Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 446
1.
Sci Adv ; 10(21): eadj8184, 2024 May 24.
Article En | MEDLINE | ID: mdl-38781332

Sinking particles are a critical conduit for the transport of surface microbes to the ocean's interior. Vertical connectivity of phylogenetic composition has been shown; however, the functional vertical connectivity of microbial communities has not yet been explored in detail. We investigated protein and taxa profiles of both free-living and particle-attached microbial communities from the surface to 3000 m depth using a combined metaproteomic and 16S rRNA amplicon sequencing approach. A clear compositional and functional vertical connectivity of microbial communities was observed throughout the water column with Oceanospirillales, Alteromonadales, and Rhodobacterales as key taxa. The surface-derived particle-associated microbes increased the expression of proteins involved in basic metabolism, organic matter processing, and environmental stress response in deep waters. This study highlights the functional vertical connectivity between surface and deep-sea microbial communities via sinking particles and reveals that a considerable proportion of the deep-sea microbes might originate from surface waters and have a major impact on the biogeochemical cycles in the deep sea.


Microbiota , Oceans and Seas , Phylogeny , RNA, Ribosomal, 16S , Seawater , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Bacteria/genetics , Bacteria/classification
2.
J Neurochem ; 2024 May 17.
Article En | MEDLINE | ID: mdl-38761015

Most central nervous diseases are accompanied by astrocyte activation. Autophagy, an important pathway for cells to protect themselves and maintain homeostasis, is widely involved in regulation of astrocyte activation. Reactive astrocytes may play a protective or harmful role in different diseases due to different phenotypes of astrocytes. It is an urgent task to clarify the formation mechanisms of inflammatory astrocyte phenotype, A1 astrocytes. Sestrin2 is a highly conserved protein that can be induced under a variety of stress conditions as a potential protective role in oxidative damage process. However, whether Sestrin2 can affect autophagy and involve in A1 astrocyte conversion is still uncovered. In this study, we reported that Sestrin2 and autophagy were significantly induced in mouse hippocampus after multiple intraperitoneal injections of lipopolysaccharide, with the elevation of A1 astrocyte conversion and inflammatory mediators. Knockdown Sestrin2 in C8-D1A astrocytes promoted the levels of A1 astrocyte marker C3 mRNA and inflammatory factors, which was rescued by autophagy inducer rapamycin. Overexpression of Sestrin2 in C8-D1A astrocytes attenuated A1 astrocyte conversion and reduced inflammatory factor levels via abundant autophagy. Moreover, Sestrin2 overexpression improved mitochondrial structure and morphology. These results suggest that Sestrin2 can suppress neuroinflammation by inhibiting A1 astrocyte conversion via autophagy, which is a potential drug target for treating neuroinflammation.

3.
Int J Oral Sci ; 16(1): 32, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38627388

Malocclusion, identified by the World Health Organization (WHO) as one of three major oral diseases, profoundly impacts the dental-maxillofacial functions, facial esthetics, and long-term development of ~260 million children in China. Beyond its physical manifestations, malocclusion also significantly influences the psycho-social well-being of these children. Timely intervention in malocclusion can foster an environment conducive to dental-maxillofacial development and substantially decrease the incidence of malocclusion or reduce the severity and complexity of malocclusion in the permanent dentition, by mitigating the negative impact of abnormal environmental influences on the growth. Early orthodontic treatment encompasses accurate identification and treatment of dental and maxillofacial morphological and functional abnormalities during various stages of dental-maxillofacial development, ranging from fetal stages to the early permanent dentition phase. From an economic and societal standpoint, the urgency for effective early orthodontic treatments for malocclusions in childhood cannot be overstated, underlining its profound practical and social importance. This consensus paper discusses the characteristics and the detrimental effects of malocclusion in children, emphasizing critical need for early treatment. It elaborates on corresponding core principles and fundamental approaches in early orthodontics, proposing comprehensive guidance for preventive and interceptive orthodontic treatment, serving as a reference for clinicians engaged in early orthodontic treatment.


