Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 867
Filter
1.
Patterns (N Y) ; 5(6): 100973, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-39005483

ABSTRACT

Treatment effect estimation (TEE) aims to identify the causal effects of treatments on important outcomes. Current machine-learning-based methods, mainly trained on labeled data for specific treatments or outcomes, can be sub-optimal with limited labeled data. In this article, we propose a new pre-training and fine-tuning framework, CURE (causal treatment effect estimation), for TEE from observational data. CURE is pre-trained on large-scale unlabeled patient data to learn representative contextual patient representations and fine-tuned on labeled patient data for TEE. We present a new sequence encoding approach for longitudinal patient data embedding both structure and time. Evaluated on four downstream TEE tasks, CURE outperforms the state-of-the-art methods, marking a 7% increase in area under the precision-recall curve and an 8% rise in the influence-function-based precision of estimating heterogeneous effects. Validation with four randomized clinical trials confirms its efficacy in producing trial conclusions, highlighting CURE's capacity to supplement traditional clinical trials.

2.
J Hazard Mater ; 476: 135020, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38959832

ABSTRACT

Amidst far-reaching COVID-19 effects and social constraints, this study leveraged wastewater-based epidemiology to track 38 conventional drugs and 30 new psychoactive substances (NPS) in northern Taiwan. Analyzing daily samples from four Taipei wastewater plants between September 2021 and January 2024-encompassing club reopenings, holidays, Lunar New Year, an outbreak, and regular periods-thirty-one drugs were detected, including 5 NPS. Tramadol, zolpidem tartrate, CMA, and MDPV were newly detected in Taiwanese sewage with frequency of 1.4 %- 89.0 %. Conventional drug use typically increased post-pandemic, aside from benzodiazepines and methadone. Methamphetamine showed 100 % frequency, indicating ongoing daily consumption despite COVID-19 measures. Methamphetamine and morphine's consumption dipped then rose around club reopening, hinting at limited access. The consumption trend of methadone appeared to compensate for the use of morphine. Ketamine and NPS demonstrated similar patterns throughout the entire period. NPS as party drugs seemed influenced by an unstable supply chain and complexities in implementation. Benzodiazepines, commonly abused alongside synthetic cathinones in Taiwan exhibited an opposing trend to NPS while aligned with acetaminophen, suggesting elevated stress and anxiety levels during the pandemic. No significant differences were observed in drug consumption between weekdays and weekends, potentially indicating that COVID-19 measures blurred the traditional distinctions between these timeframes. ENVIRONMENTAL IMPLICATION: New psychoactive substances refer to chemically modified variants of controlled drugs designed to mimic the effects of the original drugs while evading modern detection methods, categorizing them as hazardous materials. The study presents a sewage monitoring project conducted from 2021 to 2024, collecting samples from four WWTPs to analyze NPS and conventional drug trends during and after the COVID-19 pandemic. The findings uncovered connections between drug consumption patterns and pandemic-related policies. In light of the persistent drug abuse and their environmental presence, the results bear critical importance for both environmental and public health. We provide a thorough assessment of these relationships and prioritize areas for future research.

