Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 655
1.
Small ; : e2307410, 2024 May 22.
Article En | MEDLINE | ID: mdl-38778499

The detection of monoamine neurotransmitters is of paramount importance as the neurotransmitters are the chemical messengers regulating the gut-brain axis (GBA). It requires real-time, ultrasensitive, and selective sensing of the neurotransmitters in the gastric/intestinal fluid. However, multi-components present in the gastric/intestinal fluid make sensing challenging to achieve in terms of ultra-high sensitivity and selectivity. Herein, an approach is introduced to utilize vanadium single atom catalytic (SAC) centers in van der Waals MoS2 (V-MoS2) to selectively detect real-time serotonin (5-HT) in artificial gastric/intestinal fluid. The synergetic effect of V-SACs and the surface S-bonds on the MoS2 surface, enables an extremely wide range of 5-HT detection (from 1 pM to 100 µM), with optimum selectivity and interference resistance. By combining density functional theory calculations and scanning transmission electron microscopy, it is concluded that the V-SACs embedded in the MoS2 network create active sites that greatly facilitate the charge exchange between the material and the 5-HT molecules. This result allows the 5-HT detection in GBA studies to be more reliable, and the material tunability provides a general platform to achieve real-time and multi-component detection of other monoamine neurotransmitters in GBA such as dopamine and norepinephrine.

2.
Res Gerontol Nurs ; 17(3): 141-147, 2024.
Article En | MEDLINE | ID: mdl-38815217

PURPOSE: Square dancing may help older adults experience meaning in life (MIL). However, it remains unclear how square dancing facilitates MIL. To address this question, we examined whether participation frequency, transcendent experiences, and social support correlated positively with MIL, and whether age moderated the correlation between transcendent experiences and MIL. METHOD: We studied 268 older adults using in-person surveys to collect data on age, participation frequency, transcendent experiences, social support, and MIL. We analyzed data using hierarchical regression. RESULTS: High frequency of participation and high levels of transcendent experiences and social support simultaneously predicted high levels of MIL, and age decreased the positive relationship between transcendent experiences and MIL. CONCLUSION: Based on the hierarchical regression results, we recommend strategies to increase older adults' MIL by providing square dancing opportunities; working with them to improve square dancing skills that facilitate transcendent experiences; and guiding them in seeking sources of social support. [Research in Gerontological Nursing, 17(3), 141-147.].


Social Support , Humans , Aged , Female , Male , Aged, 80 and over , Quality of Life/psychology , Surveys and Questionnaires , Middle Aged
3.
Mil Med Res ; 11(1): 33, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816888

Orthopedic conditions have emerged as global health concerns, impacting approximately 1.7 billion individuals worldwide. However, the limited understanding of the underlying pathological processes at the cellular and molecular level has hindered the development of comprehensive treatment options for these disorders. The advent of single-cell RNA sequencing (scRNA-seq) technology has revolutionized biomedical research by enabling detailed examination of cellular and molecular diversity. Nevertheless, investigating mechanisms at the single-cell level in highly mineralized skeletal tissue poses technical challenges. In this comprehensive review, we present a streamlined approach to obtaining high-quality single cells from skeletal tissue and provide an overview of existing scRNA-seq technologies employed in skeletal studies along with practical bioinformatic analysis pipelines. By utilizing these methodologies, crucial insights into the developmental dynamics, maintenance of homeostasis, and pathological processes involved in spine, joint, bone, muscle, and tendon disorders have been uncovered. Specifically focusing on the joint diseases of degenerative disc disease, osteoarthritis, and rheumatoid arthritis using scRNA-seq has provided novel insights and a more nuanced comprehension. These findings have paved the way for discovering novel therapeutic targets that offer potential benefits to patients suffering from diverse skeletal disorders.