Malocclusion , Humans , Child , Consensus , Malocclusion/epidemiology , Dental Care , China
4.
Regen Biomater ; 11: rbae035, 2024.
Article En | MEDLINE | ID: mdl-38628545

Adipose mesenchymal stem cell (ADMSC)-derived exosomes (ADMSC-Exos) have shown great potential in regenerative medicine and been evidenced benefiting wound repair such as burns. However, the low yield, easy loss after direct coating, and no suitable loading system to improve their availability and efficacy hinder their clinical application for wound healing. And few studies focused on the comparison of biological functions between exosomes derived from different culture techniques, especially in exosome-releasing hydrogel system. Therefore, we designed a high-performance exosome controllable releasing hydrogel system for burn wound healing, namely loading 3D-printed microfiber culture-derived exosomes in a highly biocompatible hyaluronic acid (HA). In this project, we compared the biological functions in vitro and in a burn model among exosomes derived from the conventional two-dimensional (2D) plate culture (2D-Exos), microcarrier culture (2.5D-Exos), and 3D-printed microfiber culture (3D-Exos). Results showed that compared with 2D-Exos and 2.5D-Exos, 3D-Exos promoted HACATs and HUVECs cell proliferation and migration more significantly. Additionally, 3D-Exos had stronger angiogenesis-promoting effects in tube formation of (HUVECs) cells. Moreover, we found HA-loaded 3D-Exos showed better burn wound healing promotion compared to 2D-Exos and 2.5D-Exos, including accelerated burn wound healing rate and better collagen remodeling. The study findings reveal that the HA-loaded, controllable-release 3D-Exos repair system distinctly augments therapeutic efficacy in terms of wound healing, while concurrently introducing a facile application approach. This system markedly bolsters the exosomal loading efficiency, provides a robust protective milieu, and potentiates the inherent biological functionalities of the exosomes. Our findings provide a rationale for more efficient utilization of high-quality and high-yield 3D exosomes in the future, and a novel strategy for healing severe burns.

5.
PLoS One ; 19(4): e0289902, 2024.
Article En | MEDLINE | ID: mdl-38683834

Mantle cell lymphoma (MCL) has a poor prognosis and high relapse rates despite current therapies, necessitating novel treatment regimens. Inhibition of SRC-3 show effectiveness in vivo and in vitro in other B cell lymphomas. Additionally, previous studies have shown that SRC-3 is highly expressed in the lymph nodes of B cell non-Hodgkin's lymphoma patients, suggesting SRC-3 may play a role in the progression of B cell lymphoma. This study aimed to investigate novel SRC-3 inhibitors, SI-10 and SI-12, in mantle cell lymphoma. The cytotoxic effects of SI-10 and SI-12 were evaluated in vitro and demonstrated dose-dependent cytotoxicity in a panel of MCL cell lines. The in vivo efficacy of SI-10 was confirmed in two ibrutinib-resistant models: an immunocompetent disseminated A20 mouse model of B-cell lymphoma and a human PDX model of MCL. Notably, SI-10 treatment also resulted in a significant extension of survival in vivo with low toxicity in both ibrutinib-resistant murine models. We have investigated SI-10 as a novel anti-lymphoma compound via the inhibition of SRC-3 activity. These findings indicate that targeting SRC-3 should be investigated in combination with current clinical therapeutics as a novel strategy to expand the therapeutic index and to improve lymphoma outcomes.


