Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.849
Filter
1.
Neural Regen Res ; 20(5): 1431-1444, 2025 May 01.
Article in English | MEDLINE | ID: mdl-39075910

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202505000-00026/figure1/v/2024-07-28T173839Z/r/image-tiff Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration, however, few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse function. We have previously shown that MET receptor tyrosine kinase in the developing cortical circuits promotes dendritic growth and dendritic spine morphogenesis. To investigate whether enhancing MET in adult cortex has synapse regenerating potential, we created a knockin mouse line, in which the human MET gene expression and signaling can be turned on in adult (10-12 months) cortical neurons through doxycycline-containing chow. We found that similar to the developing brain, turning on MET signaling in the adult cortex activates small GTPases and increases spine density in prefrontal projection neurons. These findings are further corroborated by increased synaptic activity and transient generation of immature silent synapses. Prolonged MET signaling resulted in an increased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-D-aspartate (AMPA/NMDA) receptor current ratio, indicative of enhanced synaptic function and connectivity. Our data reveal that enhancing MET signaling could be an interventional approach to promote synaptogenesis and preserve functional connectivity in the adult brain. These findings may have implications for regenerative therapy in aging and neurodegeneration conditions.

2.
Eur J Cardiothorac Surg ; 66(3)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39298445

ABSTRACT

OBJECTIVES: Despite excellent 5-year survival, there are limited data on the long-term prognostic characteristics of clinical stage IA part-solid lung adenocarcinoma. The objective was to elucidate the dynamics of prognostic characteristics through conditional survival analysis. METHODS: Consecutive patients who underwent complete resection for clinical stage IA part-solid lung adenocarcinoma between 2011 and 2015 were retrospectively reviewed. Conditional survival is defined as the probability of surviving further y years, conditional on the patient has already survived x years. The conditional recurrence-free survival (CRFS) and conditional overall survival (COS) were analysed to evaluate prognosis over time, with conditional Cox regression analysis performed to identify time-dependent prognostic factors. RESULTS: A total of 1539 patients were included with a median follow-up duration of 98.4 months, and 80 (5.2%) patients experienced recurrence. Among them, 20 (1.3%) recurrence cases occurred after 5 years of follow-up with 100% intrathoracic recurrence. The 5-year CRFS increased from 95.8% to 97.4%, while the 5-year COS maintained stable. Multivariable Cox analysis revealed that histologic subtype was always an independent prognostic factor for CRFS even after 5 years of follow-up, while the independent prognostic value of consolidation-to-tumour ratio, visceral pleural invasion and lymph node metastasis was observed only within 5 years. Besides, age, pathologic size and lymph node metastasis maintained independent predictive value for COS during long-term follow-up, while consolidation-to-tumour ratio was predictive for COS only within 5 years of follow-up. CONCLUSIONS: The independent prognostic factors for clinical stage IA part-solid lung adenocarcinoma changed over time, along with gradually increasing 5-year CRFS and stable 5-year COS.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Neoplasm Staging , Humans , Male , Female , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Adenocarcinoma of Lung/mortality , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/surgery , Retrospective Studies , Middle Aged , Prognosis , Aged , Survival Analysis , Neoplasm Recurrence, Local/epidemiology , Adult , Pneumonectomy , Follow-Up Studies
3.
Environ Pollut ; : 125040, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39343351

ABSTRACT

The widespread utilization of antibiotics in livestock has promoted the accumulation and diffusion of antibiotics and antibiotic resistance in agricultural soils and crops. Here we investigated the mechanisms of antibiotic uptake and accumulation in swine wastewater (SW)-treated radish (Raphanus sativus L.) and subsequent impacts on endophyte antibiotic resistance. Under SW treatments, exposure to 500 µg/L sulfamethazine (SMZ) and enrofloxacin (EFX) significantly affected radish biomass, with SMZ causing 63.0% increases and EFX causing 36.3% decreases relative to the untreated control. EFX uptake by radish were from 5 to 100-folds over SMZ. Passive diffusion through anion channel proteins on cell membranes was an important route for SMZ uptake, while both passive diffusion and energy-dependent processes contributed to the uptake of EFX. Bacterial community was time-dependent as a function of both antibiotics and SW, the bacterial alpha diversity in liquid solution co-treated with antibiotics and SW increased over time. The abundance of antibiotic resistance genes (ARGs) in the roots was positively correlated with ARGs in the Hoagland's solution under antibiotic-alone treatments. EFX co-exposure with SW enhanced the dissemination of ARGs from swine wastewater into plant roots, and significant correlations existed between ARGs and integrons in both Hoagland's solution and roots. These findings increased our understanding of the fate of antibiotics in crops and their subsequent impacts on antibiotic resistance of endophytic bacteria.

4.
Nat Commun ; 15(1): 8365, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333097

ABSTRACT

Developing highly active and durable air cathode catalysts is crucial yet challenging for rechargeable zinc-air batteries. Herein, a size-adjustable, flexible, and self-standing carbon membrane catalyst encapsulating adjacent Cu/Na dual-atom sites is prepared using a solution blow spinning technique combined with a pyrolysis strategy. The intrinsic activity of the Cu-N4 site is boosted by the neighboring Na-containing functional group, which enhances O2 adsorption and optimizes the rate-determining step of O2 activation (*O2 → *OOH) during the oxygen reduction reaction process. Meanwhile, the Cu-N4 sites are encapsulated within carbon nanofibers and anchored by the carbon matrix to form a C2-Cu-N4 configuration, thereby reinforcing the stability of the Cu centers. Moreover, the introduction of Na-containing functional groups on the carbon atoms significantly reduces the positive charge on their outer shell C atoms, rendering the carbon skeletons less susceptible to corrosion by oxygen species and further preventing the dissolution of Cu centers. Under these multi-type regulations, the zinc-air battery with Cu/Na-carbon membrane catalyst as the air cathode demonstrates long-term discharge/charge cycle stability of over 5000 h. This considerable stability improvement represents a critical step towards developing Cu-N4 active sites modified with the neighboring main-group metal-containing functional groups to overcome the durability barriers of zinc-air batteries for future practical applications.

5.
Environ Int ; 191: 108995, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39241331

ABSTRACT

Traditional methods for identifying endocrine-disrupting chemicals (EDCs) that activate androgen receptors (AR) are costly, time-consuming, and low-throughput. This study developed a knowledge-based deep neural network model (AR-DNN) to predict AR-mediated adverse outcomes on female zebrafish fertility. This model started with chemical fingerprints as the input layer and was implemented through a five-layer virtual AR-induced adverse outcome pathway (AOP). Results indicated that the AR-DNN effectively and accurately screens new reproductive toxicants (AUC = 0.94, accuracy = 0.85), providing potential toxicity pathways. Furthermore, 1477 and 2448 chemicals that could lead to infertility were identified in the plastic additives list (PLASTICMAP, n = 7112) and the Inventory of Existing Chemical Substances in China (IECSC, n = 17741), respectively. Colourants containing steroid-like structures are the major active plastic additives that might lower female zebrafish fertility through AR binding, DNA binding, and transcriptional activation. While active IECSC chemicals primarily have the same fragments, such as benzonitrile, nitrobenzene, and quinolone. The predicted toxicity pathways were consistent with existing fish evidence, demonstrating the model's applicability. This knowledge-based approach offers a promising computational toxicology strategy for predicting and characterising the endocrine-disrupting effects and toxic mechanisms of organic chemicals, potentially leading to more efficient and cost-effective screening of EDCs.


