Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27
1.
Biochem Biophys Res Commun ; 721: 150144, 2024 May 18.
Article En | MEDLINE | ID: mdl-38781661

Cell polarization can be guided by substrate topology through space constraints and adhesion induction, which are part of cellular mechanosensing pathways. Here, we demonstrated that protein tyrosine phosphatase Shp2 plays a crucial role in mediating the response of cells to substrate spatial cues. When compared to cells spreading on surfaces coated uniformly with fibronectin (FN), cells attached to 10 µm-width FN-strip micropattern (MP), which provides spatial cues for uniaxial spreading, exhibited elongated focal adhesions (FAs) and aligned stress fibers in the direction of the MP. As a result of uniaxial cell spreading, nuclei became elongated, dependent on ROCK-mediated actomyosin contractility. Additionally, intracellular viscoelasticity also increased. Shp2-deficient cells did not display elongated FAs mediated by MP, well-aligned stress fibers, or changes in nuclear shape and intracellular viscoelasticity. Overall, our data suggest that Shp2 is involved in regulating FAs and the actin cytoskeleton to modulate nuclear shape and intracellular physical properties in response to substrate spatial cues.

2.
Mater Today Bio ; 26: 101058, 2024 Jun.
Article En | MEDLINE | ID: mdl-38681057

Biomechanical cues could effectively govern cell gene expression to direct the differentiation of specific stem cell lineage. Recently, the medium viscosity has emerged as a significant mechanical stimulator that regulates the cellular mechanical properties and various physiological functions. However, whether the medium viscosity can regulate the mechanical properties of human mesenchymal stem cells (hMSCs) to effectively trigger osteogenic differentiation remains uncertain. The mechanism by which cells sense and respond to changes in medium viscosity, and regulate cell mechanical properties to promote osteogenic lineage, remains elusive. In this study, we demonstrated that hMSCs, cultured in a high-viscosity medium, exhibited larger cell spreading area and higher intracellular tension, correlated with elevated formation of actin stress fibers and focal adhesion maturation. Furthermore, these changes observed in hMSCs were associated with activation of TRPV4 (transient receptor potential vanilloid sub-type 4) channels on the cell membrane. This feedback loop among TRPV4 activation, cell spreading and intracellular tension results in calcium influx, which subsequently promotes the nuclear localization of NFATc1 (nuclear factor of activated T cells 1). Concomitantly, the elevated intracellular tension induced nuclear deformation and promoted the nuclear localization of YAP (YES-associated protein). The concurrent activation of NFATc1 and YAP significantly enhanced alkaline phosphatase (ALP) for pre-osteogenic activity. Taken together, these findings provide a more comprehensive view of how viscosity-induced alterations in biomechanical properties of MSCs impact the expression of osteogenesis-related genes, and ultimately promote osteogenic lineage.

3.
Biomaterials ; 308: 122551, 2024 Jul.
Article En | MEDLINE | ID: mdl-38593710

Sarcopenia, a prevalent muscle disease characterized by muscle mass and strength reduction, is associated with impaired skeletal muscle regeneration. However, the influence of the biomechanical properties of sarcopenic skeletal muscle on the efficiency of the myogenic program remains unclear. Herein, we established a mouse model of sarcopenia and observed a reduction in stiffness within the sarcopenic skeletal muscle in vivo. To investigate whether the biomechanical properties of skeletal muscle directly impact the myogenic program, we established an in vitro system to explore the intrinsic mechanism involving matrix stiffness control of myogenic differentiation. Our findings identify the microtubule motor protein, kinesin-1, as a mechano-transduction hub that senses and responds to matrix stiffness, crucial for myogenic differentiation and muscle regeneration. Specifically, kinesin-1 activity is positively regulated by stiff matrices, facilitating its role in transporting mitochondria and enhancing translocation of the glucose transporter GLUT4 to the cell surface for glucose uptake. Conversely, the softer matrices significantly suppress kinesin-1 activity, leading to the accumulation of mitochondria around nuclei and hindering glucose uptake by inhibiting GLUT4 membrane translocation, consequently impairing myogenic differentiation. The insights gained from the in-vitro system highlight the mechano-transduction significance of kinesin-1 motor proteins in myogenic differentiation. Furthermore, our study confirms that enhancing kinesin-1 activity in the sarcopenic mouse model restores satellite cell expansion, myogenic differentiation, and muscle regeneration. Taken together, our findings provide a potential target for improving muscle regeneration in sarcopenia.