Adenine/analogs & derivatives , Lymphoma, Mantle-Cell , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/pathology , Animals , Humans , Mice , Cell Line, Tumor , Adenine/pharmacology , Adenine/therapeutic use , Piperidines/pharmacology , Piperidines/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Drug Resistance, Neoplasm/drug effects , Xenograft Model Antitumor Assays , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Female
6.
Eur J Prev Cardiol ; 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38629743

AIMS: The relationships between long-term blood pressure (BP) measures and intracerebral hemorrhage (ICH), as well as their predictive ability on ICH, were unclear. We aimed to investigate the independent associations of multiple BP measures with subsequent 5-year ICH risk, as well as the incremental value of these measures over a single-point BP measurement in ICH risk prediction. METHODS: We included 12,398 participants from the China Kadoorie Biobank (CKB) who completed three surveys every four to five years. The following long-term BP measures were calculated: mean, minimum, maximum, standard deviation, coefficient of variation, average real variability, and cumulative BP exposure (cumBP). Cox proportional hazard models were used to examine the associations between these measures and ICH. The potential incremental value of these measures in ICH risk prediction was assessed using Harrell's C statistics, continuous net reclassification improvement (cNRI), and relative integrated discrimination improvement (rIDI). RESULTS: The hazard ratios (95% confidence intervals) of incident ICH associated with per SD increase in cumSBP and cumDBP were 1.62 (1.25, 2.10) and 1.59 (1.23, 2.07), respectively. When cumBP was added to the conventional 5-year ICH risk prediction model, the C-statistic change was 0.009 (-0.001, 0.019), the cNRI was 0.267 (0.070, 0.464), and the rIDI was 18.2% (5.8%, 30.7%). Further subgroup analyses revealed a consistent increase in cNRI and rIDI in men, rural residents, and participants without diabetes. Other long-term BP measures showed no statistically significant associations with incident ICH and generally did not improve model performance. CONCLUSION: The nearly 10-year cumBP was positively associated with an increased 5-year risk of ICH and could significantly improve risk reclassification for the ICH risk prediction model that included single-point BP measurement.


This prospective cohort study of Chinese adults investigated the independent associations of multiple blood pressure (BP) measures with subsequent 5-year intracerebral hemorrhage (ICH) risk, as well as the incremental value of these measures over a single-point BP measurement in ICH risk prediction. The cumulative BP exposure (cumBP) was positively associated with subsequent 5-year risk of ICH, independent of the recent single-point SBP and DBP levels.The cumBP could improve the risk reclassification of the conventional 5-year ICH risk prediction model that included single-point BP measurement for all participants, as well as for men, rural residents, and participants without diabetes.

7.
Article En | MEDLINE | ID: mdl-38607719

By generating massive gene transcriptome data and analyzing transcriptomic variations at the cell level, single-cell RNA-sequencing (scRNA-seq) technology has provided new way to explore cellular heterogeneity and functionality. Clustering scRNA-seq data could discover the hidden diversity and complexity of cell populations, which can aid to the identification of the disease mechanisms and biomarkers. In this paper, a novel method (DSINMF) is presented for single cell RNA sequencing data by using deep matrix factorization. Our proposed method comprises four steps: first, the feature selection is utilized to remove irrelevant features. Then, the dropout imputation is used to handle missing value problem. Further, the dimension reduction is employed to preserve data characteristics and reduce noise effects. Finally, the deep matrix factorization with bi-stochastic graph regularization is used to obtain cluster results from scRNA-seq data. We compare DSINMF with other state-of-the-art algorithms on nine datasets and the results show our method outperformances than other methods.

8.
Nat Prod Rep ; 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38651516

Covering: 1993 to the end of 2022As the rapid development of antibiotic resistance shrinks the number of clinically available antibiotics, there is an urgent need for novel options to fill the existing antibiotic pipeline. In recent years, antimicrobial peptides have attracted increased interest due to their impressive broad-spectrum antimicrobial activity and low probability of antibiotic resistance. However, macromolecular antimicrobial peptides of plant and animal origin face obstacles in antibiotic development because of their extremely short elimination half-life and poor chemical stability. Herein, we focus on medium-sized antibacterial peptides (MAPs) of microbial origin with molecular weights below 2000 Da. The low molecular weight is not sufficient to form complex protein conformations and is also associated to a better chemical stability and easier modifications. Microbially-produced peptides are often composed of a variety of non-protein amino acids and terminal modifications, which contribute to improving the elimination half-life of compounds. Therefore, MAPs have great potential for drug discovery and are likely to become key players in the development of next-generation antibiotics. In this review, we provide a detailed exploration of the modes of action demonstrated by 45 MAPs and offer a concise summary of the structure-activity relationships observed in these MAPs.