Subject(s)
Endocrine Disruptors , Machine Learning , Receptors, Androgen , Zebrafish , Animals , Receptors, Androgen/metabolism , Endocrine Disruptors/toxicity , Female , Reproduction/drug effects , Water Pollutants, Chemical/toxicity
7.
Alzheimers Dement ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39324544

ABSTRACT

INTRODUCTION: The multifactorial influence of repetitive transcranial magnetic stimulation (rTMS) on neuroplasticity in neural networks is associated with improvements in cognitive dysfunction and sleep disorders. The mechanisms of rTMS and the transcriptional-neuronal correlation in Alzheimer's disease (AD) patients with sleep disorders have not been fully elucidated. METHODS: Forty-six elderly participants with cognitive impairment (23 patients with low sleep quality and 23 patients with high sleep quality) underwent 4-week periods of neuronavigated rTMS of the angular gyrus and neuroimaging tests, and gene expression data for six post mortem brains were collected from another database. Transcription-neuroimaging association analysis was used to evaluate the effects on cognitive dysfunction and the underlying biological mechanisms involved. RESULTS: Distinct variable neuroplasticity in the anterior and posterior angular gyrus networks was detected in the low sleep quality group. These interactions were associated with multiple gene pathways, and the comprehensive effects were associated with improvements in episodic memory. DISCUSSION: Multitrajectory neuroplasticity is associated with complex biological mechanisms in AD-spectrum patients with sleep disorders. HIGHLIGHTS: This was the first transcription-neuroimaging study to demonstrate that multitrajectory neuroplasticity in neural circuits was induced via neuronavigated rTMS, which was associated with complex gene expression in AD-spectrum patients with sleep disorders. The interactions between sleep quality and neuronavigated rTMS were coupled with multiple gene pathways and improvements in episodic memory. The present strategy for integrating neuroimaging, rTMS intervention, and genetic data provide a new approach to comprehending the biological mechanisms involved in AD.

8.
J Nurs Res ; 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39324988

ABSTRACT

BACKGROUND: The provision of consistent, high-quality dementia care training for healthcare professionals in acute care hospital settings has been largely overlooked until recent years. PURPOSE: This study was designed to investigate the effect of current healthcare professional dementia care training courses on related knowledge, attitudes, and self-efficacy in hospital nurses and to understand their training-related experiences, willingness, and perceived barriers. METHODS: Using a cross-sectional design, 201 nurses were recruited from a teaching medical center in Taiwan. A questionnaire was developed by the researchers to evaluate knowledge, attitudes, and self-efficacy related to caring for people with dementia and to elucidate participant experiences and preferences regarding dementia care training courses. Five academic and clinical dementia care experts held three content validity evaluation rounds for the developed questionnaire. Inferential statistics were used to compare the knowledge, attitudes, and self-efficacy related to caring for people with dementia between participants who had and had not attended a dementia care training course. RESULTS: Nearly all (96.5%) of the participants had prior experience caring for people with dementia, but only 25.9% and 7.0% respectively reported haven taken basic and advanced healthcare professional dementia care training courses. Those who had taken either the basic or advanced course earned higher mean knowledge scores than those who had taken neither (p = .009 and p = .027, respectively). Time constraints and scheduling conflicts were identified as the major barriers to attending dementia care training (n = 164, 81.6%). CONCLUSIONS/IMPLICATIONS FOR PRACTICE: The participants who had attended either the basic or advanced healthcare professional dementia care training course were found to have better dementia care knowledge than those who had not. Stakeholders should work to further reduce the barriers faced by nurses to attending essential dementia care training.