Kinesins , Regeneration , Sarcopenia , Animals , Kinesins/metabolism , Mice , Sarcopenia/metabolism , Sarcopenia/pathology , Muscle, Skeletal/metabolism , Mice, Inbred C57BL , Cell Differentiation , Muscle Development , Male , Glucose Transporter Type 4/metabolism , Extracellular Matrix/metabolism , Mitochondria/metabolism , Biomechanical Phenomena , Glucose/metabolism
4.
iScience ; 26(6): 106927, 2023 Jun 16.
Article En | MEDLINE | ID: mdl-37305698

The objective of this study is to develop a device to mimic a microfluidic system of human arterial blood vessels. The device combines fluid shear stress (FSS) and cyclic stretch (CS), which are resulting from blood flow and blood pressure, respectively. The device can reveal real-time observation of dynamic morphological change of cells in different flow fields (continuous flow, reciprocating flow and pulsatile flow) and stretch. We observe the effects of FSS and CS on endothelial cells (ECs), including ECs align their cytoskeleton proteins with the fluid flow direction and paxillin redistribution to the cell periphery or the end of stress fibers. Thus, understanding the morphological and functional changes of endothelial cells on physical stimuli can help us to prevent and improve the treatment of cardiovascular diseases.

5.
Acta Biomater ; 163: 287-301, 2023 06.
Article En | MEDLINE | ID: mdl-36328121

Within the heterogeneous tissue architecture, a comprehensive understanding of how cell shapes regulate cytoskeletal mechanics by adjusting focal adhesions (FAs) signals to correlate with the lineage commitment of mesenchymal stromal cells (MSCs) remains obscure. Here, via engineered extracellular matrices, we observed that the development of mature FAs, coupled with a symmetrical pattern of radial fiber bundles, appeared at the right-angle vertices in cells with square shape. While circular cells aligned the transverse fibers parallel to the cell edge, and moved them centripetally in a counter-clockwise direction, symmetrical bundles of radial fibers at the vertices of square cells disrupted the counter-clockwise swirling and bridged the transverse fibers to move centripetally. In square cells, the contractile force, generated by the myosin IIA-enriched transverse fibers, were concentrated and transmitted outwards along the symmetrical bundles of radial fibers, to the extracellular matrix through FAs, and thereby driving FA organization and maturation. The symmetrical radial fiber bundles concentrated the transverse fibers contractility inward to the linkage between the actin cytoskeleton and the nuclear envelope. The tauter cytoskeletal network adjusted the nuclear-actomyosin force balance to cause nuclear deformability and to increase nuclear translocation of the transcription co-activator YAP, which in turn modulated the switch in MSC commitment. Thus, FAs dynamically respond to geometric cues and remodel actin cytoskeletal network to re-distribute intracelluar tension towards the cell nucleus, and thereby controlling YAP mechanotransduction signaling in regulating MSC fate decision. STATEMENT OF SIGNIFICANCE: We decipher how cellular mechanics is self-organized depending on extracellular geometric features to correlate with mesenchymal stromal cell lineage commitment. In response to geometry constrains on cell morphology, symmetrical radial fiber bundles are assembled and clustered depending on the maturation state of focal adhesions and bridge with the transverse fibers, and thereby establishing the dynamic cytoskeletal network. Contractile force, generated by the myosin-IIA-enriched transverse fibers, is transmitted and dynamically drives the retrograde movement of the actin cytoskeletal network, which appropriately adjusts the nuclear-actomyosin force balance and deforms the cell nucleus for YAP mechano-transduction signaling in regulating mesenchymal stromal cell fate decision.