9.
Molecules ; 29(7)2024 Apr 08.
Article En | MEDLINE | ID: mdl-38611953

Bacterial virulence factors and biofilm development can be controlled by the quorum-sensing (QS) system, which is also intimately linked to antibiotic resistance in bacteria. In previous studies, many researchers found that quorum-sensing inhibitors (QSIs) can affect the development of bacterial biofilms and prevent the synthesis of many virulence factors. However, QSIs alone have a limited ability to suppress bacteria. Fortunately, when QSIs are combined with antibiotics, they have a better therapeutic effect, and it has even been demonstrated that the two together have a synergistic antibacterial effect, which not only ensures bactericidal efficiency but also avoids the resistance caused by excessive use of antibiotics. In addition, some progress has been made through in vivo studies on the combination of QSIs and antibiotics. This article mainly expounds on the specific effect of QSIs combined with antibiotics on bacteria and the combined antibacterial mechanism of some QSIs and antibiotics. These studies will provide new strategies and means for the clinical treatment of bacterial infections in the future.


Anti-Bacterial Agents , Bacterial Infections , Humans , Anti-Bacterial Agents/pharmacology , Bacterial Infections/drug therapy , Quorum Sensing , Biofilms , Virulence Factors
10.
J Med Chem ; 67(7): 5333-5350, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38551814

Steroid receptor coactivator 3 (SRC-3) is a critical mediator of many intracellular signaling pathways that are crucial for cancer proliferation and metastasis. In this study, we performed structure-activity relationship exploration and drug-like optimization of the hit compound SI-2, guided by in vitro/in vivo metabolism studies and cytotoxicity assays. Our efforts led to the discovery of two lead compounds, SI-10 and SI-12. Both compounds exhibit potent cytotoxicity against a panel of human cancer cell lines and demonstrate acceptable pharmacokinetic properties. A biotinylated estrogen response element pull-down assay demonstrated that SI-12 could disrupt the recruitment of SRC-3 and p300 in the estrogen receptor complex. Importantly, SI-10 and SI-12 significantly inhibited tumor growth and metastasis in vivo without appreciable acute toxicity. These results demonstrate the potential of SI-10 and SI-12 as drug candidates for cancer therapy, given their potent SRC-3 inhibition and promising pharmacokinetic and toxicity profiles.


Antineoplastic Agents , Neoplasms , Humans , Nuclear Receptor Coactivator 3/metabolism , Cell Line , Structure-Activity Relationship , Signal Transduction , Cell Proliferation , Cell Line, Tumor , Antineoplastic Agents/pharmacology
11.
Regen Biomater ; 11: rbae021, 2024.
Article En | MEDLINE | ID: mdl-38525324

There are many instances of hollow-structure morphogenesis in the development of tissues. Thus, the fabrication of hollow structures in a simple, high-throughput and homogeneous manner with proper natural biomaterial combination is valuable for developmental studies and tissue engineering, while it is a significant challenge in biofabrication field. We present a novel method for the fabrication of a hollow cell module using a coaxial co-flow capillary microfluidic device. Sacrificial gelatin laden with cells in the inner layer and GelMa in the outer layer are used via a coaxial co-flow capillary microfluidic device to produce homogenous micro-beads. The overall and core sizes of core-shell microbeads were well controlled. When using human vein vascular endothelial cells to demonstrate how cells line the inner surface of core-shell beads, as the core liquifies, a hollow cell ball with asymmetric features is fabricated. After release from the GelMa shell, individual cell balls are obtained and deformed cell balls can self-recover. This platform paves way for complex hollow tissue modeling in vitro, and further modulation of matrix stiffness, curvature and biochemical composition to mimic in vivo microenvironments.

