Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 60
1.
Mol Genet Genomics ; 299(1): 50, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734849

Intracerebral hemorrhage (ICH) is one of the major causes of death and disability, and hypertensive ICH (HICH) is the most common type of ICH. Currently, the outcomes of HICH patients remain poor after treatment, and early prognosis prediction of HICH is important. However, there are limited effective clinical treatments and biomarkers for HICH patients. Although circRNA has been widely studied in diseases, the role of plasma exosomal circRNAs in HICH remains unknown. The present study was conducted to investigate the characteristics and function of plasma exosomal circRNAs in six HICH patients using circRNA microarray and bioinformatics analysis. The results showed that there were 499 differentially expressed exosomal circRNAs between the HICH patients and control subjects. According to GO annotation and KEGG pathway analyses, the targets regulated by differentially expressed exosomal circRNAs were tightly related to the development of HICH via nerve/neuronal growth, neuroinflammation and endothelial homeostasis. And the differentially expressed exosomal circRNAs could mainly bind to four RNA-binding proteins (EIF4A3, FMRP, AGO2 and HUR). Moreover, of differentially expressed exosomal circRNAs, hsa_circ_00054843, hsa_circ_0010493 and hsa_circ_00090516 were significantly associated with bleeding volume and Glasgow Coma Scale score of the subjects. Our findings firstly revealed that the plasma exosomal circRNAs are significantly involved in the progression of HICH, and could be potent biomarkers for HICH. This provides the basis for further research to pinpoint the best biomarkers and illustrate the mechanism of exosomal circRNAs in HICH.


Exosomes , RNA, Circular , Humans , RNA, Circular/genetics , RNA, Circular/blood , Exosomes/genetics , Exosomes/metabolism , Male , Female , Middle Aged , Aged , Intracranial Hemorrhage, Hypertensive/genetics , Intracranial Hemorrhage, Hypertensive/blood , Biomarkers/blood , Computational Biology/methods , Gene Expression Profiling , Cerebral Hemorrhage/genetics , Cerebral Hemorrhage/blood , Gene Regulatory Networks
2.
Open Med (Wars) ; 19(1): 20240899, 2024.
Article En | MEDLINE | ID: mdl-38463525

Background: N6-methyladenosine (m6A) is the most frequently occurring interior modification in eukaryotic messenger RNA (mRNA), and abnormal mRNA modifications can affect many biological processes. However, m6A's effect on the metabolism of antiplatelet drugs for the prevention of ischemic stroke (IS) remains largely unclear. Methods: We analyzed the m6A enzymes and m6A methylation in peripheral blood samples of IS patients with/without clopidogrel resistance (CR), and the peripheral blood and liver of rat models with/without CR. We also compared the effect of m6A methylation on the expression of the drug-metabolizing enzymes (CYP2C19 and CYP2C6v1) in CR and non-CR samples. Results: Methyltransferase-like 3 (METTL3), an m6A enzyme, was highly expressed in the peripheral blood of patients with CR, and in both the peripheral blood and liver of rats with CR. This enzyme targets CYP2C19 or CYP2C6v1 mRNA through m6A methylation, resulting in low expression of CYP2C19 or CYP2C6v1 mRNA. Consequently, this leads to decreased clopidogrel metabolism and CR. Conclusion: The METTL3-mediated methylation of CYP2C19 mRNA may aggravate CR in IS patients.

3.
J Cell Mol Med ; 28(7): e18210, 2024 Apr.
Article En | MEDLINE | ID: mdl-38506071

Extrachromosomal circular DNA (eccDNA) is a new biomarker and regulator of diseases. However, the role of eccDNAs in large-artery atherosclerotic (LAA) stroke remains unclear. Through high-throughput circle-sequencing technique, the length distribution, genomic characteristic and motifs feature of plasma eccDNA from healthy controls (CON) and patients with LAA stroke were analysed. Then, the potential functions of the annotated eccDNAs were investigated using GO and KEGG pathway analyses. EccDNAs mapped to the reference genome showed SHN3 and BCL6 were LAA stroke unique transcription factors. The genes of differentially expressed eccDNAs between LAA stroke patients and CON were mainly involved in axon/dendrite/neuron projection development and maintenance of cellular structure via Wnt, Rap1 and MAPK pathways. Moreover, LAA stroke unique eccDNA genes played a role in regulation of coagulation and fibrinolysis, and there were five LAA stroke unique eccDNAs (Chr2:12724406-12724784, Chr4:1867120-186272046, Chr4:186271494-186271696, Chr7:116560296-116560685 and Chr11:57611780-5761192). Additionally, POLR2C and AURKA carried by ecDNAs (eccDNA size >100 kb) of LAA stroke patients were significantly associated with development of LAA stroke. Our data firstly revealed the characteristics of eccDNA in LAA stroke and the functions of LAA stroke unique eccDNAs and eccDNA genes, suggesting eccDNA is a novel biomarker and mechanism of LAA stroke.