Actins , Mesenchymal Stem Cells , Actins/metabolism , Actomyosin/metabolism , Mechanotransduction, Cellular , Cell Shape , Osteogenesis , Cell Differentiation , Transcription Factors/metabolism
6.
J Virol ; 96(16): e0075522, 2022 08 24.
Article En | MEDLINE | ID: mdl-35914074

Primary effusion lymphoma (PEL) is a fatal B-cell lymphoma caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection. Inducing KSHV lytic replication that causes the death of host cells is an attractive treatment approach for PE; however, combination therapy inhibiting viral production is frequently needed to improve its outcomes. We have previously shown that the KSHV lytic protein K-bZIP can SUMOylate histone lysine demethylase 4A (KDM4A) at lysine 471 (K471) and this SUMOylation is required for virus production upon KSHV reactivation. Here, we demonstrate that SUMOylation of KDM4A orchestrates PEL cell survival, a major challenge for the success of PEL treatment; and cell movement and angiogenesis, the cell functions contributing to PEL cell extravasation and dissemination. Furthermore, integrated ChIP-seq and RNA-seq analyses identified interleukin-10 (IL-10), an immunosuppressive cytokine, as a novel downstream target of KDM4A. We demonstrate that PEL-induced angiogenesis is dependent on IL-10. More importantly, single-cell RNA sequencing (scRNA-seq) analysis demonstrated that, at the late stage of KSHV reactivation, KDM4A determines the fates of PEL cells, as evidenced by two distinct cell populations; one with less apoptotic signaling expresses high levels of viral genes and the other is exactly opposite, while KDM4A-K417R-expressing cells contain only the apoptotic population with less viral gene expression. Consistently, KDM4A knockout significantly reduced cell viability and virus production in KSHV-reactivated PEL cells. Since inhibiting PEL extravasation and eradicating KSHV-infected PEL cells without increasing viral load provide a strong rationale for treating PEL, this study indicates targeting KDM4A as a promising therapeutic option for treating PEL. IMPORTANCE PEL is an aggressive and untreatable B-cell lymphoma caused by KSHV infection. Therefore, new therapeutic approaches for PEL need to be investigated. Since simultaneous induction of KSHV reactivation and apoptosis can directly kill PEL cells, they have been applied in the treatment of this hematologic malignancy and have made progress. Epigenetic therapy with histone deacetylase (HDAC) inhibitors has been proved to treat PEL. However, the antitumor efficacies of HDAC inhibitors are modest and new approaches are needed. Following our previous report showing that the histone lysine demethylase KDM4A and its SUMOylation are required for lytic reactivation of KSHV in PEL cells, we further investigated its cellular function. Here, we found that SUMOylation of KDM4A is required for the survival, movement, and angiogenesis of lytic KSHV-infected PEL cells. Together with our previous finding showing the importance of KDM4A SUMOylation in viral production, KDM4A can be a potential therapeutic target for PEL.


Herpesvirus 8, Human , Jumonji Domain-Containing Histone Demethylases/metabolism , Lymphoma, Primary Effusion , Gene Expression Regulation, Viral , Herpesvirus 8, Human/physiology , Histone Demethylases/genetics , Humans , Interleukin-10/metabolism , Virus Activation , Virus Replication
7.
Front Cell Dev Biol ; 10: 809738, 2022.
Article En | MEDLINE | ID: mdl-35265612