Sequence Analysis, RNA , Single-Cell Analysis , Humans , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Bone Diseases/therapy , Bone Diseases/physiopathology , Bone and Bones , Computational Biology/methods
4.
Front Bioeng Biotechnol ; 12: 1352023, 2024.
Article En | MEDLINE | ID: mdl-38766649

Osteochondral defect (OCD) is a common but challenging condition in orthopaedics that imposes huge socioeconomic burdens in our aging society. It is imperative to accelerate the R&D of regenerative scaffolds using osteochondral tissue engineering concepts. Yet, all innovative implant-based treatments require animal testing models to verify their feasibility, biosafety, and efficacy before proceeding to human trials. Rabbit models offer a more clinically relevant platform for studying OCD repair than smaller rodents, while being more cost-effective than large animal models. The core-decompression drilling technique to produce full-thickness distal medial femoral condyle defects in rabbits can mimic one of the trauma-relevant OCD models. This model is commonly used to evaluate the implant's biosafety and efficacy of osteochondral dual-lineage regeneration. In this article, we initially indicate the methodology and describe a minimally-invasive surgical protocol in a step-wise manner to generate a standard and reproducible rabbit OCD for scaffold implantation. Besides, we provide a detailed procedure for sample collection, processing, and evaluation by a series of subsequent standardized biochemical, radiological, biomechanical, and histological assessments. In conclusion, the well-established, easy-handling, reproducible, and reliable rabbit OCD model will play a pivotal role in translational research of osteochondral tissue engineering.

5.
Front Oncol ; 14: 1378405, 2024.
Article En | MEDLINE | ID: mdl-38665942

Background: The simultaneous occurrence of Branchial Cleft Cyst (BCC) and Papillary Thyroid Carcinoma (PTC) represents an unusual malignant tumor, with cases featuring associated lymph node metastasis being particularly rare. This combination underscores an increased potential for metastasis, and the assessment of neck masses, particularly on the lateral aspect, may inadvertently overlook the scrutiny of the thyroid. Therefore, healthcare providers should exercise vigilance, especially in patients over the age of 40, regarding the potential for neck masses to signify metastasis from thyroid malignancies. Currently, surgical intervention stands as the primary effective curative method, while the postoperative administration of radioactive iodine therapy remains a topic of ongoing debate. Case report: In the presented case, a 48-year-old male patient with a right neck mass underwent surgical intervention. The procedure included the excision of the right neck mass, unilateral thyroidectomy with isthmus resection, and functional neck lymph node dissection under tracheal intubation and general anesthesia. Postoperative pathology findings revealed the coexistence of a BCC with metastatic PTC in the right neck mass, as well as papillary carcinoma in the right thyroid lobe. Lymph node metastasis was observed in the central and levels III of the right neck. Conclusion: The rare amalgamation of a BCC with PTC and concurrent lymph node metastasis underscores the invasive nature of this malignancy. Healthcare professionals should be well-acquainted with its clinical presentation, pathological characteristics, and diagnostic criteria. A multidisciplinary approach is strongly recommended to enhance patient outcomes.

6.
Article En | MEDLINE | ID: mdl-38576264

OBJECTIVE: The study aims to elucidate the impacts of different types of male chromosomal polymorphisms (MCPs) on various outcomes of in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) treatment. METHODS: This retrospective cohort study included 1442 couples with normal karyotypes, 1442 couples with MCPs, 42 couples with male chromosomal rearrangements (MCRs), and 42 couples with MCRs combined with MCPs who underwent IVF/ICSI treatment at Peking University Third Hospital from 2015 to 2021. The semen quality, embryological outcomes, and clinical outcomes of different groups stratified by karyotypes were compared. RESULTS: For couples undergoing IVF, male inv(9) was associated with a significantly lower sperm viability rate (29.41% vs 34.49%, P = 0.030), a lower progressive motility rate (25.13% vs 30.50%, P = 0.013), and a lower normal fertilization rate (52.41% vs 59.84%, P = 0.014). Male 9qh + was related to a lower sperm viability rate (27.56% vs 34.49%, P = 0.028). No MCPs were observed to compromise clinical outcomes in couples undergoing IVF. For couples undergoing ICSI, no MCPs exhibited an association with poorer semen quality and embryological outcomes. However, Yqh + and DGpstk+ were found to be significantly correlated with an increased likelihood of preterm birth (23.3% vs 9.2%, P = 0.003; 20.0% vs 9.2%, P = 0.041, respectively). In couples with MCRs, the presence of MCPs significantly reduced the sperm viability rate (19.99% vs 30.97%, P = 0.017) and progressive motility rate (8.07% vs 27.85%, P = 0.018). CONCLUSION: Our study provides detailed evidence for the impacts of various MCPs on IVF/ICSI outcomes, reveals the complexity and heterogeneity of these impacts, and highlights the adverse effects of male inv(9).