9.
Phytomedicine ; 135: 156066, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39341130

ABSTRACT

BACKGROUND: Imperatorin is a naturally occurring furocoumarin derivative found in traditional Chinese medicine Angelica dahurica for its anticancer, antihypertensive, and antidiabetic properties. Chronic kidney disease (CKD) is a global health issue, characterized by a high prevalence, significant morbidity and mortality, and a range of related complications. OBJECTIVE: This study aims to investigate the protective effects of imperatorin treatment and the specific underlying mechanisms in progressive CKD. METHODS: Imperatorin was orally administrated for 14 consecutive days to mice with unilateral ureteral obstruction (UUO) to investigate the renal pathological alternations, pro-inflammatory mediators, antioxidant response, and ferroptotic death signaling. Imperatorin was also tested in the erastin-induced injury of renal proximal tubular cells (NRK-52E). Cell viability, ferroptosis protein markers, erastin-induced oxidative stress, and lipid peroxidation were assessed. RESULTS: In vivo, imperatorin treatment alleviated kidney histology alternations and attenuated the protein expression of fibrotic markers. Furthermore, imperatorin administration reduced inflammatory cell infiltration, and alleviated the oxidative stress burden by downregulating protein markers such as catalase, superoxide dismutase 2 (SOD-2), NADPH oxidase 4 (NOX-4), and thioredoxin reductase 1 (Trxr-1). It also mitigated ferroptosis markers such as glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11/cystine transporter (SLC7A11/xCT), and transferrin receptor 1 (TFR-1), and attenuated renal cell apoptosis. In vitro, imperatorin treatment effectively decreased erastin-induced feroptotic cell death, restored the antioxidant enzyme levels, and mitigated lipid peroxidation as well as the expression of ferroptosis-related markers (XCT, GPX4, and p-p53) in a dose-dependent manner. CONCLUSION: Our finding demonstrated for the first time, that imperatorin treatment holds therapeutic potential in a UUO mouse model of CKD and inhibits the erastin-induced oxidative stress, ferroptosis, and subsequent lipid peroxidation in vitro. This highlights the potential of imperatorin as a future therapeutic target for ferroptosis to improve the progression of CKD.

10.
World J Surg Oncol ; 22(1): 251, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39289693

ABSTRACT

BACKGROUND: Endometrial cancer (EC) tissues express CYP7B1, but its association with prognosis needs to be investigated. METHODS: Immunohistochemistry and image analysis software were used to assess CYP7B1 protein expression in paraffin-embedded endometrial tumor sections. Associations between CYP7B1 and clinical factors were tested with the Wilcoxon rank-sum test. Kaplan-Meier curves were employed to describe survival, and differences were assessed using the log-rank test. Cox regression analysis was used to assess the association between CYP7B1 expression and the prognosis of patients with EC. RESULTS: A total of 307 patients were enrolled with an average age of 52.6 ± 8.0 years at diagnosis. During the period of follow-up, 46 patients (15.0%) died, and 29 (9.4%) suffered recurrence. The expression of CYP7B1 protein is significantly higher in the cytoplasm than in the nucleus (P < 0.001). Patients aged < 55 years (P = 0.040), ER-positive patients (P = 0.028) and PR-positive patients (P < 0.001) report higher levels of CYP7B1 protein. Both univariate (HR = 0.41, 95% CI: 0.18-0.90, P = 0.025) and multivariate (HR = 0.35, 95%CI:0.16-0.79, P = 0.011) Cox regression analyses demonstrate that high CYP7B1 protein expression predicts longer overall survival (OS). When considering only ER-positive patients (n = 265), CYP7B1 protein expression is more strongly associated with OS (HR = 0.20,95%CI:0.08-0.52, P = 0.001). The 3-year OS and 5-year OS in the low-CYP7B1 subgroup are 81.6% and 76.8%, respectively; while in the high-CYP7B1 subgroup are 93.0% and 92.0%, respectively (P = 0.021). CONCLUSIONS: High CYP7B1 protein expression predicted longer OS, suggesting that it may serve as an important molecular marker for EC prognosis.


Subject(s)
Biomarkers, Tumor , Cytochrome P450 Family 7 , Endometrial Neoplasms , Humans , Female , Endometrial Neoplasms/pathology , Endometrial Neoplasms/metabolism , Endometrial Neoplasms/mortality , Middle Aged , Prognosis , Retrospective Studies , Biomarkers, Tumor/metabolism , Follow-Up Studies , Survival Rate , Cytochrome P450 Family 7/metabolism , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Adult , Neoplasm Staging , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Aged , Steroid Hydroxylases
11.
Front Plant Sci ; 15: 1467015, 2024.
Article in English | MEDLINE | ID: mdl-39301166

ABSTRACT

Essential mineral elements such as zinc and iron play a crucial role in maintaining crop growth and development, as well as ensuring human health. Foxtail millet is an ancient food crop rich in mineral elements and constitutes an important dietary supplement for nutrient-deficient populations. The ZIP (ZRT, IRT-like protein) transporters are primarily responsible for the absorption, transportation and accumulation of Zn, Fe and other metal ions in plants. Here, we identified 14 ZIP transporters in foxtail millet (SiZIP) and systematically characterized their phylogenetic relationships, expression characteristics, sequence variations, and responses to various abiotic stresses. As a result, SiZIPs display rich spatiotemporal expression characteristics in foxtail millet. Multiple SiZIPs demonstrated significant responses to Fe, Cd, Na, and K metal ions, as well as drought and cold stresses. Based on homologous comparisons, expression characteristics and previous studies, the functions of SiZIPs were predicted as being classified into several categories: absorption/efflux, transport/distribution and accumulation of metal ions. Simultaneously, a schematic diagram of SiZIP was drawn. In general, SiZIPs have diverse functions and extensively involve in the transport of metal ions and osmotic regulation under abiotic stresses. This work provides a fundamental framework for the transport and accumulation of mineral elements and will facilitate the quality improvement of foxtail millet.

12.
J Am Chem Soc ; 146(38): 26442-26453, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39267445

ABSTRACT

Iron-nitrogen-carbon (Fe-N-C) materials have been identified as a promising class of platinum (Pt)-free catalysts for the oxygen reduction reaction (ORR). However, the dissolution and oxidation of Fe atoms severely restrict their long-term stability and performance. Modulating the active microstructure of Fe-N-C is a feasible strategy to enhance the ORR activity and stability. Compared with common 3d transition metals (Co, Ni, etc.), the 4d transition metal atom Nb has fewer d electrons and more unoccupied orbitals, which could potentially forge a more robust interaction with the Fe site to optimize the binding energy of the oxygen-containing intermediates while maintaining stability. Herein, an asymmetric Fe-Nb diatomic site catalyst (FeNb/c-SNC) was synthesized, which exhibited superior ORR performance and stability compared with those of Fe single-atom catalysts (SACs). The strong interaction within the Fe-Nb diatomic sites optimized the desorption energy of key intermediates (*OH), so that the adsorption energy of Fe-*OH approaches the apex of the volcano plot, thus exhibiting optimal ORR activity. More importantly, introducing Nb atoms could effectively strengthen the Fe-N bonding and suppress Fe demetalation, causing an outstanding stability. The zinc-air battery (ZAB) and hydroxide exchange membrane fuel cell (HEMFC) equipped with our FeNb/c-SNC could deliver high peak power densities of 314 mW cm-2 and 1.18 W cm-2, respectively. Notably, the stable operation time for ZAB and HEMFC increased by 9.1 and 5.8 times compared to Fe SACs, respectively. This research offers further insights into developing stable Fe-based atomic-level catalytic materials for the energy conversion process.

