Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 323
1.
J Neurochem ; 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38822659

The relationship between peripheral inflammatory markers, their dynamic changes, and the disease severity of myasthenia gravis (MG) is still not fully understood. Besides, the possibility of using it to predict the short-term poor outcome of MG patients have not been demonstrated. This study aims to investigate the relationship between peripheral inflammatory markers and their dynamic changes with Myasthenia Gravis Foundation of America (MGFA) classification (primary outcome) and predict the short-term poor outcome (secondary outcome) in MG patients. The study retrospectively enrolled 154 MG patients from June 2016 to December 2021. The logistic regression was used to investigate the relationship of inflammatory markers with MGFA classification and determine the factors for model construction presented in a nomogram. Finally, net reclassification improvement (NRI) and integrated discrimination improvement (IDI) were utilized to evaluate the incremental capacity. Logistic regression revealed significant associations between neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), aggregate index of systemic inflammation (AISI) and MGFA classification (p = 0.013, p = 0.032, p = 0.017, respectively). Incorporating dynamic changes of inflammatory markers into multivariable models improved their discriminatory capacity of disease severity, with significant improvements observed for NLR, systemic immune-inflammation index (SII) and AISI in NRI and IDI. Additionally, AISI was statistically associated with short-term poor outcome and a prediction model incorporating dynamic changes of inflammatory markers was constructed with the area under curve (AUC) of 0.953, presented in a nomograph. The inflammatory markers demonstrate significant associations with disease severity and AISI could be regarded as a possible and easily available predictive biomarker for short-term poor outcome in MG patients.

2.
J Ethnopharmacol ; 333: 118404, 2024 May 31.
Article En | MEDLINE | ID: mdl-38824977

ETHNOPHARMACOLOGICAL RELEVANCE: Sepsis presents complex pathophysiological challenges. Taohe Chengqi Decoction (THCQ), a traditional Chinese medicine, offers potential in managing sepsis-related complications, though its exact mechanisms are not fully understood. AIM OF THE STUDY: This research aimed to assess the therapeutic efficacy and underlying mechanisms of THCQ on sepsis-induced lung injury. MATERIALS AND METHODS: The study began with validating THCQ's anti-inflammatory effects through in vitro and in vivo experiments. Network pharmacology was employed for mechanistic exploration, incorporating GO, KEGG, and PPI analyses of targets. Hub gene-immune cell correlations were assessed using CIBERSORT, with further scrutiny at clinical and single-cell levels. Molecular docking explored THCQ's drug-gene interactions, culminating in qPCR and WB validations of hub gene expressions in sepsis and post-THCQ treatment scenarios. RESULTS: THCQ demonstrated efficacy in modulating inflammatory responses in sepsis, identified through network pharmacology. Key genes like MAPK14, MAPK3, MMP9, STAT3, LYN, AKT1, PTPN11, and HSP90AA1 emerged as central targets. Molecular docking revealed interactions between these genes and THCQ components. qPCR results showed significant modulation of these genes, indicating THCQ's potential in reducing inflammation and regulating immune responses in sepsis. CONCLUSION: This study sheds light on THCQ's anti-inflammatory and immune regulatory mechanisms in sepsis, providing a foundation for further research and potential clinical application.

3.
Heliyon ; 10(9): e30190, 2024 May 15.
Article En | MEDLINE | ID: mdl-38707361

Background: The severity of white matter hyperintensities (WMH) has been shown to be an independent predictor of poor stroke outcome, but the effect of sex on this correlation has not been investigated further. Therefore, the purpose of our study was to assess whether there was a sex difference between the severity of WMH and poor stroke outcome. Methods: This retrospective study included 449 patients with acute ischemic stroke (AIS) who received intravenous thrombolysis. WMH severity was graded based on the Fazekas scale. The association between WMH severity and stroke outcome was explored through multivariable regression analyses in men and women. Results: Among women, when dividing WMH severity into tertiles, T3 (Fazekas scale >3) had a 5.334 times higher risk for unfavorable outcomes than T1 (Fazekas scale <2) (p-trend = 0.026) in the adjusted model. In addition, moderate-severe WMH (Fazekas scale 3-6) had a 3.391 (1.151-9.991) times higher risk than none-mild WMH (Fazekas scale 0-2) (p = 0.027). Conclusions: The risk of unfavorable outcomes increased proportionally with the enlargement of the WMH severity in females, suggesting the sex-specific value of the WMH severity in optimizing the risk stratification of stroke.