7.
BMC Pregnancy Childbirth ; 24(1): 331, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38678230

BACKGROUND: The effects of female chromosomal polymorphisms (FCPs) on various aspects of reproductive health have been investigated, yet the findings are frequently inconsistent. This study aims to clarify the role of FCPs on the outcomes of in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). METHODS: This retrospective cohort study comprised 951 couples with FCPs and 10,788 couples with normal karyotypes who underwent IVF/ICSI treatment at Peking University Third Hospital between 2015 and 2021. The exposure was FCPs. The embryological outcomes and clinical outcomes were compared. RESULTS: The FCPs, as a whole, compromised the oocyte maturation rate (76.0% vs. 78.8%, P = 0.008), while they did not adversely affect other IVF/ICSI outcomes. Further detailed analyses showed that every type of FCPs contributed to the lower oocyte maturation rate, particularly the rare FCPs (69.0% vs. 78.8%, P = 0.008). The female qh + was associated with a higher normal fertilization rate (63.0% vs. 59.2%, adjusted P = 0.022), a higher clinical pregnancy rate (37.0% vs. 30.7%, adjusted P = 0.048), and a higher live birth rate (27.0% vs.19.0%, adjusted P = 0.003) in couples undergoing IVF. Conversely, in couples undergoing ICSI, female qh + was found to be related to a lower normal fertilization rate (58.8% vs. 63.8%, P = 0.032), a comparable clinical pregnancy rate (25.7% vs. 30.9%, P = 0.289), and a comparable live birth rate (19.8% vs. 19.2%, P = 0.880) compared to the control group. Additionally, an increased risk of preterm birth was observed in women undergoing IVF with multiple polymorphisms (62.5% vs. 16.9%, adjusted P <  0.001) and in women undergoing ICSI with pstk+ (36.4% vs. 15.4%, P = 0.036). CONCLUSIONS: Our research unravels the diverse impacts of various FCPs on IVF/ICSI outcomes, highlighting the detrimental effects of FCPs on oocyte maturation and the risk of preterm birth.


Fertilization in Vitro , Polymorphism, Genetic , Pregnancy Rate , Sperm Injections, Intracytoplasmic , Humans , Retrospective Studies , Female , Pregnancy , Adult , Male , Pregnancy Outcome/genetics , Pregnancy Outcome/epidemiology , Chromosome Aberrations , Live Birth/genetics , Cohort Studies
8.
BMC Musculoskelet Disord ; 25(1): 317, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654244

BACKGROUND: The effects on bone mineral density (BMD)/fracture between type 1 (T1D) and type 2 (T2D) diabetes are unknown. Therefore, we aimed to investigate the causal relationship between the two types of diabetes and BMD/fracture using a Mendelian randomization (MR) design. METHODS: A two-sample MR study was conducted to examine the causal relationship between diabetes and BMD/fracture, with three phenotypes (T1D, T2D, and glycosylated hemoglobin [HbA1c]) of diabetes as exposures and five phenotypes (femoral neck BMD [FN-BMD], lumbar spine BMD [LS-BMD], heel-BMD, total body BMD [TB-BMD], and fracture) as outcomes, combining MR-Egger, weighted median, simple mode, and inverse variance weighted (IVW) sensitivity assessments. Additionally, horizontal pleiotropy was evaluated and corrected using the residual sum and outlier approaches. RESULTS: The IVW method showed that genetically predicted T1D was negatively associated with TB-BMD (ß = -0.018, 95% CI: -0.030, -0.006), while T2D was positively associated with FN-BMD (ß = 0.033, 95% CI: 0.003, 0.062), heel-BMD (ß = 0.018, 95% CI: 0.006, 0.031), and TB-BMD (ß = 0.050, 95% CI: 0.022, 0.079). Further, HbA1c was not associated with the five outcomes (ß ranged from - 0.012 to 0.075). CONCLUSIONS: Our results showed that T1D and T2D have different effects on BMD at the genetic level. BMD decreased in patients with T1D and increased in those with T2D. These findings highlight the complex interplay between diabetes and bone health, suggesting potential age-specific effects and genetic influences. To better understand the mechanisms of bone metabolism in patients with diabetes, further longitudinal studies are required to explain BMD changes in different types of diabetes.


