Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters











Publication year range
1.
Int J Biol Macromol ; 280(Pt 2): 135715, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39293626

ABSTRACT

Sulfated fucan has attracted increasing research interest due to its various biological activities. Endo-1,3-fucanases are favorable tools for structure investigation and structure-activity relationships establishment of sulfated fucan. However, the three-dimensional structure of enzymes from the GH174 family has not been disclosed, which hinders the understanding of the action mechanism. This study reports the first crystal structure of endo-1,3-fucanase from GH174 family (Fun174A) at a resolution of 1.60 Å. Notably, Fun174A exhibited an unusual distorted ß-sandwich fold, which is distinct from other known glycoside hydrolase folds. The conserved amino acid residues D119 and H154 were proposed as the catalytic residues in the family. Molecular docking suggested that Fun174A primarily recognized sulfated fucan through a series of polar amino acid residues around the substrate binding pocket. Furthermore, structural bioinformatics analysis suggested that the structural analogs of Fun174A may be extensively implicated in the bacterial metabolism of polysaccharides, which provided opportunities for the discovery of novel glycoside hydrolases. This study offers new insights into the structural diversity of glycoside hydrolases and will contribute to the establishment of a novel clan of glycoside hydrolases.

2.
Int J Biol Macromol ; : 136026, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39326625

ABSTRACT

Prophyra is one of the most economically valuable species of red algae, with porphyran being its primary bioactive polysaccharide. Highly active enzymes play a significant role in the research and development of porphyran. This study identified a PKD domain within polysaccharide-binding protein, displaying an apparent molecular weight (Mw) of 20.20 kDa that is approximately twice the theoretical value, thereby suggesting the possibility of self-aggregation. By fusing it with porphyranase Por16B_Wf, a chimeric enzyme PKD-Por16B was constructed. It was confirmed that the fusion enzyme successfully assembles into an aggregation under the mediation of PKD domain, with its apparent Mw (65.13 kDa) significantly higher than theoretical Mw (46.02 kDa). The activity of PKD-Por16B was remarkedly enhanced from 65.31 U/mg to 325.69 U/mg, accompanied by an improvement in enzymatic stability. Meanwhile, the hydrolysis pattern of PKD-Por16B remained unaltered in comparison to that of Por16B_Wf, indicating no significant deviation in its substrate specificity or reaction mechanism. These results suggest the feasibility of a strategy based on domain-induced aggregation to enhance enzyme activity, which is both easy and economical.

3.
Carbohydr Polym ; 343: 122474, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39174099

ABSTRACT

Alginate is one of the most important marine colloidal polysaccharides, and its oligosaccharides have been proven to possess diverse biological functions. Alginate lyases could specifically degrade alginate and therefore serve as desirable tools for the research and development of alginate. In this report, a novel catalytic domain, which demonstrated no significant sequence similarity with all previously defined functional domains, was verified to exhibit a random endo-acting lyase activity to alginate. The action pattern analysis revealed that the heterologously expressed protein, named Aly44A, preferred to degrade polyM. Its minimum substrates and the minimum products were identified as unsaturated alginate trisaccharides and disaccharides, respectively. Based on the sequence novelty of Aly44A and its homologs, a new polysaccharide lyase family (PL44) was proposed. The discovery of the novel enzyme and polysaccharide lyase family provided a new entrance for the gene-mining and acquiring of alginate lyases, and would facilitate to the utilization of alginate and its oligosaccharides.


Subject(s)
Alginates , Polysaccharide-Lyases , Polysaccharide-Lyases/metabolism , Polysaccharide-Lyases/chemistry , Polysaccharide-Lyases/genetics , Alginates/chemistry , Alginates/metabolism , Substrate Specificity , Catalytic Domain , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Amino Acid Sequence , Hexuronic Acids/chemistry , Hexuronic Acids/metabolism
4.
J Agric Food Chem ; 72(36): 20114-20121, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39214858

ABSTRACT

Understanding the substrate specificity of carrageenases has long been of interest in biotechnology applications. So far, the structural basis of the ßκ-carrageenase that hydrolyzes furcellaran, a major hybrid carrageenan, remains unclear. Here, the crystal structure of Cgbk16A_Wf, as a representative of the ßκ-carrageenase from GH16_13, was determined, and the structural characteristics of this subfamily were elucidated for the first time. The substrate binding mode was clarified through a structure analysis of the hexasaccharide-bound complex and molecular docking. The binding pocket involves a conserved catalytic motif and several specific residues associated with substrate recognition. Functions of residues R88, E290, and E184 were validated through site-directed mutagenesis. Comparing ßκ-carrageenase with κ-carrageenase, we proposed that their different substrate specificities are partly due to the distinct conformations of subsite -1. This research offers a comprehensive understanding of the recognition mechanism of carrageenases and provides valuable theoretical support for enzyme modification and carrageenan oligosaccharide preparation.


Subject(s)
Bacterial Proteins , Carrageenan , Glycoside Hydrolases , Molecular Docking Simulation , Substrate Specificity , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carrageenan/chemistry , Carrageenan/metabolism , Catalytic Domain , Binding Sites , Amino Acid Sequence , Mutagenesis, Site-Directed , Catalysis
5.
Int J Biol Macromol ; 277(Pt 3): 134221, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39069041

ABSTRACT

Alginate is a commercially important polysaccharide widely distributed in brown algae. Carbohydrate-binding modules (CBMs), a class of commonly used polysaccharide-binding proteins, have greatly facilitated the investigations of polysaccharides. Few alginate-binding CBMs have been hitherto reported and structurally characterized. Herein, an unknown domain from a potential PL6 family alginate lyase in the marine bacterium Vibrio breoganii was discovered and recombinantly expressed. The obtained protein, designated VbCBM106, displayed the favorable specificity to alginate. The unique sequence and well-defined function of VbCBM106 reveal a new CBM family (CBM106). Moreover, the structure of VbCBM106 was determined at a 1.5 Å resolution by the X-ray crystallography, which shows a typical ß-sandwich fold comprised of two antiparallel ß-sheets. Site-directed mutagenesis assays confirmed that positively charged polar residues are crucial for the ligand binding of VbCBM106. The discovery of VbCBM106 enriches the toolbox of alginate-binding proteins, and the elucidation of critical residues would guide the future practical applications of VbCBM106.


Subject(s)
Alginates , Alginates/chemistry , Alginates/metabolism , Polysaccharide-Lyases/chemistry , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/metabolism , Amino Acid Sequence , Models, Molecular , Vibrio/enzymology , Vibrio/genetics , Protein Binding , Crystallography, X-Ray , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Substrate Specificity
6.
Carbohydr Polym ; 341: 122345, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38876715

ABSTRACT

Sulfated fucan from sea cucumber is mainly consists of L-fucose and sulfate groups. Recent studies have confirmed that the structure of sulfated fucan mainly consists of repeating units, typically tetrasaccharides. However, there is growing evidence indicating the presence of irregular domains with heterogeneous units that have not been extensively explored. Moreover, as a key contributor to the nutritional benefits of sea cucumbers, sulfated fucan demonstrates a range of biological activities, such as anti-inflammatory, anticancer, hypolipidemic, anti-hyperglycemic, antioxidant, and anticoagulant properties. These biological activities are profoundly influenced by the structural features of sulfated fucan including molecular weight and distribution patterns of sulfate groups. The latest research indicates that sulfated fucan is dispersed in the extracellular matrix of the body wall of sea cucumbers. This article aimed to review the research progress on the in-situ distribution, structures, structural elucidation strategies, functions, and structure-activity relationships of sulfated fucan, especially in the last decade. It also provided insights into the major challenges and potential solutions in the research and development of sulfated fucan. Moreover, the fucanase and carbohydrate binding modules are anticipated to play pivotal roles in advancing this field.


Subject(s)
Polysaccharides , Sea Cucumbers , Sea Cucumbers/chemistry , Animals , Polysaccharides/chemistry , Polysaccharides/pharmacology , Structure-Activity Relationship , Sulfates/chemistry , Anticoagulants/chemistry , Anticoagulants/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology
7.
Int J Biol Macromol ; 271(Pt 1): 132622, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795894

ABSTRACT

BACKGROUND: Sulfated fucan has gained interest due to its various physiological activities. Endo-1,3-fucanases are valuable tools for investigating the structure and establishing structure-activity relationships of sulfated fucan. However, the substrate recognition mechanism of endo-1,3-fucanases towards sulfated fucan remains unclear, limiting the application of endo-1,3-fucanases in sulfated fucan research. SCOPE AND APPROACH: This study presented the first crystal structure of endo-1,3-fucanase (Fun168A) and its complex with the tetrasaccharide product, utilizing X-ray diffraction techniques. The novel subsite specificity of Fun168A was identified through glycomics and nuclear magnetic resonance (NMR). KEY FINDINGS AND CONCLUSIONS: The structure of Fun168A was determined at 1.92 Å. Residues D206 and E264 acted as the nucleophile and general acid/base, respectively. Notably, Fun168A strategically positioned a series of polar residues at the subsites ranging from -2 to +3, enabling interactions with the sulfate groups of sulfated fucan through salt bridges or hydrogen bonds. Based on the structure of Fun168A and its substrate recognition mechanisms, the novel subsite specificities at the -2 and +2 subsites of Fun168A were identified. Overall, this study provided insight into the structure and substrate recognition mechanism of endo-1,3-fucanase for the first time and offered a valuable tool for further research and development of sulfated fucan.


Subject(s)
Polysaccharides , Polysaccharides/chemistry , Substrate Specificity , alpha-L-Fucosidase/chemistry , alpha-L-Fucosidase/metabolism , Models, Molecular , Crystallography, X-Ray , Sulfates/chemistry , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Structure-Activity Relationship
8.
J Agric Food Chem ; 72(23): 13196-13204, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38805590

ABSTRACT

Chondroitin sulfate (CS) is the predominant glycosaminoglycan within the human body and is widely applied in various industries. Carbohydrate-binding modules (CBMs) possessing the capacity for carbohydrate recognition are verified to be important tools for polysaccharide investigation. Only one CS-specific CBM, PhCBM100, has hitherto been characterized. In the present study, two CBM96 domains present in the same putative PL8_3 chondroitin AC lyase were discovered and recombinantly expressed. The results of microtiter plate assays and affinity gel electrophoresis assays showed that the two corresponding proteins, DmCBM96-1 and DmCBM96-2, bind specifically to CSs. The crystal structure of DmCBM96-1 was determined at a 2.20 Å resolution. It adopts a ß-sandwich fold comprising two antiparallel ß-sheets, showing structural similarities to TM6-N4, which is the founding member of the CBM96 family. Site mutagenesis analysis revealed that the residues of Arg27, Lys45, Tyr51, Arg53, and Arg157 are critical for CS binding. The characterization of the two CBM96 proteins demonstrates the diverse ligand specificity of the CBM96 family and provides promising tools for CS investigation.


Subject(s)
Chondroitin Sulfates , Protein Binding , Amino Acid Sequence , Binding Sites , Chondroitin Lyases/chemistry , Chondroitin Lyases/metabolism , Chondroitin Lyases/genetics , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/metabolism , Sequence Alignment
9.
Carbohydr Polym ; 338: 122201, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763726

ABSTRACT

Agarans represent a group of galactans extracted from red algae. Funoran and agarose are the two major types and commercially applied polysaccharides of agaran. Although the glycoside hydrolases targeting ß-glycosidic bonds of agaran have been widely investigated, those capable of degrading α-glycosidic bonds of agarose were limited, and the enzyme degrading α-linkages of funoran has not been reported till now. In this study, a GH96 family enzyme BiAF96A_Aq from a marine bacterium Aquimarina sp. AD1 was heterologously expressed in Escherichia coli. BiAF96A_Aq exhibited dual activities towards the characteristic structure of funoran and agarose, underscoring the multifunctionality of GH96 family members. Glycomics and NMR analysis revealed that BiAF96A_Aq hydrolyzed the α-1,3 glycosidic bonds between 3,6-anhydro-α-l-galactopyranose (LA) and ß-d-galactopyranose-6-sulfate (G6S) of funoran, as well as LA and ß-d-galactopyranose (G) of agarose, through an endo-acting manner. The end products of BiAF96A_Aq were majorly composed of disaccharides and tetrasaccharides. The identification of the activity of BiAF96A_Aq on funoran indicated the first discovery of the funoran hydrolase for α-1,3 linkage. Considering the novel catalytic reaction, we proposed to name this activity as "α-funoranase" and recommended the assignment of a dedicated EC number for its classification.


Subject(s)
Glycoside Hydrolases , Sepharose , Sepharose/chemistry , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Hydrolysis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/genetics , Galactans/chemistry , Galactans/metabolism
10.
Carbohydr Polym ; 335: 122083, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38616101

ABSTRACT

Sulfated fucans have garnered extensive research interest in recent decades due to their varied bioactivity. Fucanases are important tools for investigating sulfated fucans. This study reported the bioinformatic analysis and biochemical properties of three GH174 family endo-1,3-fucanases. Wherein, Fun174Rm and Fun174Sb showed the highest optimal reaction temperature among the reported fucanases, and Fun174Sb possessed favorable thermostability and catalysis efficiency. Fun174Rm displayed a random endo-acting manner, while Fun174Ri and Fun174Sb hydrolyzed sulfated fucan in processive manners. UPLC-MS and NMR analyses confirmed that the three enzymes catalyze cleavage of the α(1 â†’ 3)-bonds between Fucp2S and Fucp2S in the sulfated fucan from Isostichopus badionotus. These enzymes demonstrated novel cleavage specificities, which could accept α-Fucp2S residues at subsites -1 and + 1. The acquiring of these biotechnological tools would be beneficial to the in-depth research of sulfated fucans.


Subject(s)
Glycoside Hydrolases , Tandem Mass Spectrometry , Chromatography, Liquid , Biotechnology , Catalysis , Sulfates , Sulfur Oxides
11.
Anal Bioanal Chem ; 416(15): 3501-3508, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38658402

ABSTRACT

Alginate is a commercially important polysaccharide composed of mannuronic acid and its C5 differential isomer guluronic acid. Comprehensive research on alginate and alginate lyases requires efficient and precise analytical methods for alginate oligosaccharides. In this research, high-performance anion exchange chromatography (HPAEC) in parallel with pulsed amperometric detection (PAD) and mass spectrometry (MS) was applied to the analysis of oligosaccharides obtained by alginate lyase. By optimizing the chromatographic conditions including mobile phase concentration, flow rate, and elution gradient, the analysis of a single sample could be completed in 30 min. Seven unsaturated alginate oligosaccharides were separated and identified through their analysis time observed with PAD, including all structurally different unsaturated disaccharides and trisaccharides. The quantitative analysis of seven oligosaccharides was performed based on the quantitative capability of PAD. The method exhibited adequate linearity and precision parameters. All the calibration curves showed good linearity at least in the concentration range of 0.002 to 0.1 mg/mL. The HPAEC-PAD/MS method provides a general and efficient online method to analyze alginate oligosaccharides.


Subject(s)
Alginates , Mass Spectrometry , Oligosaccharides , Alginates/chemistry , Oligosaccharides/analysis , Oligosaccharides/chemistry , Chromatography, Ion Exchange/methods , Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Polysaccharide-Lyases/chemistry , Polysaccharide-Lyases/metabolism , Hexuronic Acids/chemistry , Hexuronic Acids/analysis , Limit of Detection
12.
J Agric Food Chem ; 72(15): 8798-8804, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38548625

ABSTRACT

Fibrillin is an important structural protein in connective tissues. The presence of fibrillin in sea cucumber Apostichopus japonicus is still poorly understood, which limits our understanding of the role of fibrillin in the A. japonicus microstructure. The aim of this study was to clarify the presence of fibrillin in the sea cucumber A. japonicus body wall. Herein, the presence of fibrillin in sea cucumber A. japonicus was investigated by utilizing targeted proteomics and visualization strategies. The contents of three different isoforms of fibrillin with high abundance in A. japonicus were determined to be 0.96, 2.54, and 0.15 µg/g (wet base), respectively. The amino acid sequence of fibrillin (GeneBank number: PIK56741.1) that started at position 631 and ended at position 921 was selected for cloning and expressing antigen. An anti-A. japonicus fibrillin antibody with a titer greater than 1:64 000 was successfully obtained. It was observed that the distribution of fibrillin in the A. japonicus body wall was scattered and dispersed in the form of fibril bundles at the microscale. It further observed that fibrillin was present near collagen fibrils and some entangled outside the collagen fibrils at the nanoscale. Moreover, the stoichiometry of the most dominant collagen and fibrillin molecules in A. japonicus was determined to be approximately 250:1. These results contribute to an understanding of the role of fibrillin in the sea cucumber microstructure.


Subject(s)
Sea Cucumbers , Stichopus , Animals , Stichopus/genetics , Stichopus/chemistry , Sea Cucumbers/metabolism , Proteomics , Fibrillins , Collagen/chemistry
13.
Int J Biol Macromol ; 265(Pt 2): 131041, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38518929

ABSTRACT

Porphyran is a favorable functional polysaccharide widely distributed in Porphyra. It displays a linear structure majorly constituted by alternating 1,4-linked α-l-galactopyranose-6-sulfate (L6S) and 1,3-linked ß-d-galactopyranose (G) units. Carbohydrate-binding modules (CBMs) are desired tools for the investigation and application of polysaccharides, including in situ visualization, on site and specific assay, and functionalization of biomaterials. However, only one porphyran-binding CBM has been hitherto reported, and its structural knowledge is lacking. Herein, a novel CBM16 family domain from a marine bacterium Aquimarina sp. BL5 was discovered and expressed. The recombinant protein AmCBM16 exhibited the desired specificity for porphyran. Bio-layer interferometry assay revealed that the protein binds to porphyran tetrasaccharide (L6S-G)2 with an association constant of 1.3 × 103 M-1. The structure of AmCBM16 was resolved by the X-ray crystallography, which displays a ß-sandwich fold with two antiparallel ß-sheets constituted by 10 ß-strands. Site-directed mutagenesis analysis demonstrated that the residues Gly-30, Trp-31, Lys-88, Lys-123, Phe-125, and Phe-127 play dominant roles in AmCBM16 binding. This study provides the first structural insights into porphyran-binding CBM.


Subject(s)
Flavobacteriaceae , Galactose , Sepharose/analogs & derivatives , Binding Sites , Bacterial Proteins/chemistry , Polysaccharides/chemistry , Flavobacteriaceae/metabolism , Crystallography, X-Ray
14.
Int J Biol Macromol ; 255: 127959, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37951443

ABSTRACT

Chondroitin sulfate is a biologically and commercially important polysaccharide with a variety of applications. Carbohydrate-binding module (CBM) is an important class of carbohydrate-binding protein, which could be utilized as a promising tool for the applications of polysaccharides. In the present study, an unknown function domain was explored from a putative chondroitin sulfate lyase in PL29 family. Recombinant PhCBM100 demonstrated binding capacity to chondroitin sulfates with Ka values of 2.1 ± 0.2 × 106 M-1 and 6.0 ± 0.1 × 106 M-1 to chondroitin sulfate A and chondroitin sulfate C, respectively. The 1.55 Å resolution X-ray crystal structure of PhCBM100 exhibited a ß-sandwich fold formed by two antiparallel ß-sheets. A binding groove in PhCBM100 interacting with chondroitin sulfate was subsequently identified, and the potential of PhCBM100 for visualization of chondroitin sulfate was evaluated. PhCBM100 is the first characterized chondroitin sulfate-specific CBM. The novelty of PhCBM100 proposed a new CBM family of CBM100.


Subject(s)
Chondroitin Sulfates , Polysaccharides , Chondroitin Sulfates/chemistry , Chondroitin Lyases/metabolism
15.
Carbohydr Polym ; 318: 121104, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37479433

ABSTRACT

Sulfated fucans attract increasing research interests in recent decades for their various physiological activities. Fucanases are indispensable tools for the investigation of sulfated fucans. Herein, a novel GH168 family endo-1,3-fucanase was cloned from the genome of marine bacterium Wenyingzhuangia fucanilytica. The expressed protein Fun168D was a processive endo-acting enzyme. Ultra performance liquid chromatography-high resolution mass spectrum and NMR analyses revealed that the enzyme cleaved the α-1 â†’ 3 bonds between α-l-Fucp(2OSO3-) and α-l-Fucp(2OSO3-) in sulfated fucan from Isostichopus badionotus, and α-1 â†’ 3 bonds between α-l-Fucp(2OSO3-) and α-l-Fucp(2,4OSO3-) in sulfated fucan from Holothuria tubulosa. Fun168D would prefer to accept α-l-Fucp(2,4OSO3-) than α-l-Fucp(2OSO3-) at subsite +1, and could tolerate the absence of fucose residue at subsite +2. The novel cleavage specificity and hydrolysis pattern revealed the presence of diversity within the GH168 family, which would facilitate the development of diverse biotechnological tools for the molecule tailoring of sulfated fucan.


Subject(s)
Bacteria , Glycoside Hydrolases , Animals , Glycoside Hydrolases/genetics , Biotechnology , Chromatography, Liquid , Sulfates , Sulfur Oxides
16.
Carbohydr Polym ; 318: 121117, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37479453

ABSTRACT

Funoran, agarose and porphyran all belong to agaran, and share the similar skeleton. Although the glycoside hydrolase for agarose and porphyran, i.e. agarase and porphyranase, have been extensively studied, the enzyme hydrolyzing funoran has not been reported hitherto. The crystal structure of a previously characterized GH86 ß-agarase Aga86A_Wa showed a large cavity at subsite -1, which implied its ability to accommodate sulfate ester group. By using glycomics and NMR analysis, the activity of Aga86A_Wa on the characteristic structure of funoran was validated, which signified the first discovery of funoran hydrolase, i.e. funoranase. Aga86A_Wa hydrolyzed the ß-1,4 glycosidic bond between ß-d-galactopyranose-6-sulfate (G6S) and 3,6-anhydro-α-l-galactopyranose (LA) unit of funoran, and released disaccharide LA-G6S as the predominant end product. Considering the hydrolysis pattern, we proposed to name the activity represented by Aga86A_Wa on funoran as "ß-funoranase" and suggested to assign it an EC number.


Subject(s)
Galactose , Polysaccharides , Sepharose , Glycoside Hydrolases/chemistry , Sulfates
17.
Carbohydr Polym ; 312: 120817, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37059545

ABSTRACT

In the past few decades, sulfated fucan from sea cucumber had attracted considerable interest owing to its abundant physiological activities. Nevertheless, its potential for species discrimination had not been investigated. Herein, particular attention was given to sea cucumber Apostichopus japonicus, Acaudina molpadioides, Holothuria hilla, Holothuria tubulosa, Isostichopus badionotus and Thelenota ananas to examine the feasibility of sulfated fucan as a species marker of sea cucumber. The enzymatic fingerprint suggested that sulfated fucan exhibited significant interspecific discrepancy and intraspecific stability, which revealed that sulfated fucan could serve as the species marker of sea cucumber, by utilizing the overexpressed endo-1,3-fucanase Fun168A and the ultra-performance liquid chromatography-high resolution mass spectrum. Moreover, oligosaccharide profile of sulfated fucan was determined. The oligosaccharide profile combined with hierarchical clustering analysis and principal components analysis further confirmed that sulfated fucan could serve as a marker with a satisfying performance. Besides, load factor analysis showed that the minor structure of sulfated fucan also contributed to the sea cucumber discrimination, besides the major structure. The overexpressed fucanase played an indispensable role in the discrimination, due to its specificity and high activity. The study would lead to a new strategy for species discrimination of sea cucumber based on sulfated fucan.