Atherosclerosis , Stroke , Humans , DNA, Circular/genetics , DNA , Genome , Atherosclerosis/genetics , Stroke/genetics , Biomarkers
4.
Sci Rep ; 14(1): 2313, 2024 01 28.
Article En | MEDLINE | ID: mdl-38281996

Sepsis is a common acute and severe medical condition with a high mortality rate. Anoikis, an emerging form of cell death, plays a significant role in various diseases. However, the role of anoikis in sepsis remains poorly understood. Based on the datasets from Gene Expression Omnibus and anoikis-related genes from GeneCards, the differentially expressed anoikis-related genes (DEARGs) were identified. Based on hub genes of DEARGs, a novel prognostic risk model was constructed, and the pattern of immune infiltration was investigated by CIBERSORT algorithm. And small molecule compounds targeting anoikis in sepsis were analyzed using Autodock. Of 23 DEARGs, CXCL8, CFLAR, FASLG and TP53 were significantly associated with the prognosis of sepsis (P < 0.05). Based on the prognostic risk model constructed with these four genes, high-risk population of septic patients had significant lower survival probability than low-risk population (HR = 3.30, P < 0.001). And the level of CFLAR was significantly correlated with the number of neutrophils in septic patients (r = 0.54, P < 0.001). Moreover, tozasertib had low binding energy with CXCL8, CFLAR, FASLG and TP53, and would be a potential compound for sepsis. Conclusively, our results identified a new prognostic model and potential therapeutic molecular for sepsis, providing new insights on mechanism and treatment of sepsis.


Anoikis , Sepsis , Humans , Prognosis , Sepsis/genetics , Algorithms , Cell Death
5.
Neurochem Res ; 49(3): 557-567, 2024 Mar.
Article En | MEDLINE | ID: mdl-38063946

Stroke, the second-largest cause of death and the leading cause of disability globally, presents significant challenges in terms of prognosis and treatment. Identifying reliable prognosis biomarkers and treatment targets is crucial to address these challenges. Circular RNA (circRNA) has emerged as a promising research biomarkers and therapeutic targets because of its tissue specificity and conservation. However, the potential role of circRNA in stroke prognosis and treatment remains largely unexplored. This review briefly elucidate the mechanism underlying circRNA's involvement in stroke pathophysiology. Additionally, this review summarizes the impact of circRNA on different forms of strokes, including ischemic stroke and hemorrhagic stroke. And, this article discusses the positive effects of circRNA on promoting cerebrovascular repair and regeneration, maintaining the integrity of the blood-brain barrier (BBB), and reducing neuronal injury and immune inflammatory response. In conclusion, the significance of circRNA as a potential prognostic biomarker and a viable therapeutic target was underscored.


Ischemic Stroke , Stroke , Humans , RNA, Circular/genetics , Stroke/genetics , Stroke/therapy , Biomarkers , Blood-Brain Barrier
6.
J Interv Cardiol ; 2023: 9322188, 2023.
Article En | MEDLINE | ID: mdl-37637249

Objectives: To evaluate the relationship between the plasma miR-223 expression level and clopidogrel resistance in acute coronary syndrome (ACS) patients. Methods: We performed a search for publications using online databases including PubMed, EMBASE, Cochrane Library, and Chinese Databases (CNKI database, Weipu database, and Wanfang database) from the inception of the databases to June 18, 2023, to identify studies reporting the relationship between the plasma miR-223 level and clopidogrel resistance in ACS patients. Two researchers independently searched and screened to ensure the consistency of the results and assess the quality of the included studies according to the Newcastle-Ottawa scale. A fixed-effects model was used for pooling data with STATA 14.0. Results: Four articles including 399 Chinese ACS patients were eligible for the meta-analysis. Low plasma miR-223 levels were independently correlated with clopidogrel resistance in Chinese ACS patients (OR 0.58, 95% CI: 0.33-1.04). Conclusion: Lower plasma miR-223 levels are associated with clopidogrel resistance in Chinese ACS patients, suggesting that miR-223 may be a potential diagnostic biomarker of clopidogrel resistance.