13.
J Imaging Inform Med ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39299956

ABSTRACT

To compare the image quality and fat attenuation index (FAI) of coronary artery CT angiography (CCTA) under different tube voltages between deep learning image reconstruction (DLIR) and adaptive statistical iterative reconstruction V (ASIR-V). Three hundred one patients who underwent CCTA with automatic tube current modulation were prospectively enrolled and divided into two groups: 120 kV group and low tube voltage group. Images were reconstructed using ASIR-V level 50% (ASIR-V50%) and high-strength DLIR (DLIR-H). In the low tube voltage group, the voltage was selected according to Chinese BMI classification: 70 kV (BMI < 24 kg/m2), 80 kV (24 kg/m2 ≤ BMI < 28 kg/m2), 100 kV (BMI ≥ 28 kg/m2). At the same tube voltage, the subjective and objective image quality, edge rise distance (ERD), and FAI between different algorithms were compared. Under different tube voltages, we used DLIR-H to compare the differences between subjective, objective image quality, and ERD. Compared with the 120 kV group, the DLIR-H image noise of 70 kV, 80 kV, and 100 kV groups increased by 36%, 25%, and 12%, respectively (all P < 0.001); contrast-to-noise ratio (CNR), subjective score, and ERD were similar (all P > 0.05). In the 70 kV, 80 kV, 100 kV, and 120 kV groups, compared with ASIR-V50%, DLIR-H image noise decreased by 50%, 53%, 47%, and 38-50%, respectively; CNR, subjective score, and FAI value increased significantly (all P < 0.001), ERD decreased. Compared with 120 kV tube voltage, the combination of DLIR-H and low tube voltage maintains image quality. At the same tube voltage, compared with ASIR-V, DLIR-H improves image quality and FAI value.

14.
Chin J Dent Res ; 27(3): 215-224, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39221982

ABSTRACT

OBJECTIVE: To investigate whether bone marrow mesenchymal stem cells (BMMSCs) modulate periodontal bone repair through the hydroxylase domain-containing protein 2 (PHD2)/hypoxia- inducible factor-1 (HIF-1) signalling pathway in response to inflammatory conditions. METHODS: Osteogenic differentiation of PHD2 shRNA-modified BMMSCs and the possible mechanism were explored in an inflammatory microenvironment stimulated by porphyromonas gingivalis lipopolysaccharide (Pg-LPS) in vitro. The effect of PHD2 gene-modified BMMSCs on periodontal bone loss was evaluated with experimental periodontitis. RESULTS: Pg-LPS stimulation greatly impaired the osteogenic differentiation of BMMSCs, whereas the silence of PHD2 significantly enhanced the osteogenesis of BMMSCs. More importantly, increased level of vascular endothelial growth factor (VEGF) was detected under Pg-LPS stimulation, which was verified to be associated with the augmented osteogenesis. In experimental periodontitis, PHD2-modified BMMSCs transplantation elevated osteogenic parameters and the expression of VEGF in periodontal tissue. CONCLUSION: This study highlighted that PHD2 gene silencing could be a feasible approach to combat inflammatory bone loss by rescuing the dysfunction of seed cells.


Subject(s)
Hypoxia-Inducible Factor-Proline Dioxygenases , Mesenchymal Stem Cells , Osteogenesis , RNA, Small Interfering , Animals , RNA, Small Interfering/genetics , Osteogenesis/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Porphyromonas gingivalis , Periodontitis/therapy , Periodontitis/genetics , Vascular Endothelial Growth Factor A/metabolism , Mesenchymal Stem Cell Transplantation/methods , Cell Differentiation , Lipopolysaccharides , Alveolar Bone Loss , Mice , Male , Bone Marrow Cells , Bone Regeneration/genetics
15.
Compr Rev Food Sci Food Saf ; 23(5): e13430, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39217522

ABSTRACT

Pulsed vacuum drying (PVD) is a novel vacuum drying method that has demonstrated significant potential in improving energy efficiency and product quality in the drying of foods and agricultural products. The current work provides a comprehensive analysis of the latest advancements in PVD technology, including its historical development, fundamental principles, and mechanistic aspects. The impact of periodic pulsed pressure changes between vacuum and atmospheric pressure on heat and moisture transfer, as well as structural changes in foods at micro- and macro-scales, is thoroughly discussed. The article also highlights the influential drying parameters, the integration of novel auxiliary heaters, and the applications of PVD across various fruits, vegetables, and herbs. Furthermore, the review examines the current status and needs for mathematical modeling of PVD processes, identifying key challenges, research opportunities, and future trends for industrial application. The findings suggest that PVD not only enhances drying efficiency and reduces energy consumption but also preserves the nutritional value, color, and texture of dried products better than traditional methods. Future research should focus on optimizing process parameters and integrating advanced control systems to further improve the scalability and applicability of PVD technology in the food industry.