3.
BMC Med Educ ; 24(1): 721, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961425

ABSTRACT

BACKGROUND: With its minimally invasive approach, laparoscopic surgery has transformed the medical landscape. As the demand for these procedures escalates, there is a pressing need for adept surgeons trained in laparoscopic techniques. However, current training often falls short of catering to medical school education. This study evaluates the impact of a custom-designed laparoscopic training workshop on medical students' surgical skills and career aspirations. METHODS: This prospective experimental study was conducted at the E-Da hospital in Kaohsiung City, Taiwan. Medical students from Taiwanese medical schools undergoing Clerk 5, Clerk 6, and Postgraduate Year 1 and 2 were invited to participate. Medical students (n = 44) underwent an endoscopic skill training workshop consisting of lectures, box training, and live tissue training. The trainees performed multiple tasks before and after training using our objective evaluation system. The primary outcome was assessed before and after training through a questionnaire assessing the influence of training on students' interest in surgery as a career. The secondary outcome measured improvement in skill acquisition, comparing the task completion time pre- and post-workshop. For the primary outcome, descriptive statistics were used to summarize the questionnaire responses, and paired t-tests were performed to determine significant changes in interest levels post-workshop. For the secondary outcome, paired t-tests were used to compare the time recorded pre- and post-training. RESULTS: Post-training, participants exhibited significant proficiency gains, with task completion times reducing notably: 97 s (p = 0.0015) for Precision Beads Placement, 88.5 s (p < 0.0001) for Beads Transfer Exercise, 95 s (p < 0.0001) for Precision Balloon Cutting, and 137.8 s (p < 0.0001) for Intracorporeal Suture. The primary outcome showcased an increased mean score from 8.15 pre-workshop to 9.3 post-workshop, indicating a bolstered interest in surgery as a career. Additionally, post-training sentiment analysis underscored a predominant inclination toward surgery among 88% of participants. CONCLUSION: The custom-designed laparoscopic workshop significantly improved technical skills and positively influenced students' career aspirations toward surgery. Such hands-on training workshops can play a crucial role in medical education, bridging the gap between theoretical knowledge and practical skills and potentially shaping the future of budding medical professionals.


Subject(s)
Career Choice , Clinical Competence , Laparoscopy , Students, Medical , Humans , Laparoscopy/education , Prospective Studies , Female , Taiwan , Male , Education, Medical, Undergraduate/methods , Young Adult , Adult
4.
Chembiochem ; : e202400480, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965052

ABSTRACT

Bacteria in the genus Staphylococcus are pathogenic and harmful to humans. Alarmingly, some Staphylococcus, such as methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) have spread worldwide and become notoriously resistant to antibiotics, threatening and concerning public health. Hence, the development of new Staphylococcus-targeting diagnostic and therapeutic agents is urgent. Here, we chose the S. aureus-secreted siderophore staphyloferrin A (SA) as a guiding unit. We developed a series of Staphyloferrin A conjugates (SA conjugates) and showed the specific targeting ability to Staphylococcus bacteria. Furthermore, among the structural factors we evaluated, the stereo-chemistry of the amino acid backbone of SA conjugates is essential to efficiently target Staphylococci. Finally, we demonstrated that fluorescent Staphyloferrin A probes (SA-FL probes) could specifically target Staphylococci in complex bacterial mixtures.

5.
Nat Commun ; 15(1): 5718, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977665

ABSTRACT

Machine learning influences numerous aspects of modern society, empowers new technologies, from Alphago to ChatGPT, and increasingly materializes in consumer products such as smartphones and self-driving cars. Despite the vital role and broad applications of artificial neural networks, we lack systematic approaches, such as network science, to understand their underlying mechanism. The difficulty is rooted in many possible model configurations, each with different hyper-parameters and weighted architectures determined by noisy data. We bridge the gap by developing a mathematical framework that maps the neural network's performance to the network characters of the line graph governed by the edge dynamics of stochastic gradient descent differential equations. This framework enables us to derive a neural capacitance metric to universally capture a model's generalization capability on a downstream task and predict model performance using only early training results. The numerical results on 17 pre-trained ImageNet models across five benchmark datasets and one NAS benchmark indicate that our neural capacitance metric is a powerful indicator for model selection based only on early training results and is more efficient than state-of-the-art methods.

6.
Inflamm Res ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052062

ABSTRACT

OBJECTIVE: Nordalbergin is a coumarin extracted from Dalbergia sissoo DC. To date, the biological effects of nordalbergin have not been well investigated. To investigate the anti-inflammatory responses and the anti-oxidant abilities of nordalbergin using lipopolysaccharide (LPS)-activated macrophages and LPS-induced sepsis mouse model. MATERIALS AND METHODS: Production of nitrite oxide (NO), prostaglandin E2 (PGE2), pro-inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1ß), reactive oxygen species (ROS), tissue damage and serum inflammatory markers, and the activation of the NLRP3 inflammasome were examined. RESULTS: Our results indicated that nordalbergin reduced the production of NO and pro-inflammatory cytokines in vitro and ex vivo. Nordalbergin also suppressed iNOS and cyclooxygenase-2 expressions, decreased NF-κB activity, and attenuated MAPKs signaling pathway activation by decreasing JNK and p38 phosphorylation by LPS-activated J774A.1 macrophages. Notably, nordalbergin diminished NLRP3 inflammasome activation via repressing the maturation of IL-1ß and caspase-1 and suppressing ROS production by LPS/ATP- and LPS/nigericin-activated J774A.1 macrophages. Furthermore, nordalbergin exhibited protective effects against the infiltration of inflammatory cells and also inhibited the levels of organ damage markers (AST, ALT, BUN) by LPS-challenged mice. CONCLUSION: Nordalbergin possesses anti-inflammatory effects in macrophage-mediated innate immune responses, alleviates ROS production, decreases NLRP3 activation, and exhibits protective effects against LPS-induced tissue damage in mice.

