Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 56
1.
Brief Funct Genomics ; 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38832682

Sesame (Sesamum indicum L.) is a globally cultivated oilseed crop renowned for its historical significance and widespread growth in tropical and subtropical regions. With notable nutritional and medicinal attributes, sesame has shown promising effects in combating malnutrition cancer, diabetes, and other diseases like cardiovascular problems. However, sesame production faces significant challenges from environmental threats such as charcoal rot, drought, salinity, and waterlogging stress, resulting in economic losses for farmers. The scarcity of information on stress-resistance genes and pathways exacerbates these challenges. Despite its immense importance, there is currently no platform available to provide comprehensive information on sesame, which significantly hinders the mining of various stress-associated genes and the molecular breeding of sesame. To address this gap, here a free, web-accessible, and user-friendly genomic web resource (SesameGWR, http://backlin.cabgrid.res.in/sesameGWR/) has been developed This platform provides key insights into differentially expressed genes, transcription factors, miRNAs, and molecular markers like simple sequence repeats, single nucleotide polymorphisms, and insertions and deletions associated with both biotic and abiotic stresses.. The functional genomics information and annotations embedded in this web resource were predicted through RNA-seq data analysis. Considering the impact of climate change and the nutritional and medicinal importance of sesame, this study is of utmost importance in understanding stress responses. SesameGWR will serve as a valuable tool for developing climate-resilient sesame varieties, thereby enhancing the productivity of this ancient oilseed crop.

2.
J Integr Med ; 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38693014

Phytosomes (phytophospholipid complex) are dosage forms that have recently been introduced to increase the stability and therapeutic effect of herbal medicine. Currently, bioactive herbs and the phytochemicals they contain are considered to be the best remedies for chronic diseases. One promising approach to increase the efficacy of plant-based therapies is to improve the stability and bioavailability of their bio-active ingredients. Phytosomes employ phospholipids as their active ingredients, and use their amphiphilic properties to solubilize and protect herbal extracts. The unique properties of phospholipids in drug delivery and their use in herbal medicines to improve bioavailability results in significantly enhanced health benefits. The introduction of phytosome nanotechnology can alter and revolutionize the current state of drug delivery. The goal of this review is to explain the application of phytosomes, their future prospects in drug delivery, and their advantages over conventional formulations. Please cite this article as: Chauhan D, Yadav PK, Sultana N, Agarwal A, Verma S, Chourasia MK, Gayen JR. Advancements in nanotechnology for the delivery of phytochemicals. J Integr Med. 2024; Epub ahead of print.

3.
Expert Opin Drug Deliv ; 21(4): 639-662, 2024 Apr.
Article En | MEDLINE | ID: mdl-38703363

INTRODUCTION: Novel injectables possess applications in both local and systemic therapeutics delivery. The advancement in utilized materials for the construction of complex injectables has tremendously upgraded their safety and efficacy. AREAS COVERED: This review focuses on various strategies to produce novel injectables, including oily dispersions, in situ forming implants, injectable suspensions, microspheres, liposomes, and antibody-drug conjugates. We herein present a detailed description of complex injectable technologies and their related drug formulations permitted for clinical use by the United States Food and Drug Administration (USFDA). The excipients used, their purpose and the challenges faced during manufacturing such formulations have been critically discussed. EXPERT OPINION: Novel injectables can deliver therapeutic agents in a controlled way at the desired site. However, several challenges persist with respect to their genericization. Astronomical costs incurred by innovator companies during product development, complexity of the product itself, supply limitations with respect to raw materials, intricate manufacturing processes, patent evergreening, product life-cycle extensions, relatively few and protracted generic approvals contribute to the exorbitant prices and access crunch. Moreover, regulatory guidance are grossly underdeveloped and significant efforts have to be directed toward development of effective characterization techniques.


Drug Approval , Drug Delivery Systems , Injections , United States Food and Drug Administration , Humans , United States , Drug Development , Drug Compounding , Excipients/chemistry , Pharmaceutical Preparations/administration & dosage , Animals , Chemistry, Pharmaceutical
4.
Bone ; 185: 117126, 2024 May 20.
Article En | MEDLINE | ID: mdl-38777312

Chronic kidney disease-induced secondary hyperparathyroidism (CKD-SHPT) heightens fracture risk through impaired mineral homeostasis and elevated levels of uremic toxins (UTs), which in turn enhance bone remodeling. Etelcalcetide (Etel), a calcium-sensing receptor (CaSR) agonist, suppresses parathyroid hormone (PTH) in hyperparathyroidism to reduce excessive bone resorption, leading to increased bone mass. However, Etel's effect on bone quality, chemical composition, and strength is not well understood. To address these gaps, we established a CKD-SHPT rat model and administered Etel at a human-equivalent dose concurrently with disease induction. The effects on bone and mineral homeostasis were compared with a CKD-SHPT (vehicle-treated group) and a control group (rats without SHPT). Compared with vehicle-treated CKD-SHPT rats, Etel treatment improved renal function, reduced circulating UT levels, improved mineral homeostasis parameters, decreased PTH levels, and prevented mineralization defects. The upregulation of mineralization-promoting genes by Etel in CKD-SHPT rats might explain its ability to prevent mineralization defects. Etel preserved both trabecular and cortical bones with attendant suppression of osteoclast function, besides increasing mineralization. Etel maintained the number of viable osteocytes to the control level, which could also contribute to its beneficial effects on bone. CKD-SHPT rats displayed increased carbonate substitution of matrix and mineral, decreased crystallinity, mineral-to-matrix ratio, and collagen maturity, and these changes were mitigated by Etel. Further, Etel treatment prevented CKD-SHPT-induced deterioration in bone strength and mechanical behavior. Based on these findings, we conclude that in CKD-SHPT rats, Etel has multiscale beneficial effects on bone that involve remodeling suppression, mineralization gene upregulation, and preservation of osteocytes.

5.
Nanomedicine (Lond) ; 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38639565

Aim & objective: Levormeloxifene (L-ORM) and raloxifene (RAL) are selective estrogen receptor modulators used in the treatment of postmenopausal osteoporosis and breast cancer. Here, we developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous estimation of both drugs. Materials & methods: A quality-by-design (QbD) approach was used for the optimization of the nanoemulsion, and US FDA guidelines were followed for method validation. Results: Multiple reaction monitoring transitions were used for L-ORM (459.05→98.50), RAL (475.00→112.02) and internal standard (180.10→110.2). Analytes were resolved in a C18 column with 80:20 v/v% acetonitrile (ACN), 0.1% formic acid in triple-distilled water as a mobile phase. The developed method was linear over a concentration range of 1-600 ng/ml. Pharmacokinetic results of free L-ORM-RAL and the L-ORM-RAL nanoemulsion showed Cmax of free L-ORM - 70.65 ± 16.64, free RAL 13.53 ± 2.72, L-ORM nanoemulsion 65.07 ± 14.0 and RAL-nanoemulsion 59.27 ± 17.44 ng/ml. Conclusion: Future findings will contribute to the treatment of postmenopausal osteoporosis and breast cancer using L-ORM and RAL.

7.
Bioanalysis ; 16(3): 141-153, 2024 Feb.
Article En | MEDLINE | ID: mdl-38197392

Aim: A newer LC-MS/MS method was developed and validated for the simultaneous quantification of raloxifene (RL) and cladrin (CL). Methodology: Both drugs were resolved in RP-18 (4.6 × 50 mm, 5 µ) Xbridge Shield column using acetonitrile and 0.1% aqueous solution of formic acid (FA) (70:30% v/v) as mobile phase by using biological matrices in female Sprague-Dawley rats using-MS/MS. Results: The developed method was found to be linear over the concentration ranges of 1-600 ng/ml, and lower limit of quantification was 1 ng/ml for RL and CL, respectively. Pharmacokinetic results of RL+CL showed Cmax = 4.23 ± 0.61, 26.97 ± 1.14 ng/ml, at Tmax(h) 5.5 ± 1.00 and 3.5 ± 1.00, respectively. Conclusion: Pharmacokinetic study results will be useful in the future for the combined delivery of RL and CL for osteoporosis treatment.


Isoflavones , Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Rats , Female , Animals , Rats, Sprague-Dawley , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Raloxifene Hydrochloride , Reproducibility of Results , Chromatography, High Pressure Liquid/methods
8.
Front Plant Sci ; 14: 1283555, 2023.
Article En | MEDLINE | ID: mdl-38148863

AT-hook motif nuclear localized (AHL) genes are functionally very less explored, but their nature is very diverse. In the present study, we identified 20 AHL genes in rice. Phylogenetic analyses and evolutionary classification of AHL genes showed that they are conserved in plants, but the number of genes is still expanding in different crops and regulating new biological functions. Gene structure analysis showed that OsAHLs are with and without intron types of genes, suggesting that AHL genes added intron during evolution for neofunctionalization. The cis analysis of OsAHL genes suggested its motif diversity. In order to understand the function, 19 transcriptomes were identified from various tissues and different developmental stages of rice, and they were divided into eight groups by different temporal and spatial expression. Through co-expression analysis, 11 OsAHLs and 13 novel genes with intricate networks that control many biological pathways in rice were identified. The interactions of OsAHL proteins showed that they co-regulate important processes including flowering, reproductive organ development, and photosynthesis activity. The functionality of all 20 genes of OsAHL for drought and salt stress in leaf tissues of two contrasting genotypes (IR64 and NL44) of rice was studied using qRT-PCR. The result clearly showed significant upregulation of OsAHL genes under drought and salt conditions over the control. The differential expression between IR64 and NL44 showed a significant upregulation of OsAHL genes in NL44 as compared to the IR64 genotype under drought and salt stress. Overall, the result indicates that AHL genes might be involved in mediating drought and salt-signaling transduction pathways. The drought- and salt-tolerant nature of NL44 was also confirmed by expression profiling.

9.
Curr Org Synth ; 2023 Jun 01.
Article En | MEDLINE | ID: mdl-37861008

BACKGROUND: Hydrated strontium perchlorate [Sr(ClO4)2.3H2O] acts as a very strong oxidizing and dehydrating agent. Until now, it could not be reported as a catalyst in dehydration mechanism-based organic synthetic reactions. Therefore, it is important to find whether it could be an effective catalyst for one-pot multicomponent reactions (MCRs). OBJECTIVE: The main objective of the present work is the development of a novel process for the synthesis of 1,4-dihydropyrimidinones through the one-pot multicomponent strategy using hydrated Sr(ClO4)2 as a catalyst. Furthermore, it includes process optimization, stereoselectivity, and spectroscopic characterization of the synthesized compounds. METHODS: Conventional and microwave-supported synthesis of 1,4-dihydropyrimidinones using 20 mol % of hydrated Sr(ClO4)2 catalyst via the one-pot solvent-free reaction was discovered as a new catalytic MCR methodology. The box-Behnken design approach and advanced analytical techniques were used for process optimization and reaction analysis. RESULTS: The results confirmed that hydrated Sr(ClO4)2; works as an efficient catalyst for one-pot multicomponent organic synthesis under both conventional and microwave heating. It is an effective catalyst for laboratory synthesis of 1,4-dihydropyrimidinones stereoselectively with moderate to excellent yield without any undesirable effect. Microwave heating provided the desired product within 1-4 minutes. Moreover, this method provides easy isolation of the pure products simply by recrystallization, and without the use of a chromatographic purification method. CONCLUSION: The simplicity and neutrality of reaction conditions, easy post-reaction workup, higher satisfactory to excellent yield, effectiveness, the diversity of substrates, etc. render the hydrated Sr(ClO4)2 catalyst-based protocol for the stereoselective synthesis of 1,4-dihydropyrimidinones as a highly efficient method. Furthermore, it has been found to be safe un-der laboratory reaction conditions and no undesirable issues have been faced during the process.

10.
J Food Sci Technol ; 60(12): 2927-2944, 2023 Dec.
Article En | MEDLINE | ID: mdl-37786600

Fats contribute majorly to food flavour, mouthfeel, palatability, texture, and aroma. Though solid fats are used for food formulation due to the processing benefits over oils, their negative health effects should not be overlooked. Oleogelation is thus used to transform liquid oil into a gel which function like fats and provide the nutritional benefits of oils. Additionally, only food-grade gelators convert the oils into solid-like, self-standing, three-dimensional gel networks. Rice bran wax, candelilla wax, carnauba wax, and sunflower wax are mainly used plant waxes for formulating oleogels as a result of their low cost, availability, and excellent gelling ability. A comprehensive information about the wax based oleogels, their characteristics and applications is needed. The present review discusses the effect of different plant-based waxes on the properties of the oleogel formed. The article provides information on how the physical and chemical properties of waxes impact the oleogel properties such as oil binding capacity, critical concentration, rheological, thermal, textural, morphological, and oxidative stability. Moreover, the current and potential applications of oleogels in the food sector have also been covered this article.

11.
Funct Integr Genomics ; 23(4): 296, 2023 Sep 11.
Article En | MEDLINE | ID: mdl-37697159

Given the future demand for food crops, increasing crop productivity in drought-prone rainfed areas has become essential. Drought-tolerant varieties are warranted to solve this problem in major crops, with drought tolerance as a high-priority trait for future research. Maize is one such crop affected by drought stress, which limits production, resulting in substantial economic losses. It became a more serious issue due to global climate change. The most drought sensitive among all stages of maize is the reproductive stages and the most important for overall maize production. The exact molecular basis of reproductive drought sensitivity remains unclear due to genes' complex regulation of drought stress. Understanding the molecular biology and signaling of the unexplored area of reproductive drought tolerance will provide an opportunity to develop climate-smart drought-tolerant next-generation maize cultivars. In recent decades, significant progress has been made in maize to understand the drought tolerance mechanism. However, improving maize drought tolerance through breeding is ineffective due to the complex nature and multigenic control of drought traits. With the help of advanced breeding techniques, molecular genetics, and a precision genome editing approach like CRISPR-Cas, candidate genes for drought-tolerant maize can be identified and targeted. This review summarizes the effects of drought stress on each growth stage of maize, potential genes, and transcription factors that determine drought tolerance. In addition, we discussed drought stress sensing, its molecular mechanisms, different approaches to developing drought-resistant maize varieties, and how molecular breeding and genome editing will help with the current unpredictable climate change.


Droughts , Zea mays , Zea mays/genetics , Plant Breeding , Drought Resistance , Crops, Agricultural/genetics , Perception
12.
Front Plant Sci ; 14: 1147200, 2023.
Article En | MEDLINE | ID: mdl-37546261

Wheat crop is subjected to various biotic and abiotic stresses, which affect crop productivity and yield. Among various abiotic stresses, drought stress is a major problem considering the current global climate change scenario. A high-yielding wheat variety, HD3086, has been released for commercial cultivation under timely sown irrigated conditions for the North Western Plain Zone (NWPZ) and North Eastern Plain Zone NEPZ of India. Presently, HD3086 is one of the highest breeder seed indented wheat varieties and has a stable yield over the years. However, under moisture deficit conditions, its potential yield cannot be achieved. The present study was undertaken to transfer drought-tolerant QTLs in the background of the variety HD3086 using marker-assisted backcross breeding. QTLs governing Biomass (BIO), Canopy Temperature (CT), Thousand Kernel Weight (TKW), Normalized Difference Vegetation Index (NDVI), and Yield (YLD) were transferred to improve performance under moisture deficit conditions. In BC1F1, BC2F1, and BC2F2 generations, the foreground selection was carried out to identify the plants with positive QTLs conferring drought tolerance and linked to traits NDVI, CT, TKW, and yield. The positive homozygous lines for targeted QTLs were advanced from BC2F2 to BC2F4 via the pedigree-based phenotypic selection method. Background analysis was carried out in BC2F5 and obtained 78-91% recovery of the recurrent parent genome in the improved lines. Furthermore, the advanced lines were evaluated for 2 years under drought stress to assess improvement in MABB-derived lines. Increased GWPS, TKW, and NDVI and reduced CT was observed in improved lines. Seven improved lines were identified with significantly higher yields in comparison to HD3086 under stress conditions.

13.
Int J Pharm ; 643: 123209, 2023 Aug 25.
Article En | MEDLINE | ID: mdl-37422142

The most prevalent clinical option for treating cancer is combination chemotherapy. In combination therapy, assessment and optimization for obtaining a synergistic ratio could be obtained by various preclinical setups. Currently, in vitro optimization is used to get synergistic cytotoxicity while constructing combinations. Herein, we co-encapsulated Paclitaxel (PTX) and Baicalein (BCLN) with TPP-TPGS1000 containing nanoemulsion (TPP-TPGS1000-PTX-BCLN-NE) for breast cancer treatment. The assessment of cytotoxicity of PTX and BCLN at different molar weight ratios provided an optimized synergistic ratio (1:5). Quality by Design (QbD) approach was later applied for the optimization as well as characterization of nanoformulation for its droplet size, zeta potential and drug content. TPP-TPGS1000-PTX-BCLN-NE significantly enhanced cellular ROS, cell cycle arrest, and depolarization of mitochondrial membrane potential in the 4T1 breast cancer cell line compared to other treatments. In the syngeneic 4T1 BALB/c tumor model, TPP-TPGS1000-PTX-BCLN-NE outperformed other nanoformulation treatments. The pharmacokinetic, biodistribution and live imaging studies pivoted TPP-TPGS1000-PTX-BCLN-NE enhanced bioavailability and PTX accumulation at tumor site. Later, histology studies confirmed nanoemulsion non-toxicity, expressing new opportunities and potential to treat breast cancer. These results suggested that current nanoformulation can be a potential therapeutic approach to effectively address breast cancer therapy.


Breast Neoplasms , Nanoparticles , Humans , Animals , Mice , Female , Paclitaxel , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Tissue Distribution , Cell Line, Tumor , Mice, Inbred BALB C
14.
Article En | MEDLINE | ID: mdl-37464823

BACKGROUND: Several studies have been conducted on 4-H chromene compounds because of their intriguing pharmacological and biological properties. Various new natural compounds having a chromene foundation have been reported over the past 20 years. OBJECTIVE: In the present study, we reported the acute oral toxicity, antioxidant activity, and molecular docking study of the most active 4H-chromene derivative2-(4-Bromo-phenoxy)-N-[6-chloro-4-(4-chlorophenyl)-3-cyano-4H-chromen-2-yl]-acetamide (A9). METHOD: The acute oral toxicity was carried out as per OECD 423 guidelines. For investigating the antioxidant activity, various biochemical parameters in colon tissue like SOD, CAT, MDA, PC and GSH and also enzyme levels, such as ALT, AST, ALP, and LDH, were measured in this experiment. RESULTS: Acute oral toxicity study indicated that the A9 ligand was found to be safer in animals. Additionally, the A9 ligand had significant antioxidant properties at various doses and was not found to be harmful to the liver. Due to its stronger binding energy and the appropriate interactions that induce inhibition, the A9 ligand's antioxidant function was also validated by additional molecular docking research. CONCLUSION: This compound can be exploited as a lead molecule in further research.

15.
Environ Res ; 233: 116439, 2023 09 15.
Article En | MEDLINE | ID: mdl-37331551

Tetracycline (TC) antibiotic that is effective against wide-range micro-organisms, thereby used to control bacterial infection. The partial metabolism of TC antibiotics in humans and animals leads to the contamination of TC in the environments like water bodies. Thus, requirements to treat/remove/degrade TC antibiotics from the water bodies to control environmental pollution. In this context, this study focuses on fabricating PVP-MXene-PET (PMP) based photo-responsive materials to degrade TC antibiotics from the water. Initially, MXene (Ti2CTx) was synthesized using a simple etching process from the MAX phase (Ti3AlC2). The synthesized MXene was encapsulated using PVP and cast onto the surface of PET to fabricate PMP-based photo-responsive materials. The rough surface and micron/nano-sized pores within the PMP-based photo-responsive materials might be improved the photo-degradation of TC antibiotics. The synthesized PMP-based photo-responsive materials were tested against the photo-degradation of TC antibiotics. The band gap value of the MXene and PMP-based photo-responsive materials was calculated to be ∼1.23 and 1.67 eV. Incorporating PVP within the MXene increased the band gap value, which might be beneficial for the photo-degradation of TC, as the minimum band gap value should be ∼1.23 eV or more for photocatalytic application. The highest photo-degradation of ∼83% was achieved using PMP-based photo-degradation at 0.1 mg/L of TC. Furthermore, ∼99.71% of photo-degradation of TC antibiotics was accomplished at pH ∼10. Therefore, the fabricated PMP-based photo-responsive materials might be next-generation devices/materials that efficiently degrade TC antibiotics from the water.


Anti-Bacterial Agents , Tetracycline , Humans , Catalysis , Tetracycline/chemistry , Anti-Bacterial Agents/chemistry , Water , Positron-Emission Tomography
16.
Bioanalysis ; 15(11): 601-620, 2023 Jun.
Article En | MEDLINE | ID: mdl-37254752

Aim: A reliable, sensitive, HPLC method was developed and validated to simultaneously quantify raloxifene (RLX) and cladrin (CLD). Method: The C18 column was used to analyze RLX and CLD at λmax 285 and 249 nm. The mobile phase was composed of acetonitrile and 35:65% v/v aqueous solution of 0.1% formic acid. Results: The method was linear over the linearity range of 0.078-20 µg/ml, and the limit of detection and limit of quantification for RLX and CLD were 0.191 and 0.228 and 0.581 and 0.69 µg/ml, respectively. Conclusion: In accordance with the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guidelines, the developed method is precise and accurate for simultaneous estimation of RLX and CLD with applications in in vitro liver microsomal stability in mice, rabbits, dogs, monkeys and humans.


Isoflavones , Raloxifene Hydrochloride , Mice , Humans , Animals , Dogs , Rabbits , Chromatography, High Pressure Liquid/methods
17.
Funct Integr Genomics ; 23(2): 169, 2023 May 20.
Article En | MEDLINE | ID: mdl-37209309

Stripe rust (Sr), caused by Puccinia striiformis f. sp. tritici (Pst), is the most devastating disease that poses serious threat to the wheat-growing nations across the globe. Developing resistant cultivars is the most challenging aspect in wheat breeding. The function of resistance genes (R genes) and the mechanisms by which they influence plant-host interactions are poorly understood. In the present investigation, comparative transcriptome analysis was carried out by involving two near-isogenic lines (NILs) PBW343 and FLW29. The seedlings of both the genotypes were inoculated with Pst pathotype 46S119. In total, 1106 differentially expressed genes (DEGs) were identified at early stage of infection (12 hpi), whereas expressions of 877 and 1737 DEGs were observed at later stages (48 and 72 hpi) in FLW29. The identified DEGs were comprised of defense-related genes including putative R genes, 7 WRKY transcriptional factors, calcium, and hormonal signaling associated genes. Moreover, pathways involved in signaling of receptor kinases, G protein, and light showed higher expression in resistant cultivar and were common across different time points. Quantitative real-time PCR was used to further confirm the transcriptional expression of eight critical genes involved in plant defense mechanism against stripe rust. The information about genes are likely to improve our knowledge of the genetic mechanism that controls the stripe rust resistance in wheat, and data on resistance response-linked genes and pathways will be a significant resource for future research.


Basidiomycota , Triticum , Triticum/genetics , Plant Breeding , Basidiomycota/genetics , Genotype , Gene Expression Profiling , Plant Diseases/genetics , Disease Resistance/genetics
18.
Nanomedicine (Lond) ; 18(4): 343-366, 2023 02.
Article En | MEDLINE | ID: mdl-37140535