Acute Coronary Syndrome , Drug Resistance , MicroRNAs , Humans , Acute Coronary Syndrome/blood , Acute Coronary Syndrome/drug therapy , Asian People , Clopidogrel/therapeutic use , Databases, Factual , MicroRNAs/blood , MicroRNAs/genetics , Drug Resistance/genetics , Biomarkers/blood
7.
Obes Facts ; 16(5): 411-426, 2023.
Article En | MEDLINE | ID: mdl-37463570

BACKGROUND: Obesity is a globally increasing health problem that impacts multiple organ systems and a potentially modifiable risk factor for many diseases. Obesity has a significant impact on lung function and is strongly linked to the pathophysiology that contributes to lung diseases. On the other hand, reports have emerged that obesity is associated with a better prognosis than for normal weight individuals in some lung diseases, including pneumonia, acute lung injury/acute respiratory distress syndrome, chronic obstructive pulmonary disease, and lung cancer. The lesser mortality and better prognosis in patients with obesity is known as obesity paradox. While obesity paradox is both recognized and disputed in epidemiological studies, recent research has suggested possible mechanisms. SUMMARY: In this review, we attempted to explain and summarize these factors and mechanisms, including immune response, pulmonary fibrosis, lung function, microbiota, fat and muscle reserves, which are significantly altered by obesity and may contribute to the obesity paradox in lung diseases. We also discuss contrary literature that attributes the "obesity paradox" to confounding. KEY MESSAGES: The review will illustrate the possible role of obesity in the prognosis or course of lung diseases, leading to a better understanding of the obesity paradox and provide hints for further basic and clinical research in lung diseases.


Lung Diseases , Obesity Paradox , Humans , Body Mass Index , Obesity , Risk Factors , Lung Diseases/complications
8.
Nonlinear Dyn ; : 1-17, 2023 Apr 29.
Article En | MEDLINE | ID: mdl-37361002

The COVID-19 pandemic has created an urgent need for mathematical models that can project epidemic trends and evaluate the effectiveness of mitigation strategies. A major challenge in forecasting the transmission of COVID-19 is the accurate assessment of the multiscale human mobility and how it impacts infection through close contacts. By combining the stochastic agent-based modeling strategy and hierarchical structures of spatial containers corresponding to the notion of geographical places, this study proposes a novel model, Mob-Cov, to study the impact of human traveling behavior and individual health conditions on the disease outbreak and the probability of zero-COVID in the population. Specifically, individuals perform power law-type local movements within a container and global transport between different-level containers. It is revealed that frequent long-distance movements inside a small-level container (e.g., a road or a county) and a small population size reduce both the local crowdedness and disease transmission. It takes only half of the time to induce global disease outbreaks when the population increases from 150 to 500 (normalized unit). When the exponent c1 of the long-tail distribution of distance k moved in the same-level container, p(k)∼k-c1·level, increases, the outbreak time decreases rapidly from 75 to 25 (normalized unit). In contrast, travel between large-level containers (e.g., cities and nations) facilitates global spread of the disease and outbreak. When the mean traveling distance across containers 1d increases from 0.5 to 1 (normalized unit), the outbreak occurs almost twice as fast. Moreover, dynamic infection and recovery in the population are able to drive the bifurcation of the system to a "zero-COVID" state or to a "live with COVID" state, depending on the mobility patterns, population number and health conditions. Reducing population size and restricting global travel help achieve zero-COVID-19. Specifically, when c1 is smaller than 0.2, the ratio of people with low levels of mobility is larger than 80% and the population size is smaller than 400, zero-COVID can be achieved within fewer than 1000 time steps. In summary, the Mob-Cov model considers more realistic human mobility at a wide range of spatial scales, and has been designed with equal emphasis on performance, low simulation cost, accuracy, ease of use and flexibility. It is a useful tool for researchers and politicians to apply when investigating pandemic dynamics and when planning actions against disease. Supplementary Information: The online version contains supplementary material available at 10.1007/s11071-023-08489-5.