5.
Org Lett ; 26(20): 4189-4193, 2024 May 24.
Article En | MEDLINE | ID: mdl-38743432

An efficient and practical tandem reaction of 4-arylidene isoxazol-5-ones with enamino esters catalyzed by an inexpensive copper salt has been established in a ball mill. This innovative approach yields a diverse array of structurally novel pyrrole-2-carboxylic acids, showing excellent tolerance toward different functional groups. By integrating spiroannulation and ring-opening aromatization processes, this protocol introduces a facile and cost-effective strategy for synthesizing highly functionalized pyrrole derivatives.

6.
Animals (Basel) ; 14(10)2024 May 10.
Article En | MEDLINE | ID: mdl-38791650

Klebsiella pneumoniae (K. pneumoniae) is recognized as a zoonotic pathogen with an increasing threat to livestock and poultry. However, research on K. pneumoniae of animal origin remains limited. To address the gap, a comprehensive investigation was carried out by collecting a total of 311 samples from the farms of four animal species (dairy cow, chicken, sheep, and pig) in selected areas of Xinjiang, China. Isolates were identified by khe gene amplification and 16S rRNA gene sequencing. Genotyping of K. pneumonia isolates was performed using wzi typing and multilocus sequence typing (MLST). PCR was employed to identify virulence and resistance genes. An antibiotic susceptibility test was conducted using the Kirby-Bauer method. The findings revealed an isolation of 62 K. pneumoniae strains, with an average isolation rate of 19.94%, with the highest proportion originating from cattle sources (33.33%). Over 85.00% of these isolates harbored six virulence genes (wabG, uge, fimH, markD, entB, and ureA); while more than 75.00% of isolates possessed four resistance genes (blaTEM, blaSHV, oqxA, and gyrA). All isolates exhibited complete resistance to ampicillin and demonstrated substantial resistance to sulfisoxazole, amoxicillin/clavulanic acid, and enrofloxacin, with an antibiotic resistance rate of more than 50%. Furthermore, 48.39% (30/62) of isolates were classified as multidrug-resistant (MDR) strains, with a significantly higher isolation rate observed in the swine farms (66.67%) compared to other farms. Genetic characterization revealed the classification of the 62 isolates into 30 distinct wzi allele types or 35 different sequence types (STs). Notably, we identified K. pneumoniae strains of dairy and swine origin belonging to the same ST42 and wzi33-KL64 types, as well as strains of dairy and chicken origin belonging to the same wzi31-KL31-K31 type. These findings emphasize the widespread occurrence of drug-resistant K. pneumoniae across diverse animal sources in Xinjiang, underscoring the high prevalence of multidrug resistance. Additionally, our results suggest the potential for animal-to-animal transmission of K. pneumoniae and there was a correlation between virulence genes and antibiotic resistance genes. Moreover, the current study provides valuable data on the prevalence, antibiotic resistance, and genetic diversity of K. pneumoniae originating from diverse animal sources in Xinjiang, China.

8.
Sci Rep ; 14(1): 12083, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802453

In this paper, Voronoi cell finite element method (VCFEM) based on assumed flux hybrid formulation has been presented for heat conduction problem of particle reinforced composites material. The heat fluxes satisfying a priori internal thermal balance are directly approximated independently in the matrix and the inclusion respectively. The temperatures on element boundary and matrix-inclusion interface are interpolated by nodal temperature. The thermal balance on the interelement boundary and matrix-inclusion interface is relaxed and introduced into the functional by taking the temperature as Lagrange multiplier. In this way, a functional containing two variables of heat flux and temperature is proposed. Full field heat flux and effective thermal conductivity are obtained. Feasibility and effectiveness of the proposed approach are verified through several numerical examples.

9.
Cell Rep Med ; 5(5): 101547, 2024 May 21.
Article En | MEDLINE | ID: mdl-38703764

Non-clear cell renal cell carcinomas (non-ccRCCs) encompass diverse malignant and benign tumors. Refinement of differential diagnosis biomarkers, markers for early prognosis of aggressive disease, and therapeutic targets to complement immunotherapy are current clinical needs. Multi-omics analyses of 48 non-ccRCCs compared with 103 ccRCCs reveal proteogenomic, phosphorylation, glycosylation, and metabolic aberrations in RCC subtypes. RCCs with high genome instability display overexpression of IGF2BP3 and PYCR1. Integration of single-cell and bulk transcriptome data predicts diverse cell-of-origin and clarifies RCC subtype-specific proteogenomic signatures. Expression of biomarkers MAPRE3, ADGRF5, and GPNMB differentiates renal oncocytoma from chromophobe RCC, and PIGR and SOSTDC1 distinguish papillary RCC from MTSCC. This study expands our knowledge of proteogenomic signatures, biomarkers, and potential therapeutic targets in non-ccRCC.


Biomarkers, Tumor , Carcinoma, Renal Cell , Kidney Neoplasms , Proteogenomics , Humans , Proteogenomics/methods , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Transcriptome/genetics , Male , Female , Middle Aged , Gene Expression Regulation, Neoplastic
10.
PeerJ ; 12: e17356, 2024.
Article En | MEDLINE | ID: mdl-38766485

Background: Hepatic stellate cell (HSC) activation and hepatic fibrosis mediated biliary atresia (BA) development, but the underlying molecular mechanisms are poorly understood. This study aimed to investigate the roles of circRNA hsa_circ_0009096 in the regulation of HSC proliferation and hepatic fibrosis. Methods: A cellular hepatic fibrosis model was established by treating LX-2 cells with transforming growth factor ß (TGF-ß1). RNaseR and actinomycin D assays were performed to detect hsa_circ_0009096 stability. Expression of hsa_circ_0009096, miR-370-3p, and target genes was detected using reverse transcription-qPCR. Direct binding of hsa_circ_0009096 to miR-370-3p was validated using dual luciferase reporter assay. Cell cycle progression and apoptosis of LX-2 cells were assessed using flow cytometry. The alpha-smooth muscle actin (α-SMA), collagen 1A1 (COL1A1), and TGF beta receptor 2 (TGFBR2) protein levels in LX-2 cells were analyzed using immunocytochemistry and western blotting. Results: Hsa_circ_0009096 exhibited more resistance to RNase R and actinomycinD digestion than UTRN mRNA. Hsa_circ_0009096 expression increased significantly in LX-2 cells treated with TGF-ß1, accompanied by elevated α-SMA and COL1A1 expression. Hsa_circ_0009096 siRNAs effectively promoted miR-370-3p and suppressed TGFBR2 expression in LX-2 cells, mediated by direct association of hsa_circ_0009096 with miR-370-3p. Hsa_circ_0009096 siRNA interfered with the cell cycle progression, promoted apoptosis, and reduced α-SMA and COL1A1 expression in LX-2 cells treated with TGF-ß1. MiR-370-3p inhibitors mitigated the alterations in cell cycle progression, apoptosis, and α-SMA, COL1A1, and TGFBR2 expression in LX-2 cells caused by hsa_circ_0009096 siRNA. In conclusion, hsa_circ_0009096 promoted HSC proliferation and hepatic fibrosis during BA pathogenesis by accelerating TGFBR2 expression by sponging miR-370-3p.


Biliary Atresia , Cell Proliferation , Hepatic Stellate Cells , Liver Cirrhosis , MicroRNAs , RNA, Circular , Receptor, Transforming Growth Factor-beta Type II , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Biliary Atresia/pathology , Biliary Atresia/genetics , Biliary Atresia/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Receptor, Transforming Growth Factor-beta Type II/genetics , Receptor, Transforming Growth Factor-beta Type II/metabolism , Collagen Type I/metabolism , Collagen Type I/genetics , Apoptosis , Cell Line , Actins/metabolism , Actins/genetics , Collagen Type I, alpha 1 Chain/genetics , Collagen Type I, alpha 1 Chain/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics
11.
Free Radic Biol Med ; 219: 49-63, 2024 Jul.
Article En | MEDLINE | ID: mdl-38608823

