Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Signal ; 17(827): eade0580, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470957

ABSTRACT

Intercellular communication between different cell types in solid tumors contributes to tumor growth and metastatic dissemination. The secretome of cancer-associated fibroblasts (CAFs) plays major roles in these processes. Using human mammary CAFs, we showed that CAFs with a myofibroblast phenotype released extracellular vesicles that transferred proteins to endothelial cells (ECs) that affected their interaction with immune cells. Mass spectrometry-based proteomics identified proteins transferred from CAFs to ECs, which included plasma membrane receptors. Using THY1 as an example of a transferred plasma membrane-bound protein, we showed that CAF-derived proteins increased the adhesion of a monocyte cell line to ECs. CAFs produced high amounts of matrix-bound EVs, which were the primary vehicles of protein transfer. Hence, our work paves the way for future studies that investigate how CAF-derived matrix-bound EVs influence tumor pathology by regulating the function of neighboring cancer, stromal, and immune cells.


Subject(s)
Cancer-Associated Fibroblasts , Neoplasms , Humans , Cancer-Associated Fibroblasts/metabolism , Endothelial Cells , Neoplasms/metabolism , Cell Membrane , Cell Line , Fibroblasts/metabolism , Tumor Microenvironment , Cell Line, Tumor
2.
Cancer Res Commun ; 4(2): 588-606, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38358352

ABSTRACT

Neutrophils are a highly heterogeneous cellular population. However, a thorough examination of the different transcriptional neutrophil states between health and malignancy has not been performed. We utilized single-cell RNA sequencing of human and murine datasets, both publicly available and independently generated, to identify neutrophil transcriptomic subtypes and developmental lineages in health and malignancy. Datasets of lung, breast, and colorectal cancer were integrated to establish and validate neutrophil gene signatures. Pseudotime analysis was used to identify genes driving neutrophil development from health to cancer. Finally, ligand-receptor interactions and signaling pathways between neutrophils and other immune cell populations in primary colorectal cancer and metastatic colorectal cancer were investigated. We define two main neutrophil subtypes in primary tumors: an activated subtype sharing the transcriptomic signatures of healthy neutrophils; and a tumor-specific subtype. This signature is conserved in murine and human cancer, across different tumor types. In colorectal cancer metastases, neutrophils are more heterogeneous, exhibiting additional transcriptomic subtypes. Pseudotime analysis implicates IL1ß/CXCL8/CXCR2 axis in the progression of neutrophils from health to cancer and metastasis, with effects on T-cell effector function. Functional analysis of neutrophil-tumoroid cocultures and T-cell proliferation assays using orthotopic metastatic mouse models lacking Cxcr2 in neutrophils support our transcriptional analysis. We propose that the emergence of metastatic-specific neutrophil subtypes is driven by the IL1ß/CXCL8/CXCR2 axis, with the evolution of different transcriptomic signals that impair T-cell function at the metastatic site. Thus, a better understanding of neutrophil transcriptomic programming could optimize immunotherapeutic interventions into early and late interventions, targeting different neutrophil states. SIGNIFICANCE: We identify two recurring neutrophil populations and demonstrate their staged evolution from health to malignancy through the IL1ß/CXCL8/CXCR2 axis, allowing for immunotherapeutic neutrophil-targeting approaches to counteract immunosuppressive subtypes that emerge in metastasis.


Subject(s)
Colorectal Neoplasms , Neutrophils , Animals , Mice , Humans , Neoplasm Recurrence, Local/metabolism , Signal Transduction/genetics , Colorectal Neoplasms/genetics , Single-Cell Analysis
3.
Matrix Biol Plus ; 19-20: 100136, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38223308

ABSTRACT

High-grade serous (HGS) ovarian cancer is the most lethal gynaecological disease in the world and metastases is a major cause. The omentum is the preferential metastatic site in HGS ovarian cancer patients and in vitro models that recapitulate the original environment of this organ at cellular and molecular level are being developed to study basic mechanisms that underpin this disease. The tumour extracellular matrix (ECM) plays active roles in HGS ovarian cancer pathology and response to therapy. However, most of the current in vitro models use matrices of animal origin and that do not recapitulate the complexity of the tumour ECM in patients. Here, we have developed omentum gel (OmGel), a matrix made from tumour-associated omental tissue of HGS ovarian cancer patients that has unprecedented similarity to the ECM of HGS omental tumours and is simple to prepare. When used in 2D and 3D in vitro assays to assess cancer cell functions relevant to metastatic ovarian cancer, OmGel performs as well as or better than the widely use Matrigel and does not induce additional phenotypic changes to ovarian cancer cells. Surprisingly, OmGel promotes pronounced morphological changes in cancer associated fibroblasts (CAFs). These changes were associated with the upregulation of proteins that define subsets of CAFs in tumour patient samples, highlighting the importance of using clinically and physiologically relevant matrices for in vitro studies. Hence, OmGel provides a step forward to study the biology of HGS omental metastasis. Metastasis in the omentum are also typical of other cancer types, particularly gastric cancer, implying the relevance of OmGel to study the biology of other highly lethal cancers.

SELECTION OF CITATIONS
SEARCH DETAIL