7.
Cell Rep ; 43(8): 114527, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39046873

ABSTRACT

The paracrine actions of adipokine plasminogen activator inhibitor-1 (PAI-1) are implicated in obesity-associated tumorigenesis. Here, we show that PAI-1 mediates extracellular matrix (ECM) signaling via epigenetic repression of DKK1 in endometrial epithelial cells (EECs). While the loss of DKK1 is known to increase ß-catenin accumulation for WNT signaling activation, this epigenetic repression causes ß-catenin release from transmembrane integrins. Furthermore, PAI-1 elicits the disengagement of TIMP2 and SPARC from integrin-ß1 on the cell surface, lifting an integrin-ß1-ECM signaling constraint. The heightened interaction of integrin-ß1 with type 1 collagen (COL1) remodels extracellular fibrillar structures in the ECM. Consequently, the enhanced nanomechanical stiffness of this microenvironment is conducive to EEC motility and neoplastic transformation. The formation of extensively branched COL1 fibrils is also observed in endometrial tumors of patients with obesity. The findings highlight PAI-1 as a contributor to enhanced integrin-COL1 engagement and extensive ECM remodeling during obesity-associated neoplastic development.

8.
J Org Chem ; 89(14): 10316-10326, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38950197

ABSTRACT

Electron-rich diarylamines, exemplified by anisole-derived amines, play pivotal roles in process chemistry, pharmaceuticals, and materials. In this study, homo-diarylamines were synthesized directly from the C-H activation of electron-rich arenes by sodium nitrate/trifluoroacetic acid and the successive treatment of iron powder. Mechanistic investigations reveal that nitrosoarene serves as the reaction intermediate, and the formation of the second C-N bond between the resulting nitrosoarene and electron-rich arene is catalyzed by the nitrosonium ion (NO+). Thus, hetero-diarylamines were synthesized using preformed nitrosoarenes and various electron-rich arenes. This reaction complements a range of cross-coupling reactions catalyzed by transition metal catalysts.

9.
Molecules ; 29(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39065013

ABSTRACT

Gac fruit (Momordica cochinchinensis Spreng.) is a prominent source of carotenoids, renowned for its exceptional concentration of these compounds. This study focuses on optimizing the extraction of active components from the aril of gac fruit by evaluating the effects of extraction temperature, solid-liquid ratio, and extraction time. The primary objective is to maximize the yield of gac oil while assessing its antioxidant capacity. To analyze the kinetics of the solid-liquid extraction process, both first-order and second-order kinetic models were employed, with the second-order model providing the best fit for the experimental data. In addition, the potential of gac fruit peel as a precursor for biochar production was investigated through carbonization. The resultant biochars were evaluated for their efficacy in adsorbing crystal violet (CV) dye from aqueous solutions. The adsorption efficiency of the biochars was found to be dependent on the carbonization temperature, with the highest efficiency observed for BCMC550 (91.72%), followed by BCM450 (81.35%), BCMC350 (78.35%), and BCMC250 (54.43%). The adsorption isotherm data conformed well to the Langmuir isotherm model, indicating monolayer adsorption behavior. Moreover, the adsorption kinetics were best described by the pseudo-second-order model. These findings underscore the potential of gac fruit and its byproducts for diverse industrial and environmental applications, highlighting the dual benefits of optimizing gac oil extraction and utilizing the peel for effective dye removal.


Subject(s)
Charcoal , Fruit , Gentian Violet , Charcoal/chemistry , Adsorption , Fruit/chemistry , Gentian Violet/chemistry , Gentian Violet/isolation & purification , Kinetics , Coloring Agents/chemistry , Coloring Agents/isolation & purification , Temperature , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification
10.
Front Immunol ; 15: 1415102, 2024.
Article in English | MEDLINE | ID: mdl-39007132

ABSTRACT

Human regulatory T cells (Treg) suppress other immune cells. Their dysfunction contributes to the pathophysiology of autoimmune diseases, including type 1 diabetes (T1D). Infusion of Tregs is being clinically evaluated as a novel way to prevent or treat T1D. Genetic modification of Tregs, most notably through the introduction of a chimeric antigen receptor (CAR) targeting Tregs to pancreatic islets, may improve their efficacy. We evaluated CAR targeting of human Tregs to monocytes, a human ß cell line and human islet ß cells in vitro. Targeting of HLA-A2-CAR (A2-CAR) bulk Tregs to HLA-A2+ cells resulted in dichotomous cytotoxic killing of human monocytes and islet ß cells. In exploring subsets and mechanisms that may explain this pattern, we found that CD39 expression segregated CAR Treg cytotoxicity. CAR Tregs from individuals with more CD39low/- Tregs and from individuals with genetic polymorphism associated with lower CD39 expression (rs10748643) had more cytotoxicity. Isolated CD39- CAR Tregs had elevated granzyme B expression and cytotoxicity compared to the CD39+ CAR Treg subset. Genetic overexpression of CD39 in CD39low CAR Tregs reduced their cytotoxicity. Importantly, ß cells upregulated protein surface expression of PD-L1 and PD-L2 in response to A2-CAR Tregs. Blockade of PD-L1/PD-L2 increased ß cell death in A2-CAR Treg co-cultures suggesting that the PD-1/PD-L1 pathway is important in protecting islet ß cells in the setting of CAR immunotherapy. In summary, introduction of CAR can enhance biological differences in subsets of Tregs. CD39+ Tregs represent a safer choice for CAR Treg therapies targeting tissues for tolerance induction.


Subject(s)
Apyrase , Receptors, Chimeric Antigen , T-Lymphocytes, Regulatory , Humans , Apyrase/immunology , Apyrase/metabolism , T-Lymphocytes, Regulatory/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Cytotoxicity, Immunologic , Islets of Langerhans/immunology , Islets of Langerhans/metabolism , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/therapy , HLA-A2 Antigen/immunology , HLA-A2 Antigen/genetics , HLA-A2 Antigen/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Insulin-Secreting Cells/immunology , Insulin-Secreting Cells/metabolism , Antigens, CD
11.
Cell Chem Biol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39025070

ABSTRACT

Morphinan antagonists, which block opioid effects at mu-opioid receptors, have been studied for their analgesic potential. Previous studies have suggested that these antagonists elicit analgesia with fewer adverse effects in the presence of the mutant mu-opioid receptor (MOR; S196A). However, introducing a mutant receptor for medical applications represents significant challenges. We hypothesize that binding a chemical compound to the MOR may elicit a comparable effect to the S196A mutation. Through high-throughput screening and structure-activity relationship studies, we identified a modulator, 4-(2-(4-fluorophenyl)-4-oxothiazolidin-3-yl)-3-methylbenzoic acid (BPRMU191), which confers agonistic properties to small-molecule morphinan antagonists, which induce G protein-dependent MOR activation. Co-application of BPRMU191 and morphinan antagonists resulted in MOR-dependent analgesia with diminished side effects, including gastrointestinal dysfunction, antinociceptive tolerance, and physical and psychological dependence. Combining BPRMU191 and morphinan antagonists could serve as a potential therapeutic strategy for severe pain with reduced adverse effects and provide an avenue for studying G protein-coupled receptor modulation.

12.
Pediatr Gastroenterol Hepatol Nutr ; 27(4): 246-257, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39035403

ABSTRACT

Purpose: Administering early parenteral amino acids to very low birth weight (VLBW) premature infants (birth body weight [BBW]<1,500 g) is challenging due to factors such as holidays, cost, and access to sterile compounding facilities. Using advance-prepared parenteral nutrition (PN) may address this issue and should be evaluated for its safety and potential benefits. Methods: We extracted data from medical records collected between July 2015 and August 2019. VLBW infants received PN for at least seven days and were split into two groups: the traditional group (n=30), which initially received a glucose solution and then PN on workdays, and the pre-preparation group (n=16), which received advance-prepared PN immediately upon admission to the neonatal intensive care unit. Results: The median BBWs of the traditional and pre-preparation groups were 1,180.0 vs. 1,210.0 g. In the initial two days, the pre-preparation group had a significantly higher amino acid intake (2.23 and 2.24 g/kg/d) than the traditional group (0 and 1.78 g/kg/d). The pre-preparation group exhibited greater head circumference growth ratio relative to birth (7th day: 1.21% vs. -3.57%, p=0.014; 21st day: 7.71% vs. 3.31%, p=0.017). No significant differences in metabolic tolerance were observed. Conclusion: Advanced preparation of PN can be safely implemented in VLBW preterm infants, offering advantages such as early, higher amino acid intake and improved head circumference growth within the first 21 days post-birth. This strategy may serve as a viable alternative in settings where immediate provision of sterile compounding facilities is challenging.

13.
Ultrasound Med Biol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38897841

ABSTRACT

PURPOSE: A novel nomogram incorporating artificial intelligence (AI) and clinical features for enhanced ultrasound prediction of benign and malignant breast masses. MATERIALS AND METHODS: This study analyzed 340 breast masses identified through ultrasound in 308 patients. The masses were divided into training (n = 260) and validation (n = 80) groups. The AI-based analysis employed the Samsung Ultrasound AI system (S-detect). Univariate and multivariate analyses were conducted to construct nomograms using logistic regression. The AI-Nomogram was based solely on AI results, while the ClinAI- Nomogram incorporated additional clinical factors. Both nomograms underwent internal validation with 1000 bootstrap resamples and external validation using the independent validation group. Performance was evaluated by analyzing the area under the receiver operating characteristic (ROC) curve (AUC) and calibration curves. RESULTS: The ClinAI-Nomogram, which incorporates patient age, AI-based mass size, and AI-based diagnosis, outperformed an existing AI-Nomogram in differentiating benign from malignant breast masses. The ClinAI-Nomogram surpassed the AI-Nomogram in predicting malignancy with significantly higher AUC scores in both training (0.873, 95% CI: 0.830-0.917 vs. 0.792, 95% CI: 0.748-0.836; p = 0.016) and validation phases (0.847, 95% CI: 0.763-0.932 vs. 0.770, 95% CI: 0.709-0.833; p < 0.001). Calibration curves further revealed excellent agreement between the ClinAI-Nomogram's predicted probabilities and actual observed risks of malignancy. CONCLUSION: The ClinAI- Nomogram, combining AI alongside clinical data, significantly enhanced the differentiation of benign and malignant breast masses in clinical AI-facilitated ultrasound examinations.

14.
Antioxidants (Basel) ; 13(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38929141

ABSTRACT

Repetitive motion or exercise is associated with oxidative stress and muscle inflammation, which can lead to declining grip strength and muscle damage. Oleanolic acid and ursolic acid have anti-inflammatory and antioxidant properties and can be extracted from Chaenomeles speciosa through ultrasonic sonication. We investigated the association between grip strength declines and muscle damage induced by lambda carrageenan (LC) injection and exercise exposure in rats. We also assessed the reparative effects of transdermal pretreatment and post-treatment with C. speciosa extracts (CSEs) by using a supersonic atomizer. The half-maximal inhibitory concentration (IC50) of CSEs for cells was 10.5 mg/mL. CSEs significantly reduced the generation of reactive oxygen species and inflammatory factors (interleukin [IL]-6 and IL-1ß) in in vitro cell tests. Rats subjected to LC injection and 6 weeks of exercise exhibited significantly increased inflammatory cytokine levels (IL-1ß, TNF-α, and IL-6). Hematoxylin and eosin staining revealed inflammatory cell infiltration and evident muscle damage in the gastrocnemius muscle, which exhibited splitting and the appearance of the endomysium and perimysium. The treated rats' grip strength significantly declined. Following treatment with CSEs, the damaged muscles exhibited decreased IL-1ß, TNF-α, and IL-6 levels and normal morphologies. Moreover, grip strength significantly recovered. Pretreatment with CSEs yielded an immediate and significant increase in grip strength, with an increase of 180% and 165% occurring in the rats exposed to LC injection and exercise within the initial 12 h period, respectively, compared with the control group. Pretreatment with CSEs delivered transdermally using a supersonic atomizer may have applications in sports medicine and training or competitions.

15.
Cell Death Dis ; 15(6): 434, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898023

ABSTRACT

The interaction between glioblastoma cells and glioblastoma-associated macrophages (GAMs) influences the immunosuppressive tumor microenvironment, leading to ineffective immunotherapies. We hypothesized that disrupting the communication between tumors and macrophages would enhance the efficacy of immunotherapies. Transcriptomic analysis of recurrent glioblastoma specimens indicated an enhanced neuroinflammatory pathway, with CXCL12 emerging as the top-ranked gene in secretory molecules. Single-cell transcriptome profiling of naïve glioblastoma specimens revealed CXCL12 expression in tumor and myeloid clusters. An analysis of public glioblastoma datasets has confirmed the association of CXCL12 with disease and PD-L1 expression. In vitro studies have demonstrated that exogenous CXCL12 induces pro-tumorigenic characteristics in macrophage-like cells and upregulated PD-L1 expression through NF-κB signaling. We identified CXCR7, an atypical receptor for CXCL12 predominantly present in tumor cells, as a negative regulator of CXCL12 expression by interfering with extracellular signal-regulated kinase activation. CXCR7 knockdown in a glioblastoma mouse model resulted in worse survival outcomes, increased PD-L1 expression in GAMs, and reduced CD8+ T-cell infiltration compared with the control group. Ex vivo T-cell experiments demonstrated enhanced cytotoxicity against tumor cells with a selective CXCR7 agonist, VUF11207, reversing GAM-induced immunosuppression in a glioblastoma cell-macrophage-T-cell co-culture system. Notably, VUF11207 prolonged survival and potentiated the anti-tumor effect of the anti-PD-L1 antibody in glioblastoma-bearing mice. This effect was mitigated by an anti-CD8ß antibody, indicating the synergistic effect of VUF11207. In conclusion, CXCL12 conferred immunosuppression mediated by pro-tumorigenic and PD-L1-expressing GAMs in glioblastoma. Targeted activation of glioblastoma-derived CXCR7 inhibits CXCL12, thereby eliciting anti-tumor immunity and enhancing the efficacy of anti-PD-L1 antibodies.


Subject(s)
B7-H1 Antigen , Chemokine CXCL12 , Glioblastoma , Receptors, CXCR , Glioblastoma/pathology , Glioblastoma/immunology , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Animals , Receptors, CXCR/metabolism , Receptors, CXCR/genetics , Chemokine CXCL12/metabolism , Mice , B7-H1 Antigen/metabolism , Cell Line, Tumor , Tumor Microenvironment , Brain Neoplasms/pathology , Brain Neoplasms/immunology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Signal Transduction/drug effects
16.
Viruses ; 16(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38932206