Up to 50% of head and neck squamous cell carcinoma (HNSCC) patients have lymph node (LN) metastasis, resulting in poor survival rate. Numerous studies have supported the notion that the alterations of gene expression and mechanical properties of cancer cells play an important role in cancer metastasis. However, which genes and how they regulate the biomechanical properties of HNSCC cells to promote LN metastasis remains elusive. In this study, we used an LN-metastatic mouse model in vivo to generate an LN-metastatic head and neck squamous cell carcinoma cell line and compared the differences in the biomolecular and biomechanical properties of LN-metastatic and non-metastatic cells. Our results showed that LN-metastatic cells had a higher level of Snail expression compared to non-LN-metastatic cells. The higher Snail expression promoted the cellular invasion capability in confined environments, mainly by increasing the longitudinal strain of the cell nuclei, which could be attributed to the stronger cell traction force and softer nuclear stiffness. These two biomechanical changes were correlated, respectively, to a larger amount of focal adhesion and less amount of nuclear lamins. Taken together, our works revealed not only the biomechanical profiles of LN-metastatic cells but also the corresponding biomolecular expressions to pinpoint the key process in LN metastasis.

8.
Cancers (Basel) ; 13(8)2021 Apr 12.
Article En | MEDLINE | ID: mdl-33921319

Cell migration is critical for regional dissemination and distal metastasis of cancer cells, which remain the major causes of poor prognosis and death in patients with colorectal cancer (CRC). Although cytoskeletal dynamics and cellular deformability contribute to the migration of cancer cells and metastasis, the mechanisms governing the migratory ability of cancer stem cells (CSCs), a nongenetic source of tumor heterogeneity, are unclear. Here, we expanded colorectal CSCs (CRCSCs) as colonospheres and showed that CRCSCs exhibited higher cell motility in transwell migration assays and 3D invasion assays and greater deformability in particle tracking microrheology than did their parental CRC cells. Mechanistically, in CRCSCs, microRNA-210-3p (miR-210) targeted stathmin1 (STMN1), which is known for inducing microtubule destabilization, to decrease cell elasticity in order to facilitate cell motility without affecting the epithelial-mesenchymal transition (EMT) status. Clinically, the miR-210-STMN1 axis was activated in CRC patients with liver metastasis and correlated with a worse clinical outcome. This study elucidates a miRNA-oriented mechanism regulating the deformability of CRCSCs beyond the EMT process.

9.
Cell Death Discov ; 7(1): 35, 2021 Feb 17.
Article En | MEDLINE | ID: mdl-33597503

During differentiation, skeletal muscle develops mature multinucleated muscle fibers, which could contract to exert force on a substrate. Muscle dysfunction occurs progressively in patients with muscular dystrophy, leading to a loss of the ability to walk and eventually to death. The synthetic glucocorticoid dexamethasone (Dex) has been used therapeutically to treat muscular dystrophy by an inhibition of inflammation, followed by slowing muscle degeneration and stabilizing muscle strength. Here, in mice with muscle injury, we found that Dex significantly promotes muscle regeneration via promoting kinesin-1 motor activity. Nevertheless, how Dex promotes myogenesis through kinesin-1 motors remains unclear. We found that Dex directly increases kinesin-1 motor activity, which is required for the expression of a myogenic marker (muscle myosin heavy chain 1/2), and also for the process of myoblast fusion and the formation of polarized myotubes. Upon differentiation, kinesin-1 mediates the recruitment of integrin ß1 onto microtubules allowing delivery of the protein into focal adhesions. Integrin ß1-mediated focal adhesion signaling then guides myoblast fusion towards a polarized morphology. By imposing geometric constrains via micropatterns, we have proved that cell adhesion is able to rescue the defects caused by kinesin-1 inhibition during the process of myogenesis. These discoveries reveal a mechanism by which Dex is able to promote myogenesis, and lead us towards approaches that are more efficient in improving skeletal muscle regeneration.