Bone Density , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Mendelian Randomization Analysis , Osteoporosis , Humans , Bone Density/genetics , Osteoporosis/genetics , Osteoporosis/epidemiology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/complications , Glycated Hemoglobin/metabolism , Glycated Hemoglobin/analysis , Lumbar Vertebrae/diagnostic imaging , Femur Neck/diagnostic imaging , Phenotype
9.
J Dent Sci ; 19(2): 919-928, 2024 Apr.
Article En | MEDLINE | ID: mdl-38618085

Background/purpose: The chemo-mechanical caries-removal technique is known to offer advantages of selective dentin caries treatment while leaving healthy dental tissues intact. However, current sodium hypochlorite based reagents usually excessively damage dentin collagen. Therefore, the purpose of this study was to develop a novel chemo-mechanical caries-removal system to preserve the collagen network for subsequent prosthetic restorations. Materials and methods: The calfskin-derived collagen was chosen as a model system to investigate the dissolution behavior of collagen under different operating conditions of chemical-ultrasonic treatment systems. The molecular weight, triple-helix structure, the morphology, and functional group of collagen after treatment were investigated. Results: Various concentrations of sodium hypochlorite or zinc chloride together with ultrasonic machinery were chosen to investigate. The outcomes of circular dichroism (CD) spectra demonstrated stability of the triple-helix structure after treatment of a zinc chloride solution. In addition, two apparent bands at molecular weights (MWs) of 130 and 121 kDa evidenced the stability of collagen network. The positive 222 nm and 195 nm negative CD absorption band indicated the existence of a triple-helix structure for type I collagen. The preservation of the morphology and functional group of the collagen network on the etched dentin surface were investigated by in vitro dentin decalcification model. Conclusion: Unlike NaOCl, the 5 wt% zinc chloride solution combined with ultra-sonication showed dissolution rather than denature as well as degradation of the dentin collagen network. Additional in vivo evaluations are needed to verify its usefulness in clinical applications.

10.
PLoS One ; 19(3): e0300604, 2024.
Article En | MEDLINE | ID: mdl-38517866

BACKGROUND: By comparing the three lateral approaches to thyroidectomy, the feasibility and clinical effects were analyzed, and the advantages of the lateral approach were summarized. METHODS: From January 2022 to January 2023, 52 patients with thyroid cancer admitted to our department were selected and subjected to Lateral approach for thyroidectomy. Among them, 31 patients underwent thyroidectomy via the supraclavicular approach, 13 patients underwent endoscopic thyroidectomy via the subclavicular approach, and 8 patients underwent endoscopic thyroidectomy via the axillary approach. The basic conditions, surgical conditions, complications, postoperative pain scores and postoperative satisfaction of patients in the three approach surgery groups were recorded and analyzed. RESULTS: There were no significant differences among the three approach groups in terms of patient characteristics, number of central lymph node dissections, intraoperative blood loss, postoperative drainage volume, duration of drainage tube placement, length of hospital stay, postoperative pain, satisfaction, and complications. However, the operation time was longest in the subclavicular approach group, followed by the axillary approach group, and shortest in the supraclavicular approach group. The total hospitalization cost was highest in the axillary approach group, followed by the subclavicular approach group, and lowest in the supraclavicular approach group. CONCLUSION: The lateral approach for thyroidectomy is deemed a safe and effective method. The three different approach paths gradually increase in length, allowing for the accumulation of anatomical experience. This approach has a shorter learning curve for clinical doctors and is a favorable choice for patients seeking aesthetic benefits.


Thyroid Neoplasms , Thyroidectomy , Humans , Thyroidectomy/adverse effects , Clinical Relevance , Feasibility Studies , Thyroid Neoplasms/surgery , Thyroid Neoplasms/pathology , Endoscopy/adverse effects , Endoscopy/methods , Retrospective Studies
11.
J Neurosci Res ; 102(3): e25315, 2024 Mar.
Article En | MEDLINE | ID: mdl-38439584

Post-traumatic stress disorder (PTSD), a psychological condition triggered by exposure to extreme or chronic stressful events, exhibits a sex bias in incidence and clinical manifestations. Emerging research implicates the gut microbiome in the pathogenesis of PTSD and its roles in stress susceptibility. However, it is unclear whether differential gut microbiota contribute to PTSD susceptibility in male and female rats. Here, we utilized the single prolonged stress animal model and employed unsupervised machine learning to classify stressed animals into stress-susceptible subgroups and stress-resilient subgroups. Subsequently, using 16S V3-V4 rDNA sequencing, we investigated the differential gut microbiota alterations between susceptible and resilient individuals in male and female rats. Our findings revealed distinct changes in gut microbiota composition between the sexes at different taxonomic levels. Furthermore, the abundance of Parabacteroides was lower in rats that underwent SPS modeling compared to the control group. In addition, the abundance of Tenericutes in the stress-susceptible subgroup was higher than that in the control group and stress-resilient subgroup, suggesting that Tenericutes may be able to characterize stress susceptibility. What is particularly interesting here is that Cyanobacteria may be particularly associated with anti-anxiety effects in male rats. This study underscores sex-specific variations in gut microbiota composition in response to stress and sex differences should be taken into account when using macrobiotics for neuropsychiatric treatment, highlighting potential targets for PTSD therapeutic interventions.


Gastrointestinal Microbiome , Resilience, Psychological , Female , Male , Animals , Rats , Sex Characteristics , Bacteroidetes , Models, Animal
12.
J Clin Invest ; 134(10)2024 Mar 21.
Article En | MEDLINE | ID: mdl-38512413

Elevated bone resorption and diminished bone formation have been recognized as the primary features of glucocorticoid-associated skeletal disorders. However, the direct effects of excess glucocorticoids on bone turnover remain unclear. Here, we explored the outcomes of exogenous glucocorticoid treatment on bone loss and delayed fracture healing in mice and found that reduced bone turnover was a dominant feature, resulting in a net loss of bone mass. The primary effect of glucocorticoids on osteogenic differentiation was not inhibitory; instead, they cooperated with macrophages to facilitate osteogenesis. Impaired local nutrient status - notably, obstructed fatty acid transportation - was a key factor contributing to glucocorticoid-induced impairment of bone turnover in vivo. Furthermore, fatty acid oxidation in macrophages fueled the ability of glucocorticoid-liganded receptors to enter the nucleus and then promoted the expression of BMP2, a key cytokine that facilitates osteogenesis. Metabolic reprogramming by localized fatty acid delivery partly rescued glucocorticoid-induced pathology by restoring a healthier immune-metabolic milieu. These data provide insights into the multifactorial metabolic mechanisms by which glucocorticoids generate skeletal disorders, thus suggesting possible therapeutic avenues.


Bone Remodeling , Glucocorticoids , Osteogenesis , Animals , Mice , Glucocorticoids/pharmacology , Osteogenesis/drug effects , Bone Remodeling/drug effects , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/genetics , Fatty Acids/metabolism , Bone and Bones/metabolism , Bone and Bones/drug effects , Bone and Bones/immunology , Cellular Microenvironment/drug effects
13.
Ren Fail ; 46(1): 2327495, 2024 Dec.
Article En | MEDLINE | ID: mdl-38465879

Diabetic kidney disease (DKD) is a leading factor in end-stage renal disease. The complexity of its pathogenesis, combined with the limited treatment efficacy, necessitates deeper insights into potential causes. Studies suggest that ferroptosis-driven renal tubular damage contributes to DKD's progression, making its counteraction a potential therapeutic strategy. Quercetin, a flavonoid found in numerous fruits and vegetables, has demonstrated DKD mitigation in mouse models, though its protective mechanism remains ambiguous. In this study, we delved into quercetin's potential anti-ferroptotic properties, employing a DKD rat model and high glucose (HG)-treated renal tubular epithelial cell models. Our findings revealed that HG prompted unusual ferroptosis activation in renal tubular epithelial cells. However, quercetin counteracted this by inhibiting ferroptosis and activating NFE2-related factor 2 (Nrf2) expression in both DKD rats and HG-treated HK-2 cells, indicating its renal protective role. Further experiments, both in vivo and in vitro, validated that quercetin stimulates Nrf2. Thus, our research underscores quercetin's potential in DKD treatment by modulating the ferroptosis process via activating Nrf2 in a distinct DKD rat model, offering a fresh perspective on quercetin's protective mechanisms.


Diabetes Mellitus, Experimental , Diabetic Nephropathies , Ferroptosis , Mice , Rats , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/etiology , Diabetic Nephropathies/metabolism , Quercetin/pharmacology , Quercetin/therapeutic use , Streptozocin , NF-E2-Related Factor 2/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism
14.
Materials (Basel) ; 17(5)2024 Feb 25.
Article En | MEDLINE | ID: mdl-38473529

In order to enhance the degree of binding reaction of TiO2 in titanium-containing ceramic glazes and prevent the reaction of its transformation into rutile to eliminate the yellowing phenomenon of the glaze surface, an apatite-TiO2 composite opacifier (ATO) was prepared through the mechanical grinding of hydroxyapatite and anatase TiO2. The properties, opacification mechanism, and yellowing inhibition of the prepared ceramic glazes were studied. The results show that the ATO is characterized by a uniform coating of TiO2 on the surface of the apatite and the formation of close chemical bonding between the apatite and TiO2. The ceramic glaze surface when using an ATO has a white appearance and excellent opacification performance. When an ATO was used, the L*, a*, and b* values of the glaze were 89.99, -0.85, and 3.37, respectively, which were comparable to those of a ZrSiO4 glaze (L*, a*, and b* were 88.24, -0.02, and 2.29, respectively). The opacification of the glaze was slightly lower than that of the TiO2 glaze (L* value was 92.13), but the appearance changed from yellow to the white of the TiO2 glaze (b* value was 9.18). The ceramic glaze layer when using an ATO mainly consists of titanite, glass phase, and a small amount of quartz, and the opacification mechanism is the crystallization of the generated titanite. ATOs can play an active role in solving the critical problem that arises when TiO2 replaces ZrSiO4 as an opacifier.

15.
Acta Pharmacol Sin ; 45(5): 1044-1059, 2024 May.
Article En | MEDLINE | ID: mdl-38326625

The development of targeted chemotherapeutic agents against colorectal cancer (CRC), one of the most common cancers with a high mortality rate, is in a constant need. Nannocystins are a family of myxobacterial secondary metabolites featuring a 21-membered depsipeptide ring. The in vitro anti-CRC activity of natural and synthetic nannocystins was well documented, but little is known about their in vivo efficacy and if positive, the underlying mechanism of action. In this study we synthesized a nitroaromatic nannocystin through improved preparation of a key fragment, and characterized its in vitro activity and in vivo efficacy against CRC. We first described the total synthesis of compounds 2-4 featuring Heck macrocyclization to forge their 21-membered macrocycle. In a panel of 7 cancer cell lines from different tissues, compound 4 inhibited the cell viability with IC values of 1-6 nM. In particular, compound 4 (1, 2, 4 nM) inhibited the proliferation of CRC cell lines (HCT8, HCT116 and LoVo) in both concentration and time dependent manners. Furthermore, compound 4 concentration-dependently inhibited the colony formation and migration of CRC cell lines. Moreover, compound 4 induced cell cycle arrest at sub-G1 phase, apoptosis and cellular senescence in CRC cell lines. In three patient-derived CRC organoids, compound 4 inhibited the PDO with IC values of 3.68, 28.93 and 11.81 nM, respectively. In a patient-derived xenograft mouse model, injection of compound 4 (4, 8 mg/kg, i.p.) every other day for 12 times dose-dependently inhibited the tumor growth without significant change in body weight. We conducted RNA-sequencing, molecular docking and cellular thermal shift assay to elucidate the anti-CRC mechanisms of compound 4, and revealed that it exerted its anti-CRC effect at least in part by targeting AKT1.


Antineoplastic Agents , Cell Proliferation , Colorectal Neoplasms , Depsipeptides , Macrocyclic Compounds , Proto-Oncogene Proteins c-akt , Animals , Humans , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Depsipeptides/pharmacology , Depsipeptides/therapeutic use , Depsipeptides/chemistry , Depsipeptides/chemical synthesis , Drug Discovery , Drug Screening Assays, Antitumor , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Structure-Activity Relationship , Xenograft Model Antitumor Assays
17.
Int J Biol Macromol ; 261(Pt 2): 129831, 2024 Mar.
Article En | MEDLINE | ID: mdl-38302026

The primary purpose of this work is to study the fabrication of a flexible natural cellulosic fiber composite. In this respect, natural cellulosic fiber was obtained by modified poplar wood fiber through sodium hydroxide (NaOH) and γ-Aminopropyl Triethoxysilan. Then, the composites were fabricated by hot-pressing the modified wood fibers and polyurethane following characterization. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscope (SEM) observation results confirmed that some of the hemicellulose and lignin were removed from wood fibers after NaOH modification and successfully grafted with alkoxy structures after KH550 modification. NaOH&KH550 modification improved the interfacial compatibility between poplar wood fibers and polyurethane. The flexibility of the composites was improved (the slenderness value was reduced by 113 %), allowing flexible deformations such as bending, twisting, and knotting. In addition, thermal stability, tensile strength (increased by 105 %), elongation at the break (increased by 125 %), and water resistance were increased. This flexible natural cellulosic fiber composite is expected to be applied in the veneering of curved materials and special-shaped structure furniture, providing a theoretical basis for improving the added value of wood-based composites.


Lignin , Polyurethanes , Propylamines , Silanes , Sodium Hydroxide , Lignin/chemistry , Tensile Strength
18.
Plant Dis ; 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38301224

Persimmons (Diospyros kaki Thunb.) have a longstanding history of cultivation in China. Both aesthetically pleasing and edible, they often symbolize a sweet and fulfilling life. During the summer of 2022, a severe outbreak of anthracnose was observed on the lower leaves of persimmon trees in the National Field Genebank for Persimmon (NFGP), located in Yangling, Shaanxi, China (34°17'42.80″ N, 108°04'08.21″ E). The estimated incidence rate of this disease within the NFGP was approximately 30%. The typical symptoms of the disease included the presence of irregular lesions on leaves, and oval sunken lesions on infected fruit. Under high humidity conditions, pink sticky substances appeared in the affected areas. The presence of numerous lesions led to softening and detachment of persimmon fruit. To identify the causal pathogen, 5 × 5mm samples of the diseased leaves were collected from the interface between the infected and healthy leaves. The leaves were disinfected with 70% alcohol for 20 s, followed by rinsing with sterile water. Subsequently, the leaves were immersed in 1% NaClO for 2 to 3 minutes, rinsed with sterile water three times, dried using sterile absorbent paper, and the leaf samples were then transferred onto potato dextrose agar (PDA) medium, and cultured in 25°C incubators. Once the colony reached a certain size, small pieces of hyphae were extracted from edge and transferred for purification and repeated three times. After being cultured on PDA for 7 days, the colony showed a white spongy surface with a pink-orange center. The conidia displayed a fusiform shape and were transparent, measuring 4.58 to 6.53 µm × 9.27 to 13.11 µm (n=50). The isolates share morphological similarities with Colletotrichum fioriniae. The representative isolate HY-7 was selected for molecular identification. The internal transcribed spacers (ITS) region, chitin synthase (CHS-1), actin (ACT), beta-tubulin 2 (TUB2), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene were amplified using ITS1/4 (White et al. 1990), CHS-79F/CHS-345R (Carbone & Kohn, 1999), ACT512F/ACT (Carbone & Kohn, 1999), T1/BT2B (Glass & Donaldson 1995, O'Donnell et al., 1997), and GDF/GDR (Templeton et al. 1992), respectively. The generated sequences were deposited at GenBank under accession numbers OR878056 (ITS), OR766019 (CHS-1), OR766021(TUB2), OR766018 (ACT) and OR766020 (GAPDH). BLAST analysis revealed the sequences were 100% identical to C. fioriniae (MH865005 for ITS, JQ948953 for CHS-1, JQ949613 for ACT, JQ949943 for TUB2 and JQ948622 for GAPDH). The morphological characteristics and molecular analyses of the isolate matched the description of C. fioriniae. To fulfill Koch's postulates, the twigs and leaves of 'Fupingjianshi' in four different directions were inoculated without wounding in the field, and 10 healthy fruits were selected for wound inoculation. The concentration of conidia used for inoculation was about 1 × 106 conidia/ml, and sterilized water was used as control. The experiment was replicated three times under the same conditions. One week after inoculation, characteristic symptoms resembling those observed on the leaves of primary diseased persimmon trees appeared on the leaves and fruits. No symptoms were observed on the leaves, twigs and fruits in the control treatment. The pathogen from the artificially infected leaves and fruits were reisolated and identified as C. fiorinae based on morphological and molecular characteristics. Persimmon anthracnose is a common disease in regions where the fruit is grown, to the best of our knowledge, this is the first documented occurrence of C. fioriniae-induced anthracnose on persimmons in China, which should be paid more attentions. This report will help identify disease symptoms in the field and provides a basis for determining the occurrence, distribution, and control of C. fioriniae on persimmon leaves and fruits.

19.
Heliyon ; 10(3): e24413, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38318005

Breast angiosarcoma is a rare and highly aggressive malignancy with a poor prognosis. It can occur spontaneously or be associated with factors such as radiation therapy or chronic lymphedema. The etiology and pathogenesis of this disease are still unclear, the clinical symptoms and imaging findings lack specificity, and the pathological morphology is diverse, which is easy to be confused with other diseases. There is no clear guideline for surgical treatment. Although the optimal surgical approach remains unclear, the ultimate goal is surgical excision with optimal margins, which remains the primary method of treatment. In clinical practice, the choice of the surgical approach should be made by considering the tumor size, pathological type, and patient preferences. In clinical practice, the selection of surgical methods should be carried out with comprehensive consideration of tumor size, pathological types and patients' wishes. There is no clear consensus on whether radiotherapy and chemotherapy should be carried out after surgery, and its optimal program and efficacy are uncertain. This article reviews the etiology, clinical manifestations, pathological features, imaging findings, treatment, prognosis and other aspects of breast angiosarcoma, so as to strengthen clinicians' overall understanding of this disease and avoid missed diagnosis and misdiagnosis.

20.
Adv Mater ; 36(14): e2306593, 2024 Apr.
Article En | MEDLINE | ID: mdl-38174617

Laser-diode-based solid-state lighting is primarily used in state-of-the-art illumination systems. However, these systems rely on light-converting inorganic phosphors, which have low quantum efficiencies and complex manufacturing conditions. In this study, a mismatched refractive index strategy is proposed to directly convert natural bulk wood into a laser-driven wood diffuser using a simple delignification and polymer infiltration method. The resulting material has the potential to be used in laser-driven diffuse illumination applications. The optical performance of the laser-driven wood diffuser is optimized by changing the density of natural wood. The optimal coefficient of illuminance variation of the wood diffuser is as low as 17.7%, which is significantly lower than that of commercial diffusers. The illuminance uniformity is larger than 0.9, which is significantly higher than the ISO requirements for indoor workplace lighting. The laser damage threshold is 7.9 J cm-2, which is considerably higher than those of the substrates of commercially available phosphors. Furthermore, the optimized wood diffuser exhibits outstanding mechanical properties, excellent thermal stability, tolerance to harsh environmental conditions, and low speckle contrast. These results show that the laser-driven wood diffuser is a promising laser-color converter that is suitable for indoor, long-distance outdoor, undersea, and other high-luminance laser lighting applications.

...