9.
Biol Pharm Bull ; 46(5): 684-692, 2023.
Article En | MEDLINE | ID: mdl-37121694

Breast cancer, presented by multiple breast cancer subtypes that coexist within a diagnosed tumor in clinical, has ranked as the most common malignancy in women in recent years. Evidence suggested that limited effective drugs caused the unsatisfactory therapeutic efficacy of breast cancer. Flavokavain C exhibited anticancer activity on colon cancer cells HCT116. It is yet unknown if it can be used to treat breast cancer. This study aims to believe the mechanisms by which Flavokavain C suppresses cell proliferation and the pathways that impact on this effect in breast cancer. 3-(4,5-Dimethythiazol)-2,5-diphenyltetrazolium bromide assay was chosen to evaluate cell cytotoxicity. Colony formation and cell proliferation assays using 5-ethynyl-2'-deoxyuridine staining were performed. Cell cycle progression and apoptosis were examined via flow cytometry and Western blotting, respectively. Five methods (comet assay, immunofluorescence, Western blotting, agarose gel electrophoresis and molecular docking) were used to quantify DNA damage and its cellular response. Compared to cisplatin, Flavokavain C possessed a comparable or more substantial inhibitory effect on breast cancer cell viability while having lower cytotoxicity on human mammary cells. Breast cancer cells treated with Flavokavain C had their colony formation suppressed, DNA replication blocked, the G2/M phase cell cycle arrested, and apoptosis. Furthermore, the results indicated that Flavokavain C would directly interact with DNA and induce DNA cleavage, demonstrating that DNA is an attractive substrate for Flavokavain C. These results suggested that Flavokavain C had strong anticancer activity against multiple subtypes of breast cancer cells.


Breast Neoplasms , Female , Humans , Breast Neoplasms/metabolism , Cell Survival , Molecular Docking Simulation , Cell Proliferation , Apoptosis , DNA Damage , Cell Line, Tumor
10.
J Clin Med ; 12(3)2023 Feb 01.
Article En | MEDLINE | ID: mdl-36769796

Ticagrelor, acting as a reversible platelet aggregation inhibitor of P2Y12 receptors (P2Y12R), is regarded as one of the first-line antiplatelet drugs for acute cardiovascular diseases. Though the probability of ticagrelor resistance is much lower than that of clopidogrel, there have been recent reports of ticagrelor resistance. In this review, we summarized the clinical application of ticagrelor and then presented the criteria and current status of ticagrelor resistance. We further discussed the potential mechanisms for ticagrelor resistance in terms of drug absorption, metabolism, and receptor action. In conclusion, the incidences of ticagrelor resistance fluctuated between 0 and 20%, and possible mechanisms mainly arose from its absorption and receptor action. Specifically, a variety of factors, such as the drug form of ticagrelor, gut microecology, and the expression and function of P-glycoprotein (P-gp) and P2Y12R, have been shown to be associated with ticagrelor resistance. The exact mechanisms of ticagrelor resistance warrant further exploration, which may contribute to the diagnosis and treatment of ticagrelor resistance.

11.
J Cardiovasc Dev Dis ; 9(11)2022 Oct 25.
Article En | MEDLINE | ID: mdl-36354766

N6-methyladenosine (m6A) modification is a newly discovered regulatory mechanism in eukaryotes. As one of the most common epigenetic mechanisms, m6A's role in the development of atherosclerosis (AS) and atherosclerotic diseases (AD) has also received increasing attention. Herein, we elucidate the effect of m6A on major risk factors for AS, including lipid metabolism disorders, hypertension, and hyperglycemia. We also describe how m6A methylation contributes to endothelial cell injury, macrophage response, inflammation, and smooth muscle cell response in AS and AD. Subsequently, we illustrate the m6A-mediated aberrant biological role in the pathogenesis of AS and AD, and analyze the levels of m6A methylation in peripheral blood or local tissues of AS and AD, which helps to further discuss the diagnostic and therapeutic potential of m6A regulation for AS and AD. In summary, studies on m6A methylation provide new insights into the pathophysiologic mechanisms of AS and AD, and m6A methylation could be a novel diagnostic biomarker and therapeutic target for AS and AD.