12.
ACS Sens ; 9(2): 1023-1030, 2024 Feb 23.
Article En | MEDLINE | ID: mdl-38353664

The development of highly sensitive and selective analytical approaches for monitoring enzymatic activity is critical for disease diagnosis and biomedical research. Herein, we develop an exogenous co-reactant-free electrochemiluminescence (ECL) biosensor for the ratiometric measurement of α-glucosidase (α-Glu) based on a zeolitic imidazolate framework (ZIF-67)-regulated pyrene-based hydrogen-bonded organic framework (HOF-101). Target α-Glu can hydrolyze maltose to α-d-glucose, which can subsequently react with GOx to produce gluconic acid. The resultant gluconic acid can dissolve ZIF-67, leading to the recovery of the HOF-101 cathodic ECL signal and the decrease of the luminol anodic ECL signal. The long-range ordered structure of HOF-101 can speed up charge transfer, resulting in a stable and strong cathodic ECL signal. Moreover, ZIF-67 can not only efficiently quench the ECL signal of HOF-101 due to ECL resonance energy transfer between HOF-101 and ZIF-67 as well as the steric hindrance effect of ZIF-67 but also enhance the anodic ECL emission of luminol in dissolved O2 system because of its ordered and porous crystalline structure and the atomically dispersed Co2+. Notably, HOF-101 possesses a higher ECL efficiency (32.22%) compared with the Ru(bpy)32+ standard. Importantly, this ratiometric ECL biosensor shows high sensitivity (a detection limit of 0.19 U L-1) and a broad linear range (0.2-50 U L-1). This biosensor can efficiently eliminate systematic errors and enhance detection reliability without the involvement of exogenous co-reactants, and it displays good assay performance in human serum samples, holding great promise in biomedical research studies.


Biosensing Techniques , Gluconates , alpha-Glucosidases , Humans , Luminescent Measurements/methods , Reproducibility of Results , Luminol , Biosensing Techniques/methods
13.
Front Med (Lausanne) ; 11: 1303855, 2024.
Article En | MEDLINE | ID: mdl-38384412

Background: SARS-CoV-2 could trigger multiple immune responses, leading to several autoimmune diseases, including thyroid diseases. Many cases of thyroid diseases caused by COVID-19 infection have been reported. Here, we describe the disease development of patients with autoimmune thyroid disease after COVID-19 infection. Methods: The clinical characteristics, diagnosis and treatment of five different patients with autoimmune thyroid disease after COVID-19 infection were reported. Results: Female patients with primary autoimmune thyroid disease which have been stable for many years were reported. One month after COVID-19 infection, the disease has undergone different evolution. Case 1, a patient with history of long-term stable Hashimoto's thyroiditis, suddenly suffered from Graves disease after COVID-19 infection. Case 2, a patient with history of long-term stable Hashimoto's thyroiditis with thyroid nodules, suddenly suffered from Graves disease after infection. Case 3, a patient with history of long-term stable Graves disease, suddenly suffered from worsening after infection. The above three cases showed thyroid-stimulating antibodies were enhanced. Case 4, a patient with history of previous hypothyroidism had an increase in thyroid-related antibody (TPOAb and TRAb) activity after infection, followed by a marked worsening of hypothyroidism. Case 5, a patient with no history of thyroid disease suddenly developed controllable "thyrotoxicosis" after infection, suggesting the diagnosis of painless thyroiditis. Conclusion: The five case reports show a different development of the primary autoimmune thyroid disease after COVID-19 infection. The change in the trend of thyroid disease is closely related to the immune response induced by SARS-CoV-2 infection.

