Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Biomed Pharmacother ; 173: 116315, 2024 Apr.
Article En | MEDLINE | ID: mdl-38394852

Due to resistance and BCR-ABLT315I-mutated, CML remains a clinical challenge. It needs new potential therapeutic targets to overcome CML resistance related to BCR-ABL. Our research revealed that the deubiquitinating enzyme USP28 was highly expressed in BCR-ABL-dependent CML patients. Similarly, a high expression of USP28 was found in the K562 cell line, particularly in the imatinib-resistant strains. Notably, USP28 directly interacted with BCR-ABL. Furthermore, when BCR-ABL and its mutant BCR-ABLT315I were overexpressed in K562-IMR, they promoted the expression of IFITM3. However, when small molecule inhibitors targeting USP28 and small molecule degraders targeting BCR-ABL were combined, they significantly inhibited the expression of IFITM3. The experiments conducted on tumor-bearing animals revealed that co-treated mice showed a significant reduction in tumor size, effectively inhibiting the progression of CML tumors. In summary, USP28 promoted the proliferation and invasion of tumor cells in BCR-ABL-dependent CML by enhancing the expression of IFITM3. Moreover, imatinib resistance might be triggered by the activation of the USP28-BCR-ABL-IFITM3 pathway. Thus, the combined inhibition of USP28 and BCR-ABL could be a promising approach to overcome CML resistance dependent on BCR-ABL.


Drug Resistance, Neoplasm , Fusion Proteins, bcr-abl , Humans , Animals , Mice , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Fusion Proteins, bcr-abl/metabolism , Apoptosis , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Membrane Proteins/metabolism , RNA-Binding Proteins , Ubiquitin Thiolesterase/metabolism
2.
J Oncol ; 2022: 4056398, 2022.
Article En | MEDLINE | ID: mdl-36349200

Inducing protein degradation by proteolysis-targeting chimeras (PROTACs) has gained tremendous momentum in the field for its promise in the discovery and development of new therapies. Based on our previously reported PROTAC BCR-ABL degraders, we designed and synthesized additional 4 PROTAC compounds with a novel linker that contains pyrimidine rings. Molecular and cellular studies have shown that different linkers affect the degradation activity of small-molecule degraders on the target protein of BCR-ABL. We screened out a lead compound, DMP11, with stable physicochemical properties and high activity. Preliminary evaluation of its pharmacodynamics in vitro model showed that it has a good inhibitory effect on imatinib-resistant chronic myeloid leukemia cell lines, as has been shown in animal models. Our preliminary research into the mechanism of DMP11 found that DMP11 can overcome drug resistance by simultaneously inhibiting the targets of BCR-ABL and SRC-family kinase (SFK).

...