12.
Ecotoxicology ; 31(8): 1276-1286, 2022 Oct.
Article En | MEDLINE | ID: mdl-36125661

Radiation can cause the differential expression of biological miRNA molecules. This research was based on the development of the laboratory red crucian carp (LRCC) to explore the feasibility of its application in the detection of low-dose ionizing radiation-induced biological damage in aquatic environments and the development of related molecular markers. Adult LRCC were irradiated with caesium-137 at 0.3 Gy, while RNA-seq and bioinformatics techniques were used to identify miRNAs that were differentially expressed relative to their levels in the nonirradiation group. Analysis of liver sections showed that liver cells in the radiation group showed nuclear pyknosis. In this study, 34 miRNAs differentially expressed in the liver of LRCC after irradiation were identified, among which seven were new crucian carp miRNAs; a total of 632 target genes were predicted in the prediction analysis. The results of comprehensive GO enrichment and KEGG pathway analyses showed that these target genes were mainly involved in energy transfer and material catabolism, especially malonyl-CoA biosynthesis, acetyl-CoA carboxylase activity, fatty acid biosynthesis and metabolism, and pyruvate metabolism; in addition, the AMPK signalling pathway was the most active pathway. This study shows that the LRCC is sensitive to radiation, or can be used as a candidate experimental animal to study the biological effects of radiation, and the screened miRNA can be used as a pre-selected biomarker for radiation damage detection and radiation biological environmental monitoring. CLINICAL TRIALS REGISTRATION: None.


Carps , MicroRNAs , AMP-Activated Protein Kinases , Acetyl-CoA Carboxylase , Animals , Biomarkers , Carps/genetics , Cesium Radioisotopes , Coenzyme A , Fatty Acids , MicroRNAs/genetics , Pyruvates
13.
Bull Cancer ; 109(10): 999-1006, 2022 Oct.
Article En | MEDLINE | ID: mdl-35940944

Breast cancer (BC) is the most diagnosed carcinoma in women worldwide, which is characterized with a high incidence rate and poor prognosis. MicroRNAs (miRNAs) are promising biomarkers for early detection of BC. In this study, we demonstrated that MiR1294 was downregulated in BC. Moreover, we revealed that MiRNA1294 significantly suppressed cell proliferation, migration and invasion. Animal models revealed that MiRNA1294 reduced tumor formation. In addition, we found that ERK signaling was involved in the regulatory role of MiRNA1294 in BC. In conclusion, MiRNA1294 acted as a tumor suppressor in BC, which might serve as a potential target for the development of anti-neoplastic therapies in BC.


Gene Expression Regulation, Neoplastic , MicroRNAs , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Female , MicroRNAs/genetics , Neoplasm Invasiveness/genetics
14.
Front Physiol ; 13: 893102, 2022.
Article En | MEDLINE | ID: mdl-35755441

The interaction between platelets and vascular endothelial cells plays a pivotal role in the pathophysiology of acute ischemic stroke (AIS), especially in atherosclerosis formation. However, the underlying mechanism is not entirely clear. The aim of this study was to elucidate the role of platelets-derived miRNA in the development of atherosclerosis and AIS. We evaluated the miRNA expression profiles of serum microvesicles (MV) in five AIS patients and five healthy controls using RNA-seq, and then measured the levels of selected platelets derived miRNAs by qRT-PCR. miR-200a-3p expression in the serum MV and platelets had increased to 1.41 (p < 0.05) and 3.29 times (p < 0.001), respectively, in AIS patients compared with healthy controls, and was modified by severity of AIS. We transferred Cy5-miR-200a-3p into platelets, collected and identified platelets-derived MV (PMVs). Then, the gene expression of p38 MAPK/c-Jun pathway was analyzed using both miR-200a-3p gain- and loss-of-function experiments and PMVs coincubation with HUVEC. The results showed that activated platelets remotely modulated endothelins 1 (ET-1) and vascular endothelial growth factor A (VEGFA) levels in HUVEC through the release of miR-200a-3p-containing PMVs via targeting MAPK14. The results of ROC analyses showed that combination of platelet miR-200a-3p, serum ET-1 and VEGFA levels had an AUC of 0.817, a sensitivity of 70%, and a specificity of 89%. Our results presented new evidence that activated platelets could remotely modulate ET-1 and VEGFA expression in HUVEC via releasing miR-200a-3p-enriched PMVs, which provides a potential miRNA-based predictive biomarker and therapeutic strategy for atherosclerosis and AIS.