14.
Microbiol Spectr ; 12(3): e0217723, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38319114

Lineage-wise physiological activities of plankton communities in the ocean are important but challenging to characterize. Here, we conducted whole-assemblage metatranscriptomic profiling at continental shelf and slope sites in the South China Sea to investigate carbon fixation potential in different lineages. RuBisCO expression, the proxy of Calvin carbon fixation (CCF) potential, was mainly contributed by Bacillariophyta, Chlorophyta, Cyanobacteria, and Haptophyta, which was differentially affected by environmental factors among lineages. CCF potential exhibited positive or negative correlations with phagotrophy gene expression, suggesting phagotrophy possibly enhances or complements CCF. Our data also reveal significant non-Calvin carbon fixation (NCF) potential, as indicated by the active expression of genes in all five currently recognized NCF pathways, mainly contributed by Flavobacteriales, Alteromonadales, and Oceanospirillales. Furthermore, in Flavobacteriales, Alteromonadales, Pelagibacterales, and Rhodobacterales, NCF potential was positively correlated with proton-pump rhodopsin (PPR) expression, suggesting that NCF might be energetically supported by PPR. The novel insights into the lineage-differential potential of carbon fixation, widespread mixotrophy, and PPR as an energy source for NCF lay a methodological and informational foundation for further research to understand carbon fixation and the trophic landscape in the ocean.IMPORTANCEMarine plankton plays an important role in global carbon cycling and climate regulation. Phytoplankton and cyanobacteria fix CO2 to produce organic compounds using solar energy and mainly by the Calvin cycle, whereas autotrophic bacteria and archaea may fix CO2 by non-Calvin cycle carbon fixation pathways. How active individual lineages are in carbon fixation and mixotrophy, and what energy source bacteria may employ in non-Calvin carbon fixation, in a natural plankton assemblage are poorly understood and underexplored. Using metatranscriptomics, we studied carbon fixation in marine plankton with lineage resolution in tropical marginal shelf and slope areas. Based on the sequencing results, we characterized the carbon fixation potential of different lineages and assessed Calvin- and non-Calvin- carbon fixation activities and energy sources. Data revealed a high number of unigenes (4.4 million), lineage-dependent differential potentials of Calvin carbon fixation and responses to environmental conditions, major contributors of non-Calvin carbon fixation, and their potential energy source.


Cyanobacteria , Flavobacteriaceae , Gammaproteobacteria , Plankton/genetics , Carbon Dioxide/metabolism , Archaea/metabolism , Flavobacteriaceae/metabolism , Gammaproteobacteria/metabolism , Gene Expression Profiling , Carbon/metabolism
15.
ACS Appl Mater Interfaces ; 16(8): 10877-10885, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38360529

Sharp and clean interfaces of van der Waals (vdW) heterostructures are highly demanded in two-dimensional (2D) materials-based devices. However, current assembly methods usually cause interfacial bubbles and wrinkles, hindering carrier interlayer transport. The preparation of a large-scale vdW heterostructure with a bubble-free interface is still a challenge. Although many efforts have been made to eliminate bubbles, the evolution processes of the interfacial bubbles are rarely studied. Here, the interface bubble formation and evolution of the transferred 2D materials and their vdW heterostructure are systemically studied by the atomic force microscopy (AFM) technique and high-resolution surface current mapping. A thermal annealing procedure is developed to reduce the number of bubbles and to improve the quality of interfaces. In addition, influences of the interface residues and nanosteps on bubble evolution are also discussed. Further, we develop the polystyrene (PS)-mediated polydimethylsiloxane (PDMS) transfer technique to realize the high-quality transfer of heterostructure arrays. Finally, high-resolution surface current mapping results confirm that we can now produce highly uniform electrical conduction interfaces of heterojunctions. This study provides guidance for assembling high quality interfaces and paves the way for production of bubble-free heterostructure-based electronic devices with high performance and good uniformity.

