Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 12(26): 6492-6499, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38872610

ABSTRACT

Antisense oligonucleotides (ASOs) are molecules used to regulate RNA expression by targeting specific RNA sequences. One specific type of ASO, known as neutralized DNA (nDNA), contains site-specific methyl phosphotriester (MPTE) linkages on the phosphate backbone, changing the negatively charged DNA phosphodiester into a neutralized MPTE with designed locations. While nDNA has previously been employed as a sensitive nucleotide sequencing probe for the PCR, the potential of nDNA in intracellular RNA regulation and gene therapy remains underexplored. Our study aims to evaluate the regulatory capacity of nDNA as an ASO probe in cellular gene expression. We demonstrated that by tuning MPTE locations, partially and intermediately methylated nDNA loaded onto mesoporous silica nanoparticles (MSNs) can effectively knock down the intracellular miRNA, subsequently resulting in downstream mRNA regulation in colorectal cancer cell HCT116. Additionally, the nDNA ASO-loaded MSNs exhibit superior efficacy in reducing miR-21 levels over 72 hours compared to the efficacy of canonical DNA ASO-loaded MSNs. The reduction in the miR-21 level subsequently resulted in the enhanced mRNA levels of tumour-suppressing genes PTEN and PDCD4. Our findings underscore the potential of nDNA in gene therapies, especially in cancer treatment via a fine-tuned methylation location.


Subject(s)
DNA , MicroRNAs , Nanoparticles , Silicon Dioxide , Silicon Dioxide/chemistry , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Nanoparticles/chemistry , DNA/chemistry , Porosity , HCT116 Cells , Phosphates/chemistry , Particle Size , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/pharmacology , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Surface Properties , RNA-Binding Proteins/metabolism , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics
2.
ACS Appl Mater Interfaces ; 16(17): 21722-21735, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38629735

ABSTRACT

While temozolomide (TMZ) has been a cornerstone in the treatment of newly diagnosed glioblastoma (GBM), a significant challenge has been the emergence of resistance to TMZ, which compromises its clinical benefits. Additionally, the nonspecificity of TMZ can lead to detrimental side effects. Although TMZ is capable of penetrating the blood-brain barrier (BBB), our research addresses the need for targeted therapy to circumvent resistance mechanisms and reduce off-target effects. This study introduces the use of PEGylated mesoporous silica nanoparticles (MSN) with octyl group modifications (C8-MSN) as a nanocarrier system for the delivery of docetaxel (DTX), providing a novel approach for treating TMZ-resistant GBM. Our findings reveal that C8-MSN is biocompatible in vitro, and DTX@C8-MSN shows no hemolytic activity at therapeutic concentrations, maintaining efficacy against GBM cells. Crucially, in vivo imaging demonstrates preferential accumulation of C8-MSN within the tumor region, suggesting enhanced permeability across the blood-brain tumor barrier (BBTB). When administered to orthotopic glioma mouse models, DTX@C8-MSN notably prolongs survival by over 50%, significantly reduces tumor volume, and decreases side effects compared to free DTX, indicating a targeted and effective approach to treatment. The apoptotic pathways activated by DTX@C8-MSN, evidenced by the increased levels of cleaved caspase-3 and PARP, point to a potent therapeutic mechanism. Collectively, the results advocate DTX@C8-MSN as a promising candidate for targeted therapy in TMZ-resistant GBM, optimizing drug delivery and bioavailability to overcome current therapeutic limitations.


Subject(s)
Blood-Brain Barrier , Docetaxel , Drug Resistance, Neoplasm , Glioblastoma , Nanoparticles , Silicon Dioxide , Temozolomide , Temozolomide/chemistry , Temozolomide/pharmacology , Temozolomide/therapeutic use , Temozolomide/pharmacokinetics , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/metabolism , Docetaxel/chemistry , Docetaxel/pharmacology , Docetaxel/pharmacokinetics , Docetaxel/therapeutic use , Silicon Dioxide/chemistry , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Animals , Nanoparticles/chemistry , Humans , Mice , Drug Resistance, Neoplasm/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Cell Line, Tumor , Porosity , Drug Carriers/chemistry , Mice, Nude , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects
3.
Colloids Surf B Biointerfaces ; 209(Pt 1): 112142, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34666283

ABSTRACT

MicroRNA (miRNA) sensing plays an essential role in the diagnosis of several diseases, especially cancers, for appropriate intervention and treatment. However, quantifying miRNA demands highly sensitive and selective assays which can distinguish analogous sequences with low abundance in bio-samples and determine wide range of concentrations. In this report, we present a novel technique satisfying all those requirements by modifying silicon nanowire field-effect transistors (SiNWFETs) with 2-component mixed self-assembled monolayers (mSAMs) of polyethylene glycol (PEG) at different ratios (silane-PEG-NH2:silane-PEG-OH = 1:1, 1:3, and 1:5) and glutaraldehyde to immobilize DNA probes for miRNA-21 detection, a biomarker in several types of cancers. Empirical results reveal that all the fabricated PEG-SiNWFET DNA biosensors could quantify miRNA-21 within 1 fM - 10 pM. Especially, the ones modified with silane-PEG-NH2:silane-PEG-OH = 1:3 exhibited an outstanding performance to recognize miRNA-21 at an ultra-low concentration of 10 aM in the dynamic range up to 6 orders of magnitude (10 aM - 10 pM). This approach is more convenient, analytical competitive, and cost-effective in comparison with currently used methods for nucleic acid testing because of label- and amplification-free characteristics. It is therefore not only feasible for miRNA detection by SiNWFET-based biosensors but also potential for clinical applications of disease diagnosis with oligonucleotide biomarkers.