16.
Front Genet ; 13: 810974, 2022.
Article En | MEDLINE | ID: mdl-35360855

Stroke is one of the major causes of death and long-term disability, of which acute ischemic stroke (AIS) is the most common type. Although circular RNA (circRNA) expression profiles of AIS patients have been reported to be significantly altered in blood and peripheral blood mononuclear cells, the role of exosome-containing circRNAs after AIS is still unknown. Plasma exosomes from 10 AIS patients and 10 controls were isolated, and through microarray and bioinformatics analysis, the profile and putative function of circRNAs in the plasma exosomes were studied. A total of 198 circRNAs were differentially quantified (|log2 fold change| ≥ 1.00, p < 0.05) between AIS patients and controls. The levels of 12 candidate circRNAs were verified by qRT-PCR, and the quantities of 10 of these circRNAs were consistent with the data of microarray. The functions of host genes of differentially quantified circRNAs, including RNA and protein process, focal adhesion, and leukocyte transendothelial migration, were associated with the development of AIS. As a miRNA sponge, differentially quantified circRNAs had the potential to regulate pathways related to AIS, like PI3K-Akt, AMPK, and chemokine pathways. Of 198 differentially quantified circRNAs, 96 circRNAs possessing a strong translational ability could affect cellular structure and activity, like focal adhesion, tight junction, and endocytosis. Most differentially quantified circRNAs were predicted to bind to EIF4A3 and AGO2-two RNA-binding proteins (RBPs)-and to play a role in AIS. Moreover, four of ten circRNAs with verified levels by qRT-PCR (hsa_circ_0112036, hsa_circ_0066867, hsa_circ_0093708, and hsa_circ_0041685) were predicted to participate in processes of AIS, including PI3K-Akt, AMPK, and chemokine pathways as well as endocytosis, and to be potentially useful as diagnostic biomarkers for AIS. In conclusion, plasma exosome-derived circRNAs were significantly differentially quantified between AIS patients and controls and participated in the occurrence and progression of AIS by sponging miRNA/RBPs or translating into proteins, indicating that circRNAs from plasma exosomes could be crucial molecules in the pathogenesis of AIS and promising candidates as diagnostic biomarkers and therapeutic targets for the condition.

17.
Biol Trace Elem Res ; 200(4): 1722-1735, 2022 Apr.
Article En | MEDLINE | ID: mdl-34173155

Cadmium (Cd), a heavy metal element, cumulates in the testis and can cause male reproductive toxicity. Although vitamin E (VE) as one of potential antioxidants protects the testis against toxicity of Cd, the underlying mechanism remained uncompleted clear. The aim of this study was to investigate whether the Nrf-2 pathway is involved with the protective effect of VE on testicular damages caused by sub-chronic Cd exposure. Thirty-two SD rats were divided into four groups and orally administrated with VE and/or Cd for 28 consecutive days: control group, VE group (100 mg VE/kg), Cd group (5 mg CdCl2/kg), and VE + Cd group (100 mg VE/kg + 5 mg CdCl2/kg). The results showed that 28-day exposure of Cd caused accumulation of Cd, histopathological lesions, and alternations of sperm parameters (elevated rate of abnormal sperm, decreased count of sperm, declined motility, and viability of sperm). Moreover, the rats exposed to Cd showed significant oxidative stress (increased contents of MDA and decreased levels or activities of T-AOC, GSH, CAT, SOD and GSH-Px) and inhibition of Nrf-2 signaling pathway (downregulation of Nrf-2, HO-1, NQO-1, GCLC, GCLM and GST) of the testes. In contrast, VE treatment significantly reduced the Cd accumulation, alleviated histopathological lesions and dysfunctions, activated Nrf-2 pathway, and attenuated the oxidative stress caused by Cd in the testes of rats. In conclusion, VE, through upregulating Nrf-2 pathway, could protect testis against oxidative damages induced by sub-chronic Cd exposure.