16.
ISME J ; 18(1)2024 Jan 08.
Article En | MEDLINE | ID: mdl-38366194

Domestic pigs (Sus scrofa) are the leading terrestrial animals used for meat production. The gut microbiota significantly affect host nutrition, metabolism, and immunity. Hence, characterization of the gut microbial structure and function will improve our understanding of gut microbial resources and the mechanisms underlying host-microbe interactions. Here, we investigated the gut microbiomes of seven pig breeds using metagenomics and 16S rRNA gene amplicon sequencing. We established an expanded gut microbial reference catalog comprising 17 020 160 genes and identified 4910 metagenome-assembled genomes. We also analyzed the gut resistome to provide an overview of the profiles of the antimicrobial resistance genes in pigs. By analyzing the relative abundances of microbes, we identified three core-predominant gut microbes (Phascolarctobacterium succinatutens, Prevotella copri, and Oscillibacter valericigenes) in pigs used in this study. Oral administration of the three core-predominant gut microbes significantly increased the organ indexes (including the heart, spleen, and thymus), but decreased the gastrointestinal lengths in germ-free mice. The three core microbes significantly enhanced intestinal epithelial barrier function and altered the intestinal mucosal morphology, as was evident from the increase in crypt depths in the duodenum and ileum. Furthermore, the three core microbes significantly affected several metabolic pathways (such as "steroid hormone biosynthesis," "primary bile acid biosynthesis," "phenylalanine, tyrosine and tryptophan biosynthesis," and "phenylalanine metabolism") in germ-free mice. These findings provide a panoramic view of the pig gut microbiome and insights into the functional contributions of the core-predominant gut microbes to the host.


Gastrointestinal Microbiome , Animals , Mice , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Gastrointestinal Tract , Metagenomics , Phenylalanine
17.
Medicine (Baltimore) ; 103(6): e37097, 2024 Feb 09.
Article En | MEDLINE | ID: mdl-38335405

INTRODUCTION: Cellular blue nevus is an uncommon neoplasm in the spine. PATIENT CONCERNS: Here, we present a case of a 24 years old male with a 2 months history of numbness in the right upper limb and shoulder. DIAGNOSIS: Cervical spine and subcutaneous tissue invasive cellular blue nevus. INTERVENTIONS: The patient underwent C4 laminectomy and partial C3 and C5 laminectomy for total resection of the lesion. Histopathology revealed a nodular tumor with unclear boundaries, which was composed of heavily pigmented dendritic cells and more pigmented spindle cells. OUTCOMES: There was no recurrence during 3 years follow-up. CONCLUSION: Invasive cellular blue nevus of the spine can be wrongly diagnosed as spinal meningeal melanocytoma and meningeal melanoma due to its special cell behavior and rarity. Therefore, it is important to understand its pathological and clinical characteristics to avoid over-treatment.


Melanoma , Meningeal Neoplasms , Nevus, Blue , Nevus, Pigmented , Skin Neoplasms , Humans , Male , Young Adult , Cervical Vertebrae/pathology , Melanoma/pathology , Meningeal Neoplasms/pathology , Nevus, Blue/diagnosis , Nevus, Blue/surgery , Skin Neoplasms/diagnosis , Skin Neoplasms/surgery , Skin Neoplasms/pathology
18.
Sci Rep ; 14(1): 1292, 2024 01 14.
Article En | MEDLINE | ID: mdl-38221534

The Illumina HiSeq platform has been a commonly used option for bacterial genome sequencing. Now the BGI DNA nanoball (DNB) nanoarrays platform may provide an alternative platform for sequencing of bacterial genomes. To explore the impact of sequencing platforms on bacterial genome assembly, quality assessment, sequence alignment, functional annotation, mutation detection, and metagenome mapping, we compared genome assemblies based on sequencing of cultured bacterial species using the HiSeq 2000 and BGISEQ-500 platforms. In addition, simulated reads were used to evaluate the impact of insert size on genome assembly. Genome assemblies based on BGISEQ-500 sequencing exhibited higher completeness and fewer N bases in high GC genomes, whereas HiSeq 2000 assemblies exhibited higher N50. The majority of assembly assessment parameters, sequences of 16S rRNA genes and genomes, numbers of single nucleotide variants (SNV), and mapping to metagenome data did not differ significantly between platforms. More insertions were detected in HiSeq 2000 genome assemblies, whereas more deletions were detected in BGISEQ-500 genome assemblies. Insert size had no significant impact on genome assembly. Taken together, our results suggest that DNBSEQ platforms would be a valid substitute for HiSeq 2000 for bacterial genome sequencing.


DNA , Genome, Bacterial , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods , Bacteria/genetics
19.
Article En | MEDLINE | ID: mdl-38277723

One of the primary components that contribute to Artemisia argyi 's effectiveness is essential oil, which has an exceptional antibacterial effect that has been well documented. The actual cause of its antibacterial activity and associated mechanism, however, are still not completely understood. For the first time, comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (2D GC × GC-TOFMS) and thin-layer chromatography-direct bioautography (TLC-DB) were employed to investigate its antibacterial components. The antibacterial properties of A. argyi essential oil were investigated, and the antibacterial activity of six compounds was evaluated, using Staphylococcus aureus (S. aureus) and Escherichia coli (E. coil) as test microorganisms. TLC-direct bioautography was used to screen two bioactive clusters. Following 2D GC × GC-TOFMS identification of bioactive clusters, six compounds were evaluated for in vitro antibacterial activity verification. All the components tested displayed antibacterial action. Results showed that α-terpineol and eugenol had high potent antibacterial activity (MIC<0.62 mg/mL, IC50<2.00 mg/mL). For complex essential oils from traditional Chinese medicine, this method is efficient for quick screening and identifying antibacterial compounds.


Artemisia , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Gas Chromatography-Mass Spectrometry/methods , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli
20.
Neurospine ; 21(1): 330-341, 2024 Mar.
Article En | MEDLINE | ID: mdl-38291747

OBJECTIVE: Hypertrophy ligamentum flavum (LFH) is a common cause of lumbar spinal stenosis, resulting in significant disability and morbidity. Although long noncoding RNAs (lncRNAs) have been associated with various biological processes and disorders, their involvement in LFH remains not fully understood. METHODS: Human ligamentum flavum samples were analyzed using lncRNA sequencing followed by validation through quantitative real-time polymerase chain reaction. To explore the potential biological functions of differentially expressed lncRNA-associated genes, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. We also studied the impact of lncRNA PARD3-AS1 on the progression of LFH in vitro. RESULTS: In the LFH tissues when compared to that in the nonhypertrophic ligamentum flavum (LFN) tissues, a total of 1,091 lncRNAs exhibited differential expression, with 645 upregulated and 446 downregulated. Based on GO analysis, the differentially expressed transcripts primarily participated in metabolic processes, organelles, nuclear lumen, cytoplasm, protein binding, nucleic acid binding, and transcription factor activity. Moreover, KEGG pathway analysis indicated that the differentially expressed lncRNAs were associated with the hippo signaling pathway, nucleotide excision repair, and nuclear factor-kappa B signaling pathway. The expression of PARD3-AS1, RP11-430G17.3, RP1-193H18.3, and H19 was confirmed to be consistent with the sequencing analysis. Inhibition of PARD3-AS1 resulted in the suppression of fibrosis in LFH cells, whereas the overexpression of PARD3-AS1 promoted fibrosis in LFH cells in vitro. CONCLUSION: This study identified distinct expression patterns of lncRNAs that are linked to LFH, providing insights into its underlying mechanisms and potential prognostic and therapeutic interventions. Notably, PARD3-AS1 appears to play a significant role in the pathophysiology of LFH.

...