Subject(s)
Holothuria , Sea Cucumbers , Animals , Sea Cucumbers/chemistry , Sulfates , Polysaccharides/chemistry , Holothuria/chemistry , Oligosaccharides
18.
Int J Biol Macromol ; 238: 124037, 2023 May 31.
Article in English | MEDLINE | ID: mdl-36924869

ABSTRACT

Sulfated fucan is an important functional polysaccharide with various physiological activities. Carbohydrate-binding module (CBM) is a representative class of carbohydrate-binding protein, which could be employed as a favorable tool for the investigations and applications of polysaccharides. Nevertheless, only one confirmed sulfated fucan-binding CBM has been hitherto reported. In the present study, an unknown domain with a predicted ß-sandwich fold was discovered from a fucanase Fun174A, and further cloned and heterologously expressed in Escherichia coli. The expressed protein Fun174A-CBM displayed a specific binding capacity to sulfated fucan. The bio-layer interferometry assays showed that the protein could bind to the sulfated fucan tetrasaccharide with an affinity constant of 2.83 × 10-4 M. Fun174A-CBM shared no significant sequence similarity to any identified CBMs, indicating that it represents a new CBM family. The discovery of Fun174-CBM and the novel CBM family would be beneficial to the investigations of sulfated fucan-binding proteins.


Subject(s)
Polysaccharides , Sulfates , Polysaccharides/chemistry , Oligosaccharides/metabolism
19.
Carbohydr Polym ; 306: 120591, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36746582

ABSTRACT

Sulfated fucans are important marine polysaccharides with various biological and biomedical activities. Fucanases are favorable tools to establish the structure-activity relationships of sulfated fucans. Herein, gene fun174A was discovered from the genome of marine bacterium Wenyingzhuangia aestuarii OF219, and none of the pre-defined glycosidic hydrolase domains were predicted in the protein sequence of Fun174A. Recombinant Fun174A demonstrated a low optimal reaction pH at 5.5. It might degrade sulfated fucans in an endo-processive manner. Glycomics and NMR analyses proved that it specifically hydrolyzed α-1,3-l-fucoside bonds between 2-O-sulfated and non-sulfated fucose residues in the sulfated fucan from sea cucumber Isostichopus badionotus. D119, E120 and E218 were critical for the activity of Fun174A, as identified by site-directed mutagenesis. Three homologs of Fun174A were confirmed to exhibit endo-1,3-fucanase activities. The novelty on sequences of Fun174A and its homologs reveals a new glycoside hydrolase family, GH174.


Subject(s)
Flavobacteriaceae , Sea Cucumbers , Animals , Amino Acid Sequence , Flavobacteriaceae/enzymology , Flavobacteriaceae/genetics , Glycoside Hydrolases/metabolism , Magnetic Resonance Spectroscopy , Polysaccharides/chemistry , Sea Cucumbers/chemistry
20.
Carbohydr Polym ; 306: 120594, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36746585

ABSTRACT

Agarans are sulfated galactans extracted from red algae with high structural complexity, of which natural methylation often occurs on the O-6 position of its ß-d-galactopyranose units. Although many agaran degrading enzymes, including agarases and porphyranases, have been characterized, little attention has been paid to the tolerance of methyl groups at cleavage subsites. In this study, the structure of GH86 ß-agarase Aga86A_Wa from Wenyingzhuangia aestuarii was determined by X-ray crystallography and investigated from a structural biology perspective. The structure indicated that an accommodation pocket formed by F367, Y280, and Q326 at subsite -1 contributes to the methyl-galactose tolerance of Aga86A_Wa. Furthermore, we found that similar accommodation pockets were present in the structures of two other GH86 enzymes BuGH86 from Bacteroides uniformis and BpGH86A from Phocaeicola plebeius, and their previously undisclosed methyl-galactose tolerance was verified, validating the function of the pockets. Phylogenetic analysis, structural modeling, and hydrolysis product characterization suggested that the methyl-galactose accommodation capacity at subsite -1 was prevalent in GH86 members. These findings achieve a better understanding of the function and mechanism of GH86 agaran degrading enzymes, and will facilitate the precise preparation of agaran oligosaccharides by employing defined tools.


Subject(s)
Galactans , Galactose , Phylogeny , Galactans/chemistry , Glycoside Hydrolases/genetics , Glycoside Hydrolases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL