Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 910
Filter
1.
Nat Mater ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009656

ABSTRACT

A nematic phase breaks the point-group symmetry of the crystal lattice and is known to emerge in correlated materials. Here we report the observation of an intra-unit-cell nematic order and associated Fermi surface deformation in the kagome metal ScV6Sn6. Using scanning tunnelling microscopy and scanning tunnelling spectroscopy, we reveal a stripe-like nematic order breaking the crystal rotational symmetry within the kagome lattice itself. Moreover, we identify a set of Van Hove singularities adhering to the kagome-layer electrons, which appear along one direction of the Brillouin zone and are annihilated along other high-symmetry directions, revealing rotational symmetry breaking. Via detailed spectroscopic maps, we further observe an elliptical deformation of the Fermi surface, which provides direct evidence for an electronically mediated nematic order. Our work not only bridges the gap between electronic nematicity and kagome physics but also sheds light on the potential mechanism for realizing symmetry-broken phases in correlated electron systems.

2.
Abdom Radiol (NY) ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987400

ABSTRACT

PURPOSE: To evaluate the rate of hyperechoic liver lesions that are clinically actionable and evaluate imaging and clinical factors associated with these to determine the need for follow-up. MATERIALS AND METHODS: This retrospective study included 228 hyperechoic hepatic lesions on ultrasound in 228 patients. Reference standards included either dynamic contrast enhanced MRI (n = 130) or CT (n = 46), follow-up ultrasound performed at least 2 years from baseline (n = 50), or histopathology (n = 2). Three radiologists independently assessed imaging features including lesion orientation, degree of hyper-echogenicity, lesion heterogeneity, and background liver echotexture. Univariable and multivariable logistic regression was used to determine features associated with an actionable hyperechoic lesion. RESULTS: Of the 228 hyperechoic lesions, 14 (6.1%) lesions were clinically actionable (or requiring follow-up), and 214 (93.9%) were clinically insignificant. Features that differed between patients with clinically insignificant vs. actionable lesions included: age (52.9 ± 15.1 vs. 63.9 ± 15.8 years, p = 0.004), male sex (43.9% vs 71.4%, p = 0.045), history of cirrhosis (6.5% vs 50%, p < 0.001), lesion size (1.9 ± 1.4 cm vs. 3.5 ± 2.8 cm, p = 0.003), heterogeneous lesion echogenicity (16.4% vs. 50%, p = 0.006), and cirrhotic/coarsened background liver (7.5% vs. 35.7%, p = 0.005). Stepwise logistic regression and multivariable analysis identified age, presence of cirrhosis, and lesion size as features most predictive of an actionable lesion (OR 1.04, 24.3, 1.77 respectively). Reader agreement for imaging features was fair to moderate (k = 0.29-0.53). 100%(168/168) of hyperechoic liver lesions measuring ≤ 3 cm in patients without a history of malignancy or underlying liver disease were clinically insignificant. CONCLUSION: Our study findings support the overall favorable diagnoses of hyperechoic liver lesions ≤ 3 cm in patients without underlying risk factors.

3.
Chem Sci ; 15(26): 10164-10171, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38966378

ABSTRACT

Shearing-induced nucleation is known in our daily lives, yet rarely discussed in nano-synthesis. Here, we demonstrate an unambiguous shearing-induced growth of Au nanowires. While in static solution Au would predominately deposit on pre-synthesized triangular nanoplates to form nano-bowls, the introduction of stirring or shaking gives rise to nanowires, where an initial nucleation could be inferred. Under specific growth conditions, CTAB is responsible for stabilizing the growth materials and the resulting oversaturation promotes shearing-induced nucleation. At the same time, all Au surfaces are passivated by ligands, so that the growth materials are diverted to relatively fresher sites. We propose that the different degrees of "focused growth" in active surface growth could be represented by watersheds of different slopes, so that the subtle differences between neighbouring sites would set course to opposite pathways, with some sites becoming ever more active and others ever more inhibited. The shearing-induced nuclei, with their initially ligand-deficient surface and higher accessibility to growth materials, win the dynamic inter-particle competition against other sites, explaining the dramatic diversion of growth materials from the seeds to the nanowires.

4.
J Genet Genomics ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969261

ABSTRACT

Genetic genealogy provides crucial insights into the complex biological relationships within contemporary and ancient human populations by analyzing shared alleles and chromosomal segments that are identical by descent, to understand kinship, migration patterns, and population dynamics. Within forensic science, forensic investigative genetic genealogy (FIGG) has gained prominence by leveraging next-generation sequencing technologies and population-specific genomic resources, opening new investigative avenues. In this review, we synthesize current knowledge, underscore recent advancements, and discuss the growing role of FIGG in forensic genomics. FIGG has been pivotal in revitalizing dormant inquiries and offering new genetic leads in numerous cold cases. Its effectiveness relies on the extensive SNP profiles contributed by individuals from diverse populations to specialized genomic databases. Advances in computational genomics and the growth of human genomic databases have spurred a profound shift in the application of genetic genealogy across forensics, anthropology, and ancient DNA studies. As the field progresses, FIGG is evolving from a nascent practice into a more sophisticated and specialized discipline, shaping the future of forensic investigations.

5.
J Exp Clin Cancer Res ; 43(1): 207, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054545

ABSTRACT

Targeted delivery and precise release of toxins is a prospective strategy for the treatment of triple-negative breast cancer (TNBC), yet the flexibility to incorporate both properties simultaneously remains tremendously challenging in the X-drug conjugate fields. As critical components in conjugates, linkers could flourish in achieving optimal functionalities. Here, we pioneered a pH-hypersensitive tumor-targeting aptamer AS1411-triptolide conjugate (AS-TP) to achieve smart release of the toxin and targeted therapy against TNBC. The multifunctional acetal ester linker in the AS-TP site-specifically blocked triptolide toxicity, quantitatively sustained aptamer targeting, and ensured the circulating stability. Furthermore, the aptamer modification endowed triptolide with favorable water solubility and bioavailability and facilitated endocytosis of conjugated triptolide by TNBC cells in a nucleolin-dependent manner. The integrated superiorities of AS-TP promoted the preferential intra-tumor triptolide accumulation in xenografted TNBC mice and triggered the in-situ triptolide release in the weakly acidic tumor microenvironment, manifesting striking anti-TNBC efficacy and virtually eliminated toxic effects beyond clinical drugs. This study illustrated the therapeutic potential of AS-TP against TNBC and proposed a promising concept for the development of nucleic acid-based targeted anticancer drugs.


Subject(s)
Aptamers, Nucleotide , Diterpenes , Epoxy Compounds , Phenanthrenes , Triple Negative Breast Neoplasms , Diterpenes/pharmacology , Diterpenes/therapeutic use , Diterpenes/chemistry , Epoxy Compounds/pharmacology , Epoxy Compounds/therapeutic use , Epoxy Compounds/chemistry , Phenanthrenes/pharmacology , Phenanthrenes/therapeutic use , Phenanthrenes/chemistry , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Animals , Humans , Mice , Female , Aptamers, Nucleotide/pharmacology , Aptamers, Nucleotide/therapeutic use , Xenograft Model Antitumor Assays , Cell Line, Tumor , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use
6.
J Fungi (Basel) ; 10(7)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39057381

ABSTRACT

Delta-12 fatty acid desaturases (FAD2s) actively regulate stress responses and cell differentiation in living organisms. In this study, six homologous FAD2 genes were identified based on the genome sequence of Lentinula edodes. Then, the six FAD2 protein sequences were analyzed using bioinformatics tools, including ExPASy ProtParam, SignalP, TMHMM, and TargetP. These analyses were performed to predict the physical and chemical properties, signal peptides, and transmembrane and conserved domains of these proteins. The polypeptide sequences were aligned, and a maximum likelihood phylogenetic tree was constructed using MEGA 7.0 software to elucidate the phylogenetic relationships between homologous FAD2 sequences. The results demonstrated that the FAD2 proteins contained three conserved histidine-rich regions (HXXXH, HXXHH, and HXXHH), which included eight histidine residues. The linoleic acid content and FAD2 enzyme activity were further analyzed, and the levels in the mutagenic heat-tolerant strain 18N44 were lower than those in the wild-type strain 18. Interestingly, the expression levels of the FAD2-2 and FAD2-3 genes under heat stress in strain 18N44 were lower than those in strain 18. These findings indicated that FAD2-2 and FAD2-3 may play major roles in the synthesis of linoleic acid during heat stress.

7.
Cell Biosci ; 14(1): 94, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026356

ABSTRACT

BACKGROUD: Type II congenital pulmonary airway malformation (CPAM) is a rare pulmonary microcystic developmental malformation. Surgical excision is the primary treatment for CPAM, although maternal steroids and betamethasone have proven effective in reducing microcystic CPAM. Disturbed intercellular communication may contribute to the development of CPAM. This study aims to investigate the expression profile and analyze intercellular communication networks to identify genes potentially associated with type II CPAM pathogenesis and therapeutic targets. METHODS: RNA sequencing (RNA-seq) was performed on samples extracted from both the cystic area and the adjacent normal tissue post-surgery in CPAM patients. Iterative weighted gene correlation network analysis (iWGCNA) was used to identify genes specifically expressed in type II CPAM. Single-cell RNA-seq (scRNA-seq) was integrated to unveil the heterogeneity in cell populations and analyze the communication and interaction within epithelial cell sub-populations. RESULTS: A total of 2,618 differentially expressed genes were identified, primarily enriched in cilium-related biological process and inflammatory response process. Key genes such as EDN1, GPR17, FPR2, and CHRM1, involved in the G protein-coupled receptor (GPCR) signaling pathway and playing roles in cell differentiation, apoptosis, calcium homeostasis, and the immune response, were highlighted based on the protein-protein interaction network. Type II CPAM-associated modules, including ciliary function-related genes, were identified using iWGCNA. By integrating scRNA-seq data, AGR3 (related to calcium homeostasis) and SLC11A1 (immune related) were identified as the only two differently expressed genes in epithelial cells of CPAM. Cell communication analysis revealed that alveolar type 1 (AT1) and alveolar type 2 (AT2) cells were the predominant communication cells for outgoing and incoming signals in epithelial cells. The ligands and receptors between epithelial cell subtypes included COLLAGEN genes enriched in PI3K-AKT singaling and involved in epithelial to mesenchymal transition. CONCLUSIONS: In summary, by integrating bulk RNA-seq data of type II CPAM with scRNA-seq data, the gene expression profile and critical signaling pathways such as GPCR signaling and PI3K-AKT signaling pathways were revealed. Abnormally expressed genes in these pathways may disrupt epithelial-mesenchymal transition and contribute to the development of CPAM. Given the effectiveness of prenatal treatments of microcystic CPAM using maternal steroids and maternal betamethasone administration, targeting the genes and signaling pathways involved in the development of CPAM presents a promising therapeutic strategy.

8.
BMC Psychiatry ; 24(1): 514, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030516

ABSTRACT

BACKGROUND: In this prospective cohort study, we determined the phenotypic characteristics of children with regressive autism spectrum disorder (ASD) and explored the effects of rehabilitation. METHODS: We recruited 370 children with ASD aged 1.5-7 years. Based on the Regression Supplement Form, the children were assigned to two groups: regressive and non-regressive. The core symptoms and neurodevelopmental levels of ASD were assessed before and after 1 year of behavioral intervention using the Autism Diagnostic Observation Schedule (ADOS), Social Response Scale (SRS), Children Autism Rating Scale (CARS), and Gesell Developmental Scale (GDS). RESULTS: Among the 370 children with ASD, 28.38% (105/370) experienced regression. Regression was primarily observed in social communication and language skills. Children with regressive ASD exhibited higher SRS and CARS scores and lower GDS scores than those with non-regressive ASD. After 1 year of behavioral intervention, the symptom scale scores significantly decreased for all children with ASD; however, a lesser degree of improvement was observed in children with regressive ASD than in those with non-regressive ASD. In addition, the symptom scores of children with regressive ASD below 4 years old significantly decreased, whereas the scores of those over 4 years old did not significantly improve. Children with regressive ASD showed higher core symptom scores and lower neurodevelopmental levels. Nevertheless, after behavioral intervention, some symptoms exhibited significant improvements in children with regressive ASD under 4 years of age. CONCLUSION: Early intervention should be considered for children with ASD, particularly for those with regressive ASD.


Subject(s)
Autism Spectrum Disorder , Phenotype , Humans , Autism Spectrum Disorder/rehabilitation , Autism Spectrum Disorder/complications , Child, Preschool , Male , Female , Child , Prospective Studies , Infant , Behavior Therapy/methods
9.
Sci Data ; 11(1): 824, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068171

ABSTRACT

Recently, Computer-Aided Diagnosis (CAD) systems have emerged as indispensable tools in clinical diagnostic workflows, significantly alleviating the burden on radiologists. Nevertheless, despite their integration into clinical settings, CAD systems encounter limitations. Specifically, while CAD systems can achieve high performance in the detection of lung nodules, they face challenges in accurately predicting multiple cancer types. This limitation can be attributed to the scarcity of publicly available datasets annotated with expert-level cancer type information. This research aims to bridge this gap by providing publicly accessible datasets and reliable tools for medical diagnosis, facilitating a finer categorization of different types of lung diseases so as to offer precise treatment recommendations. To achieve this objective, we curated a diverse dataset of lung Computed Tomography (CT) images, comprising 330 annotated nodules (nodules are labeled as bounding boxes) from 95 distinct patients. The quality of the dataset was evaluated using a variety of classical classification and detection models, and these promising results demonstrate that the dataset has a feasible application and further facilitate intelligent auxiliary diagnosis.


Subject(s)
Lung Neoplasms , Tomography, X-Ray Computed , Humans , Lung Neoplasms/pathology , Lung Neoplasms/diagnostic imaging , Diagnosis, Computer-Assisted , Lung/pathology , Lung/diagnostic imaging
10.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(3): 403-408, 2024 Jun 01.
Article in English, Chinese | MEDLINE | ID: mdl-39049662

ABSTRACT

Most of the maxillary impacted third molars are located in the maxillary tuberosity, where the vision and operation space are limited. This paper reports a case of surgical extraction of the left maxillary horizontal superhigh impacted third molar, which is located between the roots of the adjacent teeth and is closely related to the maxillary sinus. The digital simulation technology was used to reconstruct a three-dimensional visual image of the patient's maxilla, related teeth, and other adjacent anatomical structures to assist in finding the optimal surgical method accurately. Root dislocation before the crown not only protects the roots of the adjacent tooth, but also reduces the risk of maxillary sinus lining damage or perforation during operative procedures, improves the efficiency of the operation, and reduces surgical trauma, which conforms to the concept of minimally invasive surgery and provides a new idea and experience for the clinical extraction of such maxillary impacted third molars.


Subject(s)
Maxilla , Molar, Third , Tooth Extraction , Tooth Root , Tooth, Impacted , Humans , Molar, Third/surgery , Tooth, Impacted/surgery , Maxilla/surgery , Tooth Root/surgery , Imaging, Three-Dimensional , Molar/surgery , Maxillary Sinus/surgery
11.
Pestic Biochem Physiol ; 203: 106009, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39084775

ABSTRACT

Fall armyworm, Spodoptera frugiperda (J. E. Smith), is a widely recognized global agricultural pest that has significantly reduced crop yields all over the world. S. frugiperda has developed resistance to various insecticides. Insect cytochrome P450 monooxygenases (CYPs or P450s) play an important role in detoxifying insecticides, leading to increased resistance in insect populations. However, the function of the specific P450 gene for lambda-cyhalothrin resistance in S. frugiperda was unclear. Herein, the expression patterns of 40 P450 genes in the susceptible and lambda-cyhalothrin-resistant populations were analyzed. Among them, CYP321A7 was found to be overexpressed in the resistant population, specifically LRS (resistance ratio = 25.38-fold) derived from a lambda-cyhalothrin-susceptible (SS) population and FLRS (a population caught from a field, resistance ratio = 63.80-fold). Elevated enzyme activity of cytochrome P450 monooxygenases (P450s) was observed for LRS (2.76-fold) and the FLRS (4.88-fold) as compared to SS, while no significant differences were observed in the activities of glutathione S-transferases and esterases. Furthermore, the knockdown of CYP321A7 gene by RNA interference significantly increased the susceptibility to lambda-cyhalothrin. Remarkably, the knockdown of CYP321A7 reduced the enzymatic activity of P450 by 43.7%, 31.9%, and 22.5% in SS, LRS, and FLRS populations, respectively. Interestingly, fourth-instar larvae treated with lambda-cyhalothrin at the LC30 dosage had a greater mortality rate due to RNA interference-induced suppression of CYP321A7 (with increases of 61.1%, 50.0%, and 45.6% for SS, LRS, and FLRS populations, respectively). These findings suggest a link between lambda-cyhalothrin resistance and continual overexpression of CYP321A7 in S. frugiperda larvae, emphasizing the possible importance of CYP321A7 in lambda-cyhalothrin detoxification in S. frugiperda.


Subject(s)
Cytochrome P-450 Enzyme System , Insecticide Resistance , Insecticides , Nitriles , Pyrethrins , Spodoptera , Animals , Pyrethrins/pharmacology , Pyrethrins/toxicity , Spodoptera/drug effects , Spodoptera/genetics , Nitriles/toxicity , Nitriles/pharmacology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Insecticides/pharmacology , Insecticides/toxicity , Insecticide Resistance/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , RNA Interference , Inactivation, Metabolic , Larva/drug effects , Larva/genetics
12.
BMC Cardiovasc Disord ; 24(1): 394, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080547

ABSTRACT

OBJECTIVE: To examine the influences and mechanisms of MicroRNA-19a-3p (miR-19a-3p) on endothelial dysfunction in atherosclerosis. METHODS: An analysis of miR-19a expression was carried out using the Gene Expression Omnibus (GEO) database. The effect of miR-19a-3p on endothelial function in HUVECs was evaluated by miR-19a-3p overexpression under TNF-α treatment. Luciferase assays were performed to explore the potential target genes. Overexpression of junctional protein associated with coronary artery disease (JCAD) was used to examine the effects of miR-19a-3p on cell adhesion, and proliferation. RESULTS: MiR-19a-3p expression in endothelial cells decreased after exposure to TNF-α and/or oscillatory flow, consistent with the expression change of miR-19a-3p found in atherosclerotic plaques. Additionally, endothelial cell dysfunction and inflammation were significantly diminished by miR-19a-3p overexpression but markedly exacerbated by miR-19a-3p inhibition. MiR-19a-3p transfection significantly decreased the expression of JCAD by binding to the 3'-UTR of JCAD mRNA. Furthermore, the protective effect of miR-19a-3p against endothelial cell dysfunction and inflammation was achieved by regulating JCAD and was closely linked to the Hippo/YAP signaling pathway. CONCLUSION: MiR-19a-3p expression is a crucial molecular switch in the onset of atherosclerosis and miR-19a-3p overexpression is a possible pharmacological therapeutic strategy for reversing the development of atherosclerosis.


Subject(s)
Atherosclerosis , Cell Proliferation , Human Umbilical Vein Endothelial Cells , MicroRNAs , Signal Transduction , YAP-Signaling Proteins , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Human Umbilical Vein Endothelial Cells/metabolism , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/metabolism , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/physiopathology , Cell Adhesion/drug effects , Gene Expression Regulation , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cells, Cultured , Databases, Genetic , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , 3' Untranslated Regions , Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , Coronary Artery Disease/physiopathology , Hippo Signaling Pathway , Transcription Factors/genetics , Transcription Factors/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Binding Sites
13.
Curr Microbiol ; 81(9): 286, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073451

ABSTRACT

Streptococcus spp. are important opportunistic pathogen of bacteremia in both immunocompetent and immunosuppressed patients. A streptococcal strain, designated ST2T, was isolated from the blood specimen of a bacteremic patient. Comparative analyses of 16S rRNA, rpoB and groEL gene sequences demonstrated that the novel strain ST2T is a member of the genus Streptococcus. Based on of 16S rRNA gene sequence similarities, the type strains of Streptococcus (S.) parasanguinis (99.2%), S. ilei (98.8%), S. oralis subsp. oralis (97.6%), S. australis (97.5%) and S. sanguinis (97.5%) were the closest neighbours to strain ST2T. The housekeeping gene sequences (rpoB and groEL) similarities of strain ST2T to these closely related type strains were 80.4-97.4%, respectively. The complete draft genome of strain ST2T consisted of 2,155,906 bp with a G + C content of 42.0%. Strain ST2T has an average nucleotide identity (ANI) value of 94.1 and 81.3% with S. parasanguinis ATCC 15912T and S. ilei I-G2T, respectively. The highest in silico DNA-DNA hybridization value with respect to the closest species S. parasanguinis was 55.6%, below the species cut-off of 70% hybridization. The primary cellular fatty acids of strain ST2T were C16:0, C18:1 ω9c, C18:0 and C14:0. Based on biochemical criteria and molecular genetic evidence, it is proposed that strain ST2T be assigned to a new species of the genus Streptococcus as Streptococcus taoyuanensis sp. nov. The type strain of Streptococcus taoyuanensis is ST2T (=NBRC 115928T = BCRC 81374T) as the type strain.


Subject(s)
Bacteremia , Base Composition , DNA, Bacterial , Phylogeny , RNA, Ribosomal, 16S , Streptococcal Infections , Streptococcus , Bacteremia/microbiology , Humans , RNA, Ribosomal, 16S/genetics , Streptococcus/genetics , Streptococcus/isolation & purification , Streptococcus/classification , DNA, Bacterial/genetics , Streptococcal Infections/microbiology , Sequence Analysis, DNA , Bacterial Typing Techniques , Genome, Bacterial , Fatty Acids , Nucleic Acid Hybridization , Bacterial Proteins/genetics , Male
14.
Food Chem X ; 23: 101600, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39071923

ABSTRACT

Significant differences exist in aroma and taste of different grades of large-leaf black tea. In this study, sensory histology combined with metabolomics were used to investigate the sensory characteristics and phytochemical profiles of different grades of Huangpu black tea (HPBT). Sensory evaluation showed that high grade HPBT had high intensity of pekoe, fresh aroma and umami, with aroma and taste scores declining with decreasing grades. 173 non-volatiles were identified, of which 23 marker metabolites could be used as discrimination of different grades HPBT taste. In addition, 154 volatile compounds were identified in the different grades of HPBT, with 15 compounds as key odorants for distinguishing the aroma of different grades of HPBT. Furthermore, correlation analysis revealed that linalool, geraniol and nonanal contributed to the aroma quality score of HPBT. This study will provide a more comprehensive understanding for processing, quality evaluation and grade evaluation system of large-leaf black tea.

15.
ACS Sens ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078137

ABSTRACT

The electrochemical sensors loaded with nanomaterials have exhibited a great sensitivity. Nonetheless, the field detection for complex waterbodies can be affected by cross-sensitivity, environmental conditions such as temperature and pH value, as well as the relatively low reproducibility and stability of nanomaterials. In this paper, a simultaneous calibration and detection (SCD) strategy is proposed to introduce a simultaneous and precise calibration during field electrochemical detection, which is composed of a linear regression algorithm and a compact electrochemical sensor containing a series of identical sensing cells. This design can significantly mitigate cross-sensitivity in complex water and the inconsistency of sensing materials. Applied in the NO2- detection for practical waterbodies, the SCD strategy has exhibited a relative error of no more than 9.6% for the measurement compared to the results obtained by the standard Griess method and higher accuracy than the normal electrochemical method. The SCD strategy is independent of sensing materials, indicating that it can be widely applied to various detections by just switching the corresponding sensing material.

16.
ACS Appl Mater Interfaces ; 16(28): 37265-37274, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38979633

ABSTRACT

Powder dusting method is the most widely used approach due to its low cost, simplicity, minimal instrument dependence, and extensive applicability for developing latent fingerprints (LFPs). Herein, a novel optical and electrochemical dual-mode method for high-resolution LFP enhancement has been explored based on size-tunable polydopamine (PDA) nanoparticles (NPs) and scanning electrochemical microscopy (SECM). Dark PDAs rich in functional groups and negative charges can combine with the residues of LFPs on various surfaces with high sensitivity and selectivity to realize high-resolution visual fingerprint physical patterns on various porous and nonporous substrates with light color. However, optical visualization is not feasible for LFPs on dark or multicolored surfaces. Fortunately, based on the differences in electrochemical reactivity between ridges and furrows caused by the conductivity and reducibility of PDA powders, SECM can serve as a powerful supplement to optical methods to effectively overcome background color interference and distinctly display fingerprint patterns. Intriguingly, it is noteworthy that the binding amount and particle size of PDA powder significantly affected the optical and electrochemical visualization of LFPs: more powder binding amounts provided darker ridges in optical, and more surface reaction sites (larger powder binding mass at the same particle size or smaller particle size at the same mass) provided higher currents of ridges in electrochemical imaging. It demonstrates that the PDA powder as a dual-mode developer for LFPs offers a promising method for individual identification in forensics.

17.
J Agric Food Chem ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083674

ABSTRACT

Fluorochloridone (FLC) is a chiral herbicide that has four stereoisomers. This study systematically assessed the stereoselectivity of FLC to reveal the selective environmental behavior of its four isomers. Absolute configuration confirmation, evaluation of stereoselective bioactivity toward monocotyledonous and dicotyledonous weeds, toxicity to Danio rerio, and the stereoselective degradation in the potato system under field conditions of FLC were conducted. The four FLC stereoisomers were effectively separated on a superchiral S-AD column. The absolute configurations of the four stereoisomers of FLC were confirmed as (-)-(3S, 4S), (+)-(3S, 4R), (-)-(3R, 4S), and (+)-(3R, 4R)-FLC using single-crystal X-ray diffraction. The activities of the four stereoisomers were in the order of (-)-(3S, 4S)-FLC > (+)-(3R, 4R)-FLC > (+)-(3S, 4R)-FLC > (-)-(3R, 4S)-FLC, and the rate of selective degradation were in the order of (-)-(3R, 4S)-FLC > (+)-(3R, 4R)-FLC > (-)-(3S, 4R)-FLC > (+)-(3S, 4S)-FLC. The toxicity of the isomers were in the order of (-)-(3R, 4S)-FLC > (+)-(3R, 4R)-FLC > (-)-(3S, 4S)-FLC > (+)-(3S, 4R). Based on the results of bioactivity, toxicity, and degradation behavior assessments, the stereoisomer mixture containing (3R,4R)-FLC and (3S,4S)-FLC was concluded to be a better option than racemic FLC for increasing bioactivity and reducing usage.

18.
Adv Sci (Weinh) ; : e2402889, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38894560

ABSTRACT

The inefficiency of electrocatalysts for water splitting in neutral media stems from a comprehensive impact of poor intrinsic activity, a limited number of active sites, and inadequate mass transport. Herein, hierarchical ultrathin NiCo2Se4 nanosheets are synthesized by the selenization of NiCo2O4 porous nanoneedles. Theoretical and experimental investigations reveal that the intrinsic hydrogen evolution reaction (HER) activity primarily originate from the NiCo2Se4, whereas the high oxygen evolution reaction (OER) performance is related to the NiCoOOH due to the structural reconstruction. The abundant Se and O vacancies introduced by atomically thin nanostructure modulate the electronic structure of NiCo2Se4 and NiCoOOH, thereby improving the intrinsic HER and OER activities, respectively. COMSOL simulation demonstrate the edges of extended nanosheets from the main body significantly promote the charge aggregation, boosting the reduction and oxidation current during HER/OER process. This charge aggregation effect notably exceeds the tip effect for the nanoneedle, highlighting the unique advantage of the hierarchical nanosheet structure. Benefiting from abundant vacancies and unique nanostructure, the hierarchical ultrathin nanosheet simultaneously improve the thermodynamics and kinetics of the electrocatalyst. The optimized samples display an overpotential of 92 mV for HER and 214 mV for OER at 100 mA cm-2, significantly surpassing the performance of currently reported HER/OER catalysts in neutral media.

19.
Angew Chem Int Ed Engl ; : e202408551, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858167

ABSTRACT

Heat-activated second harmonic generation (SHG) switching materials are gaining interest for their ability to switch between SHG on and off states, offering potential in optoelectronic applications. The novel nonlinear optical (NLO) switch, (C5H6NO)+(CH3SO3)- (4-hydroxypyridinium methylsulfonate, 4HPMS), is a near-room-temperature thermal driven material with a strong SHG response (3.3 × KDP), making it one of the most potent heat-stimulated NLO switches. It offers excellent contrast of 13 and a high laser-induced damage threshold (2.5 × KDP), with reversibility > 5 cycles. At 73 °C, 4HPMS transitions from the noncentrosymmetric Pna21 room temperature phase (RTP) to the centrosymmetric P21/c phase, caused by the rotation of the (C5H6NO)+ and (CH3SO3)- due to partially thermal breaking of intermolecular hydrogen bonds. The reverse phase change exhibits a large 50 °C thermal hysteresis. Density functional theory (DFT) calculations show that (C5H6NO)+ primarily dictates both the SHG coefficient (dij) and birefringence (∆n(Zeiss) = 0.216 vs ∆n(cal.) = 0.202 at 546 nm; Δn(Immersion) = 0.210 vs ∆n(cal.) = 0.198 at 589.3 nm), while the band gap (Eg) is influenced synergistically by (C5H6NO)+ and (CH3SO3)-. Additionally, 4HPMS-RTP also exhibits mechanochromism upon grinding as well as an aggregation-enhanced emission in a mixture of acetone and water.

20.
Materials (Basel) ; 17(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38893792

ABSTRACT

Aluminum alloy plates are widely used to manufacture large-scale integral structure parts in the field of aerospace. During the forming and processing of aluminum alloy plates, different degrees of residual stress are inevitably produced. Fast and accurate detection of residual stress is very essential to ensuring the quality of these plates. In this work, the longitudinal critically refracted (LCR) wave detection method based on a one-transmitter and double-receiver (OTDR) transducer and the finite element simulation were employed to obtain the residual stress. Aluminum alloy plates with different deformation amounts were fabricated by rotary forging to obtain different residual stress states. Results reveal that the plate formed by rotary forging is in a stress state of central tension and edge compression. As the deformation increases from 20% to 60%, the peak residual tensile stress increases from 156 MPa to 262 MPa, and there is no significant difference in the peak compressive stress. When the deformation reaches 60%, the difference in the residual stresses at different depths is less than 13%, which indicates that the plastic deformation zone basically penetrates the entire longitudinal cross-section of the plate. The maximum deviation between measurement and FE is 61 MPa, which means the experimental data are in good agreement with the FE results.

SELECTION OF CITATIONS
SEARCH DETAIL