Subject(s)
Biosensing Techniques , MicroRNAs , Nanowires , MicroRNAs/genetics , Polyethylene Glycols , Silicon , Transistors, Electronic
4.
Sensors (Basel) ; 21(2)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33477777

ABSTRACT

Detecting proteins at low concentrations in high-ionic-strength conditions by silicon nanowire field-effect transistors (SiNWFETs) is severely hindered due to the weakened signal, primarily caused by screening effects. In this study, aptamer as a signal amplifier, which has already been reported by our group, is integrated into SiNWFET immunosensors employing antigen-binding fragments (Fab) as the receptors to improve its detection limit for the first time. The Fab-SiNWFET immunosensors were developed by immobilizing Fab onto Si surfaces modified with either 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde (GA) (Fab/APTES-SiNWFETs), or mixed self-assembled monolayers (mSAMs) of polyethylene glycol (PEG) and GA (Fab/PEG-SiNWFETs), to detect the rabbit IgG at different concentrations in a high-ionic-strength environment (150 mM Bis-Tris Propane) followed by incubation with R18, an aptamer which can specifically target rabbit IgG, for signal enhancement. Empirical results revealed that the signal produced by the sensors with Fab probes was greatly enhanced compared to the ones with whole antibody (Wab) after detecting similar concentrations of rabbit IgG. The Fab/PEG-SiNWFET immunosensors exhibited an especially improved limit of detection to determine the IgG level down to 1 pg/mL, which has not been achieved by the Wab/PEG-SiNWFET immunosensors.


Subject(s)
Biosensing Techniques , Nanowires , Animals , Immunoassay , Limit of Detection , Proteins/analysis , Rabbits , Silicon
5.
ACS Omega ; 4(12): 14765-14771, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31552315

ABSTRACT

Silicon nanowire field-effect transistors (SiNW-FETs) have been demonstrated as a highly sensitive platform for label-free detection of a variety of biological and chemical entities. However, detecting signal from immunoassays by nano-FETs is severely hindered by the distribution of different charged groups of targeted entities, their binding orientation, and distances to the surface of the FET. Aptamers have been widely applied as a recognition element for plentiful biosensors because of small molecular sizes and moderate to high specific binding affinity with different types of molecules. In this study, we propose an effective approach to enhance the electrical responses of both direct (6×-histidine) and sandwich (amyloid ß 1-42) immunoassays in SiNW-FETs with R18, a highly negative charged RNA aptamer against rabbit immunoglobulin G (IgG). Empirical results presented that the immunosensors targeted with R18 expressed a significantly stabilized and amplified signal compared to the ones without this aptamer. The research outcome provides applicability of the highly negative charged aptamer as a bioamplifier for immunoassays by FETs.

6.
Sci Rep ; 9(1): 11056, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31363139

ABSTRACT

Silicon nanowire (SiNW) field-effect transistors (FETs) is a powerful tool in genetic molecule analysis because of their high sensitivity, short detection time, and label-free detection. In nucleic acid detection, GC-rich nucleic acid sequences form self- and cross-dimers and stem-loop structures, which can easily obtain data containing signals from nonspecific DNA binding. The features of GC-rich nucleic acid sequences cause inaccuracies in nucleic acid detection and hinder the development of precision medicine. To improve the inaccurate detection results, we used phosphate-methylated (neutral) nucleotides to synthesize the neutralized chimeric DNA oligomer probe. The probe fragment originated from a primer for the detection of hepatitis C virus (HCV) genotype 3b, and single-mismatched and perfect-matched targets were designed for single nucleotide polymorphisms (SNP) detection on the SiNW FET device. Experimental results revealed that the HCV-3b chimeric neutralized DNA (nDNA) probe exhibited better performance for SNP discrimination in 10 mM bis-tris propane buffer at 25 °C than a regular DNA probe. The SNP discrimination of the nDNA probe could be further improved at 40 °C on the FET device. Consequently, the neutralized chimeric DNA probe could successfully distinguish SNP in the detection of GC-rich target sequences under optimal operating conditions on the SiNW FET device.