10.
ACS Appl Mater Interfaces ; 12(20): 22399-22409, 2020 May 20.
Article En | MEDLINE | ID: mdl-32323968

Contact guidance has been extensively explored using patterned adhesion functionalities that predominantly mimic cell-matrix interactions. Whether contact guidance can also be driven by other types of interactions, such as cell-cell adhesion, still remains a question. Herein, this query is addressed by engineering a set of microstrip patterns of (i) cell-cell adhesion ligands and (ii) segregated cell-cell and cell-matrix ligands as a simple yet versatile set of platforms for the guidance of spreading, adhesion, and differentiation of mesenchymal stem cells. It was unprecedently found that micropatterns of cell-cell adhesion ligands can induce contact guidance. Surprisingly, it was found that patterns of alternating cell-matrix and cell-cell strips also induce contact guidance despite providing a spatial continuum for cell adhesion. This guidance is believed to be due to the difference between the potencies of the two adhesions. Furthermore, patterns that combine the two segregated adhesion functionalities were shown to induce more human mesenchymal stem cell osteogenic differentiation than monofunctional patterns. This work provides new insight into the functional crosstalk between cell-cell and cell-matrix adhesions and, overall, further highlights the ubiquitous impact of the biochemical anisotropy of the extracellular environment on cell function.


Cell Adhesion/physiology , Cell Communication/physiology , Cell Differentiation/physiology , Mesenchymal Stem Cells/metabolism , Anisotropy , Antigens, CD/metabolism , Cadherins/metabolism , Cell Adhesion/drug effects , Cell Communication/drug effects , Cell Differentiation/drug effects , Gold/chemistry , Humans , Integrins/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Signal Transduction/drug effects , Signal Transduction/physiology , Surface Properties , Titanium/chemistry
11.
Nat Commun ; 11(1): 1229, 2020 03 06.
Article En | MEDLINE | ID: mdl-32144274

Liquid-liquid phase separation (LLPS) explains many intracellular activities, but its role in extracellular functions has not been studied to the same extent. Here we report how LLPS mediates the extracellular function of galectin-3, the only monomeric member of the galectin family. The mechanism through which galectin-3 agglutinates (acting as a "bridge" to aggregate glycosylated molecules) is largely unknown. Our data show that its N-terminal domain (NTD) undergoes LLPS driven by interactions between its aromatic residues (two tryptophans and 10 tyrosines). Our lipopolysaccharide (LPS) micelle model shows that the NTDs form multiple weak interactions to other galectin-3 and then aggregate LPS micelles. Aggregation is reversed when interactions between the LPS and the carbohydrate recognition domains are blocked by lactose. The proposed mechanism explains many of galectin-3's functions and suggests that the aromatic residues in the NTD are interesting drug design targets.


Agglutination , Galectin 3/metabolism , Intrinsically Disordered Proteins/metabolism , Protein Aggregates , Blood Proteins , Galectins , Glycosylation , Lipopolysaccharides/metabolism , Micelles , Protein Domains
12.
ACS Appl Bio Mater ; 3(9): 6419-6429, 2020 Sep 21.
Article En | MEDLINE | ID: mdl-35021773

Cancer metastasis involves not only cancer cells but also fibroblasts and the surrounding collagen matrices. Previous studies have reported that in tumor tissues, cancer cells and fibroblasts surrounded by dense collagen are often associated with a high risk of cancer metastasis. However, the mechanism of the interaction between the cancer cells, fibroblasts, and the surrounding collagen matrices in vivo to promote cancer cell invasion in different collagen concentration environments remains unclear. To address this issue, we cocultured head and neck squamous cell carcinoma (OECM-1 cells) and human dermal fibroblasts (HDFs) to form 3D spheroids, embedded in collagen gel with different concentrations to delineate their roles and their interactions in cancer cell invasion. We showed that in single-species spheroids, the OECM-1 cells could not remodel the high-concentration (8 mg/mL) collagen matrices to invade into the surrounding collagen. In contrast, in the coculture spheroids, the HDF cells could remodel the collagen matrices, via MMP-meditated collagen degradation, to increase the invasion capability of OECM-1 cells. In the case of low-concentration (2 mg/mL) collagen matrices, both HDF and OECM-1 cells in the coculture spheroids could independently invade into the surrounding collagen via force remodeling of collagen. Our results revealed that the assistance of HDFs was critical for OECM-1 cell invasion into the surrounding extracellular matrix with high collagen concentration, high storage modulus, and small pore sizes. These insightful results shed light on the possible optimal invasion strategy of cancer tumors in vivo in response to different storage moduli of surrounding collagen matrices.