Background: The present research was designed to develop a nanoemulsion (NE) of triphenylphosphine-D-α-tocopheryl-polyethylene glycol succinate (TPP-TPGS1000) and paclitaxel (PTX) to effectively deliver PTX to improve breast cancer therapy. Materials & methods: A quality-by-design approach was applied for optimization and in vitro and in vivo characterization were performed. Results: The TPP-TPGS1000-PTX-NE enhanced cellular uptake, mitochondrial membrane depolarization and G2M cell cycle arrest compared with free-PTX treatment. In addition, pharmacokinetics, biodistribution and in vivo live imaging studies in tumor-bearing mice showed that TPP-TPGS1000-PTX-NE had superior performance compared with free-PTX treatment. Histological and survival investigations ascertained the nontoxicity of the nanoformulation, suggesting new opportunities and potential to treat breast cancer. Conclusion: TPP-TPGS1000-PTX-NE improved the efficacy of breast cancer treatment by enhancing its effectiveness and decreasing drug toxicity.


Paclitaxel , Vitamin E , Mice , Animals , Paclitaxel/pharmacology , Tissue Distribution , Vitamin E/pharmacology , Apoptosis , Cell Line, Tumor , Polyethylene Glycols/pharmacology
19.
Antibiotics (Basel) ; 12(2)2023 Feb 16.
Article En | MEDLINE | ID: mdl-36830308

Bacterial contamination in water bodies is a severe scourge that affects human health and causes mortality and morbidity. Researchers continue to develop next-generation materials for controlling bacterial infections from water. Photo-antibacterial activity continues to gain the interest of researchers due to its adequate, rapid, and antibiotic-free process. Photo-antibacterial materials do not have any side effects and have a minimal chance of developing bacterial resistance due to their rapid efficacy. Photocatalytic two-dimensional nanomaterials (2D-NMs) have great potential for the control of bacterial infection due to their exceptional properties, such as high surface area, tunable band gap, specific structure, and tunable surface functional groups. Moreover, the optical and electric properties of 2D-NMs might be tuned by creating heterojunctions or by the doping of metals/carbon/polymers, subsequently enhancing their photo-antibacterial ability. This review article focuses on the synthesis of 2D-NM-based hybrid materials, the effect of dopants in 2D-NMs, and their photo-antibacterial application. We also discuss how we could improve photo-antibacterials by using different strategies and the role of artificial intelligence (AI) in the photocatalyst and in the degradation of pollutants. Finally, we discuss was of improving the photo-antibacterial activity of 2D-NMs, the toxicity mechanism, and their challenges.

20.
Front Nutr ; 10: 1105207, 2023.
Article En | MEDLINE | ID: mdl-36845058

Biofortification is gaining importance globally to improve human nutrition through enhancing the micronutrient content, such as vitamin A, iron, and zinc, in staple food crops. The present study aims to identify the chromosomal regions governing the grain iron concentration (GFeC), grain zinc concentration (GZnC), and thousand kernel weight (TKW) using recombinant inbred lines (RILs) in wheat, developed from a cross between HD3086 and HI1500. The experiment was conducted in four different production conditions at Delhi viz., control, drought, heat, and combined heat and drought stress and at Indore under drought stress. Grain iron and zinc content increased under heat and combined stress conditions, while thousand kernel weight decreased. Medium to high heritability with a moderate correlation between grain iron and zinc was observed. Out of 4,106 polymorphic markers between the parents, 3,407 SNP markers were used for linkage map construction which spanned over a length of 14791.18 cm. QTL analysis identified a total of 32 chromosomal regions governing the traits under study, which includes 9, 11, and 12 QTLs for GFeC, GZnC, and TKW, respectively. A QTL hotspot was identified on chromosome 4B which is associated with grain iron, grain zinc, and thousand kernel weight explaining the phenotypic variance of 29.28, 10.98, and 17.53%, respectively. Similarly, common loci were identified on chromosomes 4B and 4D for grain iron, zinc, and thousand kernel weight. In silico analysis of these chromosomal regions identified putative candidate genes that code for proteins such as Inositol 1,3,4-trisphosphate 5/6-kinase, P-loop containing nucleoside triphosphate hydrolase, Pleckstrin homology (PH) domains, Serine-threonine/tyrosine-protein kinase and F-box-like domain superfamily proteins which play role in many important biochemical or physiological process. The identified markers linked to QTLs can be used in MAS once successfully validated.

...