Subject(s)
Desiccation , Fruit , Vegetables , Vegetables/chemistry , Vacuum , Fruit/chemistry , Desiccation/methods , Food Preservation/methods , Food Handling/methods
16.
Heliyon ; 10(16): e36279, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39247320

ABSTRACT

Background: Breast cancer stands as a globally significant contributor to both incidence rates and mortality among women. Approximately 10-15 % of women will face a diagnosis of an advanced yet potentially treatable stage of the disease. When individuals diagnosed with locally advanced breast cancer (LABC) exhibit resistance to preoperative chemotherapy and experience tumor progression, they unfortunately forfeit the opportunity for surgical intervention, thereby diminishing the prospects for a radical cure. Method: We conducted a prospective, single-arm cohort study aimed at evaluating the feasibility of locally modified radical resection for LABC with skin invasion. The primary endpoints encompassed overall survival (OS) and disease-free survival (DFS), whereas the secondary endpoint focused on the quality of life (QoL) among breast cancer patients. Results: Between March 2018 and December 2022, a total of 38 eligible patients were enrolled in this study. The Kaplan-Meier estimates for 1-year, 3-year, and 5-year DFS among all patients were 69.8 %, 53.3 %, and 37.5 %, respectively. Correspondingly, the OS rates were 100.0 %, 85.6 %, and 68.0 %. Both univariate and multivariate analyses revealed that patients with a history of neoadjuvant chemotherapy who exhibited stable or progressive disease had inferior DFS outcomes. Notably, patients demonstrated clinically meaningful and statistically significant enhancements in functional status and overall QoL. However, no notable improvement was observed in specific symptom domains. Conclusion: Patients with locally advanced breast cancer, specifically those presenting with T4 tumors, who undergo surgical intervention followed by postoperative adjuvant therapy, can attain favorable prognostic outcomes and experience an enhanced quality of life.

17.
FASEB J ; 38(17): e70010, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39230621

ABSTRACT

Traditional Chinese medical literature contains numerous records of many traditional Chinese herbal medicines that exhibit efficacy in enhancing resistance to cold, yet there is a lack of scientific explanation. Lycium barbarum is among the herbal medicines that are explicitly documented to enhance resistance to cold in the "Ben Cao Gang Mu (Compendium of Materia Medica)". Herein, we investigated L. barbarum polysaccharide (LBP)-induced browning of inguinal white adipose tissue (iWAT), energy expenditure and thermogenic function in a long-term (4 months) treatment mouse model. LBP supplementation resulted in a significant reduction in weight and adipocyte size in iWAT, along with increased gut microbiota diversity. Specifically, the levels of Lachnospiraceae, Ruminococcaceae and Bacteroidaceae (short-chain fatty acid-producing bacteria) were elevated, leading to a higher level of short-chain fatty acids (SCFAs) in the caecal content. These effects subsequently triggered the release of glucagon-like peptide-1 (GLP-1) and activated the CREB/PGC1α signaling pathway in iWAT, thereby increasing energy expenditure and enhancing thermogenic function. The antibiotic treatment experiments confirmed that the LBP-mediated gut microbiota participated in the process of iWAT browning. In summary, our findings provide the first scientific explanation and mechanistic insights into the cold resistance of L. barbarum and identify potentially safe natural product supplements for individuals in alpine areas.


