Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39146238

ABSTRACT

Monitoring chemical levels is crucial for safeguarding both the environment and public health. Elevated levels of ammonia, for instance, can harm both humans and aquatic ecosystems, often indicating contamination from agriculture, industry, or sewage. Developing portable, high-resolution, and affordable methods for in situ monitoring of ammonia is thus imperative. Plasmonic sensors offer a promising solution, detecting ammonia by correlating changes in their optical response to the target analyte's concentration. While they are highly sensitive and can be fabricated in a variety of portable and user-friendly formats, some still require reagents or expensive optical equipment, which hinder their widespread adoption. Here, we present a self-assembled nanoplasmonic colorimetric sensor capable of directly detecting ammonia concentrations in aqueous matrices. The proposed sensor exploits the plasmonic resonance of the nanostructures to transduce changes in the chemical environment into alterations in color, offering a label-free method for real-time analysis. The sensor is fabricated using a self-assembling technique compatible with low-cost mass production based on aluminum and aluminum oxide, ensuring affordability and avoiding the use of other toxic chemicals. We developed a model to predict ammonia concentrations based on visible color change of the sensor, achieving a detection limit of 8.5 ppm. Furthermore, to address the need for on-site detection, we integrated smartphone technology for real-time color change analysis, eliminating the need for expensive, bulky optical instruments. Indeed, our approach offers a cost-effective, portable, and user-friendly solution for ammonia detection in water without the need for chemical reagents or spectrometers, making it ideal for field applications. Interestingly, this platform extends its applicability beyond ammonia detection, enabling the monitoring of various chemicals using a smartphone, without the need for any additional costly equipment.

2.
ACS Photonics ; 11(3): 816-865, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38550347

ABSTRACT

Metasurfaces have recently risen to prominence in optical research, providing unique functionalities that can be used for imaging, beam forming, holography, polarimetry, and many more, while keeping device dimensions small. Despite the fact that a vast range of basic metasurface designs has already been thoroughly studied in the literature, the number of metasurface-related papers is still growing at a rapid pace, as metasurface research is now spreading to adjacent fields, including computational imaging, augmented and virtual reality, automotive, display, biosensing, nonlinear, quantum and topological optics, optical computing, and more. At the same time, the ability of metasurfaces to perform optical functions in much more compact optical systems has triggered strong and constantly growing interest from various industries that greatly benefit from the availability of miniaturized, highly functional, and efficient optical components that can be integrated in optoelectronic systems at low cost. This creates a truly unique opportunity for the field of metasurfaces to make both a scientific and an industrial impact. The goal of this Roadmap is to mark this "golden age" of metasurface research and define future directions to encourage scientists and engineers to drive research and development in the field of metasurfaces toward both scientific excellence and broad industrial adoption.

3.
Sci Adv ; 10(8): eadk2560, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38394206

ABSTRACT

The accurate detection, classification, and separation of chiral molecules are pivotal for advancing pharmaceutical and biomolecular innovations. Engineered chiral light presents a promising avenue to enhance the interaction between light and matter, offering a noninvasive, high-resolution, and cost-effective method for distinguishing enantiomers. Here, we present a nanostructured platform for surface-enhanced infrared absorption-induced vibrational circular dichroism (VCD) based on an achiral plasmonic system. This platform enables precise measurement, differentiation, and quantification of enantiomeric mixtures, including concentration and enantiomeric excess determination. Our experimental results exhibit a 13 orders of magnitude higher detection sensitivity for chiral enantiomers compared to conventional VCD spectroscopic techniques, accounting for respective path lengths and concentrations. The tunable spectral characteristics of this achiral plasmonic system facilitate the detection of a diverse range of chiral compounds. The platform's simplicity, tunability, and exceptional sensitivity holds remarkable potential for enantiomer classification in drug design, pharmaceuticals, and biological applications.

SELECTION OF CITATIONS
SEARCH DETAIL