Cadmium , Vitamin E , Animals , Antioxidants/metabolism , Cadmium/pharmacology , Male , Oxidative Stress , Rats , Rats, Sprague-Dawley , Spermatozoa , Testis/metabolism , Vitamin E/metabolism , Vitamin E/pharmacology
18.
Polymers (Basel) ; 13(19)2021 Sep 30.
Article En | MEDLINE | ID: mdl-34641176

Endovascular glue embolization is a minimally invasive technique used to selectively reduce or block the blood supply to specific targeted vessels. Cyanoacrylate glues, mixed with radiopaque iodized oil, have been widely used for vascular embolization owing to their rapid polymerization rate, good penetration ability and low tissue toxicity. Nevertheless, in clinical practice, the selection of the glue-oil proportion and the manual injection process of mixtures are mostly based on empirical knowledge of operators, as the crucial physicochemical effect of polymerization kinetics has rarely been quantitatively investigated. In this study, the Raman spectroscopy is used for studying the polymerization kinetics of n-butyl-cyanoacrylate-based glues mixed with an iodized oil. To simulate the polymerization process during embolization, glue-oil mixtures upon contact with a protein ionic solution mimicking blood plasma are manually constructed and their polymerization kinetics are systematically characterized by Raman spectroscopy. The results demonstrate the feasibility of Raman spectroscopy in the characterization of polymerization kinetics of cyanoacrylate-based embolic glues. The polymerization process of cyanoacrylate-based mixtures consists of a fast polymerization phase followed by a slow phase. The propagation velocity and polymerization time primarily depend on the glue concentrations. The commonly used 50% mixture polymerizes 1 mm over ∼21.8 s, while it takes ∼51 min to extend to 5 mm. The results provide essential information for interventional radiologists to help them understand the polymerization kinetics of embolic glues and thus regulate the polymerization rate for effective embolization.

19.
Ecotoxicol Environ Saf ; 225: 112760, 2021 Dec 01.
Article En | MEDLINE | ID: mdl-34509165

Obesity is a risk factor of many diseases, but could be beneficial to the individuals with bacterial infection. The present study was conducted to investigate the relationship between obesity and heart during nonfatal bacterial infection. Male normal (lean) and diet-induced obesity mice (DIO, fed with high-fat diet) were chosen to perform nasal instillation with E. coli to establish a nonfatal acute mouse model. The cardiac histopathology, inflammation and oxidative damage, as well as apoptosis were detected post-infection. The results revealed that the Escherichia coli (E.coli)-infected mice exhibited increased cardiac index, contents of IL-1ß, IL-6, IL-8, TNF-α, leptin and resistin, levels of apoptotic proteins (caspase-3 and caspase-9, and bax/bcl-2 ratio), cardiac pathological changes and oxidative stress. Furthermore, these parameters were more serious in the lean mice than those in the DIO mice. In summary, our findings gave a new sight that E.coli infection impaired heart via histopathological lesions, inflammation and oxidative stress and excessive apoptosis of cardiomyocytes. Interestingly, obesity exerted attenuated effects on the heart of mice with non-fatal infection of E.coli through decreased inflammation, oxidative stress and apoptosis of cardiac tissue.


Escherichia coli , Oxidative Stress , Animals , Apoptosis , Inflammation , Male , Mice , Mice, Obese
20.
Analyst ; 146(19): 5913-5922, 2021 Sep 27.
Article En | MEDLINE | ID: mdl-34570848

To reproduce hemodynamic stress microenvironments of endothelial cells in vitro is of vital significance, by which one could exploit the quantitative impact of hemodynamic stresses on endothelial function and seek innovative approaches to prevent circulatory system diseases. Although microfluidic technology has been regarded as an effective method to create physiological microenvironments, a microfluidic system to precisely reproduce physiological arterial hemodynamic stress microenvironments has not been reported yet. In this paper, a novel microfluidic chip consisting of a cell culture chamber with on-chip afterload components designed by the principle of input impedance to mimic the global hemodynamic behaviors is proposed. An external feedback control system is developed to accurately generate the input pressure waveform. A lumped parameter hemodynamic model (LPHM) is built to represent the input impedance to mimic the on-chip global hemodynamic behaviors. Sensitivity analysis of the model parameters is also elaborated. The performance of reproducing physiological blood pressure and wall shear stress is validated by both numerical characterization and flow experiment. Investigation of intracellular calcium ion dynamics in human umbilical vein endothelial cells is finally conducted to demonstrate the biological applicability of the proposed microfluidic system.


Cell Culture Techniques , Microfluidics , Blood Pressure , Human Umbilical Vein Endothelial Cells , Humans , Shear Strength , Stress, Mechanical
...