Subject(s)
Biosensing Techniques/methods , DNA Probes/genetics , Genotyping Techniques/methods , Nanowires/chemistry , Transistors, Electronic , Polymorphism, Single Nucleotide , Sensitivity and Specificity , Silicon/chemistry
7.
Sci Rep ; 8(1): 12598, 2018 08 22.
Article in English | MEDLINE | ID: mdl-30135473

ABSTRACT

Neutral DNA analogs as probes for the detection of target oligomers on the biosensors based on the field-effect transistor (FET) configuration feature advantages in the enhancement of sensitivity and signal-to-noise ratio. Herein, we used phosphate-methylated nucleotides to synthesize two partially neutralized chimeric DNA products and a fully neutralized DNA sequence and adopted a regular DNA oligomer as probes on the polycrystalline silicon nanowire (NW) FET devices. The sequences of two neutralized chimeric DNAs close to the 5' end were alternately modified with the phosphate-methylated nucleotides, and all probes were immobilized via their 5' end on the NW surface. The non-specific-to-specific binding ratio indicated that the two 5'-end partially neutralized chimeric DNAs featured better performance than the regular and fully neutralized DNA oligomers. The partially neutralized probe design reduces the ionic strength needed for hybridization and increases the Debye length of detection, thus promoting the detection sensitivity of FET and achieving the limit of detection of 0.1 fM. By using an appropriate probe design, applying DNA oligomers with embedded phosphate-methylated nucleotides in the FET biosensors is a promising way for gene detection with high sensitivity and specificity.


Subject(s)
Aptamers, Nucleotide/chemical synthesis , DNA Probes/chemical synthesis , Nanowires/chemistry , Aptamers, Nucleotide/genetics , Aptamers, Nucleotide/metabolism , Biosensing Techniques/instrumentation , DNA/genetics , Equipment Design/methods , Nucleic Acid Hybridization , Nucleotides/chemical synthesis , Oligonucleotide Array Sequence Analysis/methods , Sensitivity and Specificity , Silicon/chemistry , Transistors, Electronic
8.
Biosens Bioelectron ; 99: 170-175, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-28755610

ABSTRACT

An implementation of neutralized chimeric DNA oligomer as a probe for sensitive detection of single nucleotide polymorphisms (SNPs) on a surface plasmon resonance imaging sensor is investigated. The chimeric DNA oligomer was synthesized in a conventional DNA synthesizer, containing neutral nucleotides with a methylated phosphate group. The secondary structures and melting points of the chimeric DNA fragment and its complexes with perfect-matched and single-mismatched complementary DNA molecules were examined by using circular dichroism and UV-vis spectroscopy in comparison with the native probe DNA counterpart. The results indicate that the chimeric DNA complexes can form a B-form structure and exhibit high thermostability. Moreover, the hybridization and discrimination efficiency of the chimeric probe DNA for the SNP genotyping were verified by using the SPRi sensor under different experimental conditions. The data reveal the effects of the ionic strength and operation temperature on the selectivity of the chimeric probe DNA for the SNP detection. The hybridization condition with a low ionic strength and high temperature allows the chimeric probe DNA distinguishing perfect-matched and single-mismatched target DNA molecules to the best extent, likely due to the reduced electrostatic repulsive force and presence of the additional methyl group on the backbone. Consequently, the direct and label-free detection with the SPR technique and neutralized chimeric probe DNA can be realized for the SNP genotyping by optimizing the operation condition and sequence design.


Subject(s)
Biosensing Techniques , Polymorphism, Single Nucleotide/genetics , Surface Plasmon Resonance , Circular Dichroism , DNA Probes , Genotype , Nucleic Acid Hybridization
9.
Biosens Bioelectron ; 41: 795-801, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23116544

ABSTRACT

Intensive efforts have been focused on the development of ultrasensitive DNA biosensors capable of quantitative gene expression analysis. Various neutralized nucleic acids have been demonstrated as alternative and attractive probe for the design of a DNA chip. However, the mechanism of the improvements has not been clearly revealed. In this investigation, we used a newly developed neutral ethylated DNA (E-DNA), a DNA analog with the "RO-P-O" backbone (wherein R could be methyl, ethyl, aryl, or alkyl group) obtained from synthetic procedures, and a silicon nanowire (SiNW) field-effect transistor (FET) to evaluate the difference in DNA detection performance while using E-DNA and DNA as probes. It is demonstrated that using the E-DNA probe in the FET measurement could have a significantly enhanced effect upon the detection sensitivity. Surface plasmon resonance imaging (SPRi) was used to evidence the mechanism of the improved detection sensitivity. SPRi analysis showed the amounts of probe immobilization on the sensor surface and the hybridization efficiency were both enhanced with the use of E-DNA. Consequently, neutral ethylated DNA probe hold a great promise for DNA sensing, especially in the electrical-based sensor.


Subject(s)
Biosensing Techniques/instrumentation , Conductometry/instrumentation , DNA Probes/genetics , DNA/genetics , Molecular Probe Techniques/instrumentation , Surface Plasmon Resonance/instrumentation , Transistors, Electronic , DNA/analysis , Equipment Design , Equipment Failure Analysis , Reproducibility of Results , Sensitivity and Specificity , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...