Subject(s)
Cold Temperature , Drugs, Chinese Herbal , Energy Metabolism , Gastrointestinal Microbiome , Thermogenesis , Animals , Gastrointestinal Microbiome/drug effects , Thermogenesis/drug effects , Mice , Energy Metabolism/drug effects , Drugs, Chinese Herbal/pharmacology , Male , Mice, Inbred C57BL , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/drug effects
18.
Mitochondrion ; 79: 101952, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39237068

ABSTRACT

Succinate dehydrogenase (SDH) plays pivotal roles in maintaining cellular metabolism, modulating regulatory control over both the tricarboxylic acid cycle and oxidative phosphorylation to facilitate energy production within mitochondria. Given that SDH malfunction may serve as a hallmark triggering pseudo-hypoxia signaling and promoting tumorigenesis, elucidating the impact of SDH assembly defects on mitochondrial functions and cellular responses is of paramount importance. In this study, we aim to clarify the role of SDHAF2, one assembly factor of SDH, in mitochondrial respiratory activities. To achieve this, we utilize the CRISPR/Cas9 system to generate SDHAF2 knockout in HeLa cells and examine mitochondrial respiratory functions. Our findings demonstrate a substantial reduction in oxygen consumption rate in SDHAF2 knockout cells, akin to cells with inhibited SDH activity. In addition, in our in-gel activity assays reveal a significant decrease not only in SDH activity but also in cytochrome c oxidase (COX) activity in SDHAF2 knockout cells. The reduced COX activity is attributed to the assembly defect and remains independent of SDH inactivation or SDH complex disassembly. Together, our results indicate a critical role of SDHAF2 in regulating respiration by facilitating the assembly of COX.

19.
Commun Chem ; 7(1): 198, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39232074

ABSTRACT

Compartmentalization is a vital aspect of living cells to orchestrate intracellular processes. In a similar vein, constructing dynamic and responsive sub-compartments is key to synthetic cell engineering. In recent years, liquid-liquid phase separation via coacervation has offered an innovative avenue for creating membraneless organelles (MOs) within artificial cells. Here, we present a lab-on-a-chip system to reversibly trigger peptide-based coacervates within cell-mimicking confinements. We use double emulsion droplets (DEs) as our synthetic cell containers while pH-responsive elastin-like polypeptides (ELPs) act as the coacervate system. We first present a high-throughput microfluidic DE production enabling efficient encapsulation of the ELPs. The DEs are then harvested to perform multiple MO formation-dissolution cycles using pH as well as temperature variation. For controlled long-term visualization and modulation of the external environment, we developed an integrated microfluidic device for trapping and environmental stimulation of DEs, with negligible mechanical force, and demonstrated a proof-of-principle osmolyte-based triggering to induce multiple MO formation-dissolution cycles. In conclusion, our work showcases the use of DEs and ELPs in designing membraneless reversible compartmentalization within synthetic cells via physicochemical triggers. Additionally, presented on-chip platform can be applied over a wide range of phase separation and vesicle systems for applications in synthetic cells and beyond.

20.
Nat Genet ; 56(9): 1890-1902, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39227744

ABSTRACT

Functional genomic screens in two-dimensional cell culture models are limited in identifying therapeutic targets that influence the tumor microenvironment. By comparing targeted CRISPR-Cas9 screens in a two-dimensional culture with xenografts derived from the same cell line, we identified MEN1 as the top hit that confers differential dropout effects in vitro and in vivo. MEN1 knockout in multiple solid cancer types does not impact cell proliferation in vitro but significantly promotes or inhibits tumor growth in immunodeficient or immunocompetent mice, respectively. Mechanistically, MEN1 knockout redistributes MLL1 chromatin occupancy, increasing H3K4me3 at repetitive genomic regions, activating double-stranded RNA expression and increasing neutrophil and CD8+ T cell infiltration in immunodeficient and immunocompetent mice, respectively. Pharmacological inhibition of the menin-MLL interaction reduces tumor growth in a CD8+ T cell-dependent manner. These findings reveal tumor microenvironment-dependent oncogenic and tumor-suppressive functions of MEN1 and provide a rationale for targeting MEN1 in solid cancers.


Subject(s)
CD8-Positive T-Lymphocytes , CRISPR-Cas Systems , Histone-Lysine N-Methyltransferase , Proto-Oncogene Proteins , Tumor Microenvironment , Animals , Female , Humans , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Neoplasms/genetics , Neoplasms/pathology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL