhile, compounds 4, 11, 12, 24, 27, 31, 32, 37, 43, 45, and 47 exhibited nitric oxide inhibitory effects in concentration dependent at 3, 10, and 30 µM on lipopolysaccharides induced RAW 264.7 cells. Moreover, the western blot analysis indicated that compounds 4, 11, 43, and 47 could restrain the phosphorylation of nuclear factor kappa-B kinase to down-regulate the protein expression of inflammatory cytokines such as inducible nitric oxide synthase, interleukin-6 and tumor necrosis factor-α. In conclusion, they might play the anti-inflammatory effects through regulating NF-κB signaling pathway.


Subject(s)
Poaceae , Rhizome , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Lipopolysaccharides/pharmacology , Mice , NF-kappa B/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Poaceae/chemistry , RAW 264.7 Cells , Rhizome/chemistry
6.
Front Chem ; 9: 766041, 2021.
Article in English | MEDLINE | ID: mdl-34805098

ABSTRACT

In the process of continuing to investigate ultraviolet b (UVB) irradiation protective constituents from Oplopanax elatus stems, nine new sesquiterpenes, named as eurylosesquiterpenosides A-D (1-4), eurylosesquiterpenols E-I (5-9), and ten known ones (10-19) were gained. Their structures were established by analysis of their NMR spectroscopic data, and electronic circular dichroism calculations were applied to define their absolute configurations. In addition, UVB induced HaCaT cells were used to study their anti-photoaging activities and mechanism. The results consolidated that compounds 7, 11, and 14 could improve the survival rate of HaCaT cells in concentration dependent manner at 10, 25, and 50 µM. Furthermore, western blot assay suggested that all of them could inhibit the expression of matrix metalloproteinase-1 (MMP-1), and increase the level of type I collagen markedly. Compounds 11 and 14 could reduce the phosphorylation of extracellular signal-regulated kinase and p38, respectively. Besides, compounds 7, 11, and 14 could significantly down-regulate the expression of inflammation related protein, such as tumor necrosis factor-α and cyclooxygenase-2, which indicated that they played anti-photoaging activities by reducing MMP-1 expression via down-regulating the production of inflammatory mediators and cytokines in UVB-induced HaCaT cells.

SELECTION OF CITATIONS
SEARCH DETAIL