Previous studies have shown that ferroptosis of vascular smooth muscle cells (VSMCs) is involved in the development of aortic dissection (AD) and that histone methylation regulates this process. SP2509 acts as a specific inhibitor of lysine-specific demethylase 1 (LSD1), which governs a variety of biological processes. However, the effect of SP2509 on VSMC ferroptosis and AD remains to be elucidated. This aim of this study was to investigate the role and underlying mechanism of SP2509-mediated histone methylation on VSMC ferroptosis. Here, a mouse model of AD was established, and significantly reduced levels of H3K4me1 and H3K4me2 (target of SP2509) were found in the aortas of AD mice. In VSMCs, SP2509 treatment led to a dose-dependent increase in H3K4me2 levels. Furthermore, we found that SP2509 provided equivalent protection to ferrostatin-1 against VSMC ferroptosis, as evidenced by increased cell viability, decreased cell death and lipid peroxidation. RNA-sequencing analysis and subsequent experiments revealed that SP2509 counteracted cystine deficiency-induced response to inflammation and oxidative stress. More importantly, we demonstrated that SP2509 inhibited the expression of TFR and ferritin to reduce intracellular iron levels, thereby effectively blocking the process of ferroptosis. Therefore, our findings indicate that SP2509 protects VSMCs from multiple stimulus-induced ferroptosis by reducing intracellular iron levels, thereby preventing lipid peroxidation and cell death. These findings suggest that SP2509 may be a promising drug to alleviate AD by reducing iron deposition and VSMC ferroptosis.


Ferroptosis , Iron , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Ferroptosis/drug effects , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Mice , Iron/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Oxidative Stress/drug effects , Humans , Disease Models, Animal , Lipid Peroxidation/drug effects , Phenylenediamines/pharmacology , Male , Cell Survival/drug effects , Histones/metabolism , Histones/genetics , Histone Demethylases/metabolism , Histone Demethylases/genetics , Mice, Inbred C57BL , Cyclohexylamines
12.
Cancer Lett ; 590: 216842, 2024 May 28.
Article En | MEDLINE | ID: mdl-38582395

Platinum-based neoadjuvant therapy represented by cisplatin is widely employed in treating Triple-Negative Breast Cancer (TNBC), a particularly aggressive subtype of breast cancer. Nevertheless, the emergence of cisplatin resistance presents a formidable challenge to clinical chemotherapy efficacy. Herein, we revealed the critical role of tumor microenvironment (TME) derived exosomal miR-3960 and phosphorylation at the S16 site of PIMREG in activating NF-κB signaling pathway and promoting cisplatin resistance of TNBC. Detailed regulatory mechanisms revealed that SOD1-upregulated fibroblasts secrete miR-3960 and are then transported into TNBC cells via exosomes. Within TNBC cells, miR-3960 targets and inhibits the expression of BRSK2, an AMPK protein kinase family member. Furthermore, we emphasized that BRSK2 contributes to ubiquitination degradation of PIMREG and modulates subsequent activation of the NF-κB signaling pathway by mediating PIMREG phosphorylation at the S16 site, ultimately affects the cisplatin resistance of TNBC. In conclusion, our research demonstrated the crucial role of SOD1high fibroblast, exosomal miR-3960 and S16 site phosphorylated PIMREG in regulating the NF-κB signaling pathway and cisplatin resistance of TNBC. These findings provided significant potential as biomarkers for accurately diagnosing cisplatin-resistant TNBC patients and guiding chemotherapy strategy selection.


Cisplatin , Drug Resistance, Neoplasm , Exosomes , MicroRNAs , Triple Negative Breast Neoplasms , Animals , Female , Humans , Mice , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cisplatin/pharmacology , Exosomes/metabolism , Exosomes/genetics , Fibroblasts/metabolism , Fibroblasts/drug effects , Gene Expression Regulation, Neoplastic/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , NF-kappa B/metabolism , NF-kappa B/genetics , Phosphorylation , Signal Transduction/drug effects , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Tumor Microenvironment
13.
Neuroscience ; 547: 88-97, 2024 May 24.
Article En | MEDLINE | ID: mdl-38615829

Down syndrome (DS), also known as trisomy 21, is one of the most common chromosomal disorders associated with intellectual disability. Mouse models are valuable for mechanistic and therapeutic intervention studies. The purpose of this study was to investigate astroglial anomalies in Dp16, a widely used DS mouse model. Brain sections were prepared from one-month-old Dp16 mice and their littermates, immunostained with an anti-GFAP or anti-S100B antibody, and imaged to reconstruct astroglial morphology in three dimensions. No significant difference in the number of astrocytes was found in either the hippocampal CA1 region or cortex between Dp16 and WT mice. However, the average astroglial volume in Dp16 was significantly (P < 0.05) greater than that in WT, suggesting the astroglial activation. Reanalysis of the single-nucleus RNA sequencing data indicated that the genes differentially expressed between WT and Dp16 astrocytes were associated with synapse organization and neuronal projection. In contrast, in vitro cultured neonatal astrocytes did not exhibit significant morphological changes. The expression of Gfap in in vitro cultured Dp16 astrocytes was not increased as it was in in vivo hippocampal tissue. However, after treatment with lipopolysaccharides, the inflammatory response gene IFNß increased significantly more in Dp16 astrocytes than in WT astrocytes. Overall, our results showed that the increase in astrogliogenesis in DS was not apparent in the early life of Dp16 mice, while astrocyte activation, which may be partly caused by increased responses to inflammatory stimulation, was significant. The inflammatory response of astrocytes might be a potential therapeutic target for DS intellectual disability.


Astrocytes , Disease Models, Animal , Down Syndrome , Animals , Down Syndrome/pathology , Down Syndrome/metabolism , Astrocytes/metabolism , Astrocytes/pathology , Mice , Cells, Cultured , Glial Fibrillary Acidic Protein/metabolism , Hippocampus/pathology , Hippocampus/metabolism , Mice, Inbred C57BL , Brain/pathology , Brain/metabolism
14.
Oncogene ; 43(21): 1581-1593, 2024 May.
Article En | MEDLINE | ID: mdl-38565942

Deubiquitinating enzymes (DUBs) are promising targets for cancer therapy because of their pivotal roles in various physiological and pathological processes. Among these, ubiquitin-specific peptidase 26 (USP26) is a protease with crucial regulatory functions. Our study sheds light on the upregulation of USP26 in colorectal cancer (CRC), in which its increased expression correlates with an unfavorable prognosis. Herein, we evidenced the role of USP26 in promoting CRC tumorigenesis in a parkin RBR E3 ubiquitin-protein ligase (PRKN) protein-dependent manner. Our investigation revealed that USP26 directly interacted with PRKN protein, facilitating its deubiquitination, and subsequently reducing its activity. Additionally, we identified the K129 site on PRKN as a specific target for USP26-mediated deubiquitination. Our research highlights that a K-to-R mutation at the site on PRKN diminishes its potential for activation and ability to mediate mitophagy. In summary, our findings underscore the significance of USP26-mediated deubiquitination in restraining the activation of the PRKN-mediated mitophagy pathway, ultimately driving CRC tumorigenesis. This study not only elucidated the multifaceted role of USP26 in CRC but also introduced a promising avenue for therapeutic exploration through the development of small molecule inhibitors targeting USP26. This strategy holds promise as a novel therapeutic approach for CRC.


Carcinogenesis , Colorectal Neoplasms , Mitophagy , Ubiquitin-Protein Ligases , Ubiquitination , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Humans , Mitophagy/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Mice , Cell Line, Tumor , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Mice, Nude , Gene Expression Regulation, Neoplastic
15.
Int J Stroke ; : 17474930241241994, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38472157

BACKGROUND: Hyperglycemia is associated with worse stroke outcomes, but it is uncertain whether tight glycemic control during the acute stroke period is associated with a better outcome. We conducted a meta-analysis to compare the effect of tight glycemic control versus loose glycemic control in the acute phase of stroke patients. METHODS: A literature search was performed to identify randomized controlled trials comparing the safety and efficacy of tight glycemic control with a relatively loose control of blood glucose of acute stroke (ischemic or hemorrhagic) patients within 24 h after stroke onset. We required that the blood glucose level of the patients should not be lower than 6.11 mmol/L at the time of enrollment, and for the intensive blood glucose control range, we defined the blood glucose level as lower than that of the control group. The primary efficacy outcome measure was deaths from any cause at 90 days. Secondary efficacy outcomes comprised the number of participants with modified Rankin score (mRS). We define mRS scores 0-2 as favorable scores, recurrent stroke, and the National Institute of Health Stroke Scale or the European Stroke Scale scores. We defined the number of participants with hypoglycemia as our primary safety outcome. Subgroup analysis was performed according to age, the variety of interventions, maintained glucose level, and status of hypoglycemia on National Institute of Health Stroke Scale (NIHSS) scores or European Stroke Scale (ESS) scores. RESULTS: Fifteen randomized controlled trials (RCTs) with 2957 participants meeting the including criteria were identified and included in this meta-analysis, although not all included data on every outcome measure. Data on the primary efficacy endpoint, mortality at 90 days, was available in 11 RCTs, a total of 2575 participants. There was no significant difference between the intervention and control groups (odds ratio (OR): 1.00; 95% confidence interval (CI): 0.81-1.23; P = 0.99). For secondary endpoints, there was no difference between intervention and control groups for a mRS from 0 to 2 (OR: 0.96; 95% CI: 0.80-1.15; P = 0.69; data from 9 RCTs available), or recurrent stroke (OR: 1.34; 95% CI: 0.92-1.96; P = 0.13; data from 3 RCTs available). For NIHSS scores or ESS scores, there was a small difference in favor of intensive controls (standardized mean difference: -0.29; 95% CI: -0.54 to -0.04; P = 0.02). There was a marked increase in hypoglycemia with tight control: (OR of 9.46 (95% CI: 4.59-19.50; P < 0.00001; data from 9 RCTs available). CONCLUSION: There was no difference between tight and loose glycemic control on mortality, independence, or recurrent stroke outcome in acute stroke, but an increase in hypoglycemia. There was a small effect improvement on neurological scales, but the relevance of this needs to be confirmed in future adequately powered studies.

16.
Methods ; 224: 79-92, 2024 Apr.
Article En | MEDLINE | ID: mdl-38430967

The identification of drug-target interactions (DTI) is a valuable step in the drug discovery and repositioning process. However, traditional laboratory experiments are time-consuming and expensive. Computational methods have streamlined research to determine DTIs. The application of deep learning methods has significantly improved the prediction performance for DTIs. Modern deep learning methods can leverage multiple sources of information, including sequence data that contains biological structural information, and interaction data. While useful, these methods cannot be effectively applied to each type of information individually (e.g., chemical structure and interaction network) and do not take into account the specificity of DTI data such as low- or zero-interaction biological entities. To overcome these limitations, we propose a method called MFA-DTI (Multi-feature Fusion Adopted framework for DTI). MFA-DTI consists of three modules: an interaction graph learning module that processes the interaction network to generate interaction vectors, a chemical structure learning module that extracts features from the chemical structure, and a fusion module that combines these features for the final prediction. To validate the performance of MFA-DTI, we conducted experiments on six public datasets under different settings. The results indicate that the proposed method is highly effective in various settings and outperforms state-of-the-art methods.


Drug Discovery , Laboratories , Drug Interactions
17.
Chem Commun (Camb) ; 60(29): 3958-3961, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38501223

A novel and interesting controllable spirocyclization of unsaturated barbiturates with enamino esters for the assembly of cyclopentenyl and pyrrolinyl spirobarbiturates has been developed under ball-milling conditions. The present protocol features high chemoselectivity and efficiency, excellent functional group tolerance and mild reaction conditions.

18.
Small ; : e2400344, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38497503

Organic supramolecular photocatalysts have garnered widespread attention due to their adjustable structure and exceptional photocatalytic activity. Herein, a novel bis-dicarboxyphenyl-substituent naphthalenediimide self-assembly supramolecular photocatalyst (SA-NDI-BCOOH) with efficient dual-functional photocatalytic performance is successfully constructed. The large molecular dipole moment and short-range ordered stacking structure of SA-NDI-BCOOH synergistically create a giant internal electric field (IEF), resulting in a remarkable 6.7-fold increase in its charge separation efficiency. Additionally, the tetracarboxylic structure of SA-NDI-BCOOH greatly enhances its hydrophilicity. Thus, SA-NDI-BCOOH demonstrates efficient dual-functional activity for photocatalytic hydrogen and oxygen evolution, with rates of 372.8 and 3.8 µmol h-1 , respectively. Meanwhile, a notable apparent quantum efficiency of 10.86% at 400 nm for hydrogen evolution is achieved, prominently surpassing many reported supramolecular photocatalysts. More importantly, with the help of dual co-catalysts, it exhibits photocatalytic overall water splitting activity with H2 and O2 evolution rates of 3.2 and 1.6 µmol h-1 . Briefly, this work sheds light on enhancing the IEF by controlling the molecular polarity and stacking structure to dramatically improve the photocatalytic performance of supramolecular materials.

19.
Int J Mol Med ; 53(4)2024 04.
Article En | MEDLINE | ID: mdl-38426604

The effects of adipocyte­rich microenvironment (ARM) on chemoresistance have garnered increasing interest. Ovarian cancer (OVCA) is a representative adipocyte­rich associated cancer. In the present study, epithelial OVCA (EOC) was used to investigate the influence of ARM on chemoresistance with the aim of identifying novel targets and developing novel strategies to reduce chemoresistance. Bioinformatics analysis was used to explore the effects of ARM­associated mechanisms contributing to chemoresistance and treated EOC cells, primarily OVCAR3 cells, with human adipose tissue extracts (HATES) from the peritumoral adipose tissue of patients were used to mimic ARM in vitro. Specifically, the peroxisome proliferator­activated receptor Î³ (PPARγ) antagonist GW9662 and the ABC transporter G family member 2 (ABCG2) inhibitor KO143, were used to determine the underlying mechanisms. Next, the effect of HATES on the expression of PPARγ and ABCG2 in OVCAR3 cells treated with cisplatin (DDP) and paclitaxel (PTX) was determined. Additionally, the association between PPARγ, ABCG2 and chemoresistance in EOC specimens was assessed. To evaluate the effect of inhibiting PPARγ, using DDP, a nude mouse model injected with OVCAR3­shPPARγ cells and a C57BL/6 model injected with ID8 cells treated with GW9662 were established. Finally, the factors within ARM that contributed to the mechanism were determined. It was found that HATES promoted chemoresistance by increasing ABCG2 expression via PPARγ. Expression of PPARγ/ABCG2 was related to chemoresistance in EOC clinical specimens. GW9662 or knockdown of PPARγ improved the efficacy of chemotherapy in mice. Finally, angiogenin and oleic acid played key roles in HATES in the upregulation of PPARγ. The present study showed that the introduction of ARM­educated PPARγ attenuated chemoresistance in EOC, highlighting a potentially novel therapeutic adjuvant to chemotherapy and shedding light on a means of improving the efficacy of chemotherapy from the perspective of ARM.


Anilides , Ovarian Neoplasms , Animals , Female , Humans , Mice , Adipocytes/metabolism , Apoptosis , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Carcinoma, Ovarian Epithelial/drug therapy , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Mice, Inbred C57BL , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Tumor Microenvironment , Up-Regulation
20.
ACS Appl Mater Interfaces ; 16(11): 13989-13996, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38441421

Benefiting from the brain-inspired event-driven feature and asynchronous sparse coding approach, spiking neural networks (SNNs) are becoming a potentially energy-efficient replacement for conventional artificial neural networks. However, neuromorphic devices used to construct SNNs persistently result in considerable energy consumption owing to the absence of sufficient biological parallels. Drawing inspiration from the transport nature of Na+ and K+ in synapses, here, a Li-based memristor (LixAlOy) was proposed to emulate the biological synapse, leveraging the similarity of Li as a homologous main group element to Na and K. The Li-based memristor exhibits ∼8 ns ultrafast operating speed, 1.91 and 0.72 linearity conductance modulation, and reproducible switching behavior, enabled by lithium vacancies forming a conductive filament mechanism. Moreover, these memristors are capable of simulating fundamental behaviors of a biological synapse, including long-term potentiation and long-term depression behaviors. Most importantly, a threshold-tunable leaky integrate-and-fire (TT-LIF) neuron is built using LixAlOy memristors, successfully integrating synaptic signals from both temporal and spatial levels and achieving an optimal threshold of SNNs. A computationally efficient TT-LIF-based SNN algorithm is also implemented for image recognition schemes, featuring a high recognition rate of 90.1% and an ultralow firing rate of 0.335%, which is 4 times lower than those of other memristor-based SNNs. Our studies reveal the ion dynamics mechanism of the LixAlOy memristor and confirm its potential in rapid switching and the construction of SNNs.


Lithium , Neural Networks, Computer , Algorithms , Brain , Ions , Neurons
...