ABSTRACT

Infectious spleen and kidney necrosis virus (ISKNV) infections can induce the process of host cellular autophagy but have rarely been identified within the molecular autophagy signaling pathway. In the present study, we demonstrated that ISKNV induces ROS-mediated oxidative stress signals for the induction of 5'AMP-activated protein kinase/mechanistic target of rapamycin kinase (AMPK/mTOR)-mediated autophagy and upregulation of host antioxidant enzymes in fish GF-1 cells. We also examined ISKNV-induced oxidative stress, finding that reactive oxidative species (ROS) increased by 1.5-fold and 2.5-fold from day 2 to day 3, respectively, as assessed by the H2DCFDA assay for tracing hydrogen peroxide (H2O2), which was blocked by NAC treatment in fish GF-1 cells. Furthermore, ISKNV infection was shown to trigger oxidative stress/Nrf2 signaling from day 1 to day 3; this event was then correlated with the upregulation of antioxidant enzymes such as Cu/ZnSOD and MnSOD and was blocked by the antioxidant NAC. Using an MDC assay, TEM analysis and autophagy marker LC3-II/I ratio, we found that ROS stress can regulate autophagosome formation within the induction of autophagy, which was inhibited by NAC treatment in GF-1 cells. Through signal analysis, we found that AMPK/mTOR flux was modulated through inhibition of mTOR and activation of AMPK, indicating phosphorylation levels of mTOR Ser 2448 and AMPK Thr 172 from day 1 to day 3; however, this process was reversed by NAC treatment, which also caused a reduction in virus titer (TCID50%) of up to 1000 times by day 3 in GF-1 cells. Thus, ISKNV-induced oxidative stress signaling is blocked by antioxidant NAC, which can also either suppress mTOR/AMPK autophagic signals or reduce viral replication. These findings may provide the basis for the creation of DNA control and treatment strategies.


Subject(s)
AMP-Activated Protein Kinases , Antioxidants , Autophagy , Oxidative Stress , Signal Transduction , TOR Serine-Threonine Kinases , Virus Replication , Virus Replication/drug effects , Animals , TOR Serine-Threonine Kinases/metabolism , Cell Line , AMP-Activated Protein Kinases/metabolism , Antioxidants/metabolism , Antioxidants/pharmacology , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism
17.
Macromol Rapid Commun ; : e2400331, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875278

ABSTRACT

Stretchable conjugated polymers with conjugation break spacers (CBSs) synthesized via random terpolymerization have gained considerable attention because of their efficacy in modulating mobility and stretchability. This study incorporates a series of dianhydrohexitol diastereomers of isosorbide (ISB) and isomannide (IMN) units into the diketopyrrolopyrrole-based backbone as CBSs. It is found that the distorted CBS (IMN) improves the mobility-stretchability properties of the polymer with a highly coplanar backbone, whereas the extended CBS (ISB) enhances those of the polymer with a noncoplanar backbone. Additionally, the different configurations of ISB and IMN sufficiently affect the solid-state packing, aggregation capabilities, crystallographic parameters, and mobility-stretchability properties of the polymer. The IMN-based polymers exhibit the highest mobility of 1.69 cm2 V-1 s-1 and crystallinity retentions of (85.7, 78.6)% under 20% and 60% strains, outperforming their ISB-based or unmodified counterparts. The improvement is correlated with a robust aggregation capability. Furthermore, the CBS content affects aggregation behavior, notably affecting mobility. This result indicates that incorporating CBSs into the polymer can enhance backbone flexibility via movement and rotation of the CBS without affecting the crystalline regions.

18.
BMC Med Educ ; 24(1): 632, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844925

ABSTRACT

BACKGROUND: This study aims to investigate the benefits of employing a Physical Lifelike Brain (PLB) simulator for training medical students in performing craniotomy for glioblastoma removal and decompressive craniectomy. METHODS: This prospective study included 30 medical clerks (fifth and sixth years in medical school) at a medical university. Before participating in the innovative lesson, all students had completed a standard gross anatomy course as part of their curriculum. The innovative lesson involved PLB Simulator training, after which participants completed the Learning Satisfaction/Confidence Perception Questionnaire and some received qualitative interviews. RESULTS: The average score of students' overall satisfaction with the innovative lesson was 4.71 out of a maximum of 5 (SD = 0.34). After the lesson, students' confidence perception level improved significantly (t = 9.38, p < 0.001, effect size = 1.48), and the average score improved from 2,15 (SD = 1.02) to 3.59 (SD = 0.93). 60% of the students thought that the innovative lesson extremely helped them understand the knowledge of surgical neuroanatomy more, 70% believed it extremely helped them improve their skills in burr hole, and 63% thought it was extremely helpful in improving the patient complications of craniotomy with the removal of glioblastoma and decompressive craniectomy after completing the gross anatomy course. CONCLUSION: This innovative lesson with the PLB simulator successfully improved students' craniotomy knowledge and skills.


Subject(s)
Brain Neoplasms , Clinical Competence , Decompressive Craniectomy , Glioblastoma , Simulation Training , Students, Medical , Humans , Glioblastoma/surgery , Prospective Studies , Decompressive Craniectomy/education , Brain Neoplasms/surgery , Male , Female , Education, Medical, Undergraduate/methods , Craniotomy/education , Curriculum
19.
J Stroke Cerebrovasc Dis ; 33(8): 107826, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908612

ABSTRACT

BACKGROUND AND PURPOSE: Post-stroke cognitive impairment (PSCI) is highly prevalent in modern society. However, there is limited study implying an accurate and explainable machine learning model to predict PSCI. The aim of this study is to develop and validate a web-based artificial intelligence (AI) tool for predicting PSCI. METHODS: The retrospective cohort study design was conducted to develop and validate a web-based prediction model. Adults who experienced a stroke between January 1, 2004, and September 30, 2017, were enrolled, and patients with PSCI were followed up from the stroke index date until their last follow-up. The model's performance metrics, including accuracy, area under the curve (AUC), recall, precision, and F1 score, were compared. RESULTS: A total of 3209 stroke patients were included in the study. The model demonstrated an accuracy of 0.8793, AUC of 0.9200, recall of 0.6332, precision of 0.9664, and F1 score of 0.7651. In the external validation phase, the accuracy improved to 0.9039, AUC to 0.9094, recall to 0.7457, precision to 0.9168, and F1 score to 0.8224. The final model can be accessed at https://psci-calculator.my.id/. CONCLUSION: Our results are able to produce a user-friendly interface that is useful for health practitioners to perform early prediction on PSCI. These findings also suggest that the provided AI model is reliable and can serve as a roadmap for future studies using AI models in a clinical setting.


Subject(s)
Cognitive Dysfunction , Internet , Predictive Value of Tests , Stroke , Humans , Female , Male , Aged , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/etiology , Cognitive Dysfunction/psychology , Stroke/complications , Stroke/diagnosis , Stroke/physiopathology , Stroke/psychology , Retrospective Studies , Middle Aged , Reproducibility of Results , Cognition , Prognosis , Risk Factors , Machine Learning , Risk Assessment , Time Factors , Aged, 80 and over , Diagnosis, Computer-Assisted , China/epidemiology , Artificial Intelligence
20.
J Mater Chem B ; 12(26): 6394-6409, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38855886

ABSTRACT

This study develops a composite bone graft of CaO-MgO-SiO2 glass-ceramic and CaSO4 [abbreviated as (CMS)3-x(CS)x] via the sponge replication technique with weight fractions of x = 0, 1, 1.5, 2, and 3. The (CMS)1.5(CS)1.5 composite displays a superior degradability and, a suitable compressive strength of ∼3 MPa, and excellent cell proliferation and differentiation. The in vivo rat femur test in the hybrid-pore (CMS)1.5(CS)1.5 composite granules achieves a higher rate of bone formation, which is ∼2.7 times better than that of the commercial HAP/ß-TCP at 12 weeks. Improved expressions of osteocyte and mature osteocyte marker genes, namely (Spp1, Dmp1, and Fgf23), were observed in the (CMS)1.5(CS)1.5 group, indicating a faster differentiation into mature bone tissue. The ions release of (CMS)1.5(CS)1.5 through the ERK1/2 signaling pathway promotes osteogenic differentiation. The high bone generation rate can be attributed to faster active ions release and modified surface topography. This work highlights an excellent bone graft candidate for clinical applications in orthopedic surgery.


Subject(s)
Ceramics , Osteogenesis , Ceramics/chemistry , Animals , Osteogenesis/drug effects , Rats , Cell Differentiation/drug effects , Calcium Compounds/chemistry , Rats, Sprague-Dawley , Cell Proliferation/drug effects , Oxides/chemistry , Silicon Dioxide/chemistry , Male , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Bone Transplantation/methods , Magnesium Oxide/chemistry , Surface Properties , Femur
SELECTION OF CITATIONS
SEARCH DETAIL