13.
Life Sci Alliance ; 2(1)2019 02.
Article En | MEDLINE | ID: mdl-30737247

Directed cell migration requires centrosome-mediated cell polarization and dynamical control of focal adhesions (FAs). To examine how FAs cooperate with centrosomes for directed cell migration, we used centrosome-deficient cells and found that loss of centrosomes enhanced the formation of acentrosomal microtubules, which failed to form polarized structures in wound-edge cells. In acentrosomal cells, we detected higher levels of Rac1-guanine nucleotide exchange factor TRIO (Triple Functional Domain Protein) on microtubules and FAs. Acentrosomal microtubules deliver TRIO to FAs for Rac1 regulation. Indeed, centrosome disruption induced excessive Rac1 activation around the cell periphery via TRIO, causing rapid FA turnover, a disorganized actin meshwork, randomly protruding lamellipodia, and loss of cell polarity. This study reveals the importance of centrosomes to balance the assembly of centrosomal and acentrosomal microtubules and to deliver microtubule-associated TRIO proteins to FAs at the cell front for proper spatial activation of Rac1, FA turnover, lamillipodial protrusion, and cell polarization, thereby allowing directed cell migration.


Cell Movement/physiology , Cell Polarity/physiology , Centrosome/metabolism , rac1 GTP-Binding Protein/metabolism , Actins/metabolism , Cell Adhesion/physiology , Cell Line , Focal Adhesions/metabolism , Gene Knockdown Techniques , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Humans , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Pseudopodia/metabolism , Retinal Pigment Epithelium/cytology , Transfection
14.
Acta Biomater ; 84: 280-292, 2019 01 15.
Article En | MEDLINE | ID: mdl-30500449

Mechanical remodeling of stromal collagen, such as reorientation and deformation of collagen matrix, generated by invading cancer cells, plays an important role in the progression of cancer invasion and metastasis. In this study, we applied time-lapse microscopy in conjunction with particle displacement mapping to analyze time-dependent contraction and expansion deformations of collagen surrounding individual spheroids of head and neck squamous cell carcinoma cells (HNSCC), OECM-1 & SAS, as the cancer cells detached from the spheroid and invaded into the surrounding 3D collagen matrix. Our results revealed that highly-invasive HNSCC spheroids, stimulated by epidermal growth factor (EGF), generated a strong contraction deformation of the surrounding collagen in the very early stage, and aligned the collagen fibers radially with respect to the center of the spheroid. This initial collagen contraction deformation generated by the HNSCC spheroid bears a strong positive correlation with the overall extent of subsequent cancer cells invasion; hence, it may serve as an early indicator of the invasion capability of the HNSCC spheroids. STATEMENT OF SIGNIFICANCE: Mechanical remodeling of extracellular matrix (ECM) generated by cancer cells plays an important role in the progression of cancer invasion and metastasis. We observed that the extent of initial contraction deformation of collagen surrounding a head and neck squamous cell carcinoma cell (HNSCC) spheroid played an indispensable role in early stage to promote cancer cells invasion into the surrounding ECM. Our results revealed that more invasive HNSCC spheroids generated a larger extent of initial collagen contraction to align the surrounding collagen and to promote cancer cells invasion. This initial collagen contraction deformation generated by the HNSCC spheroids bears a strong positive correlation with the overall extent of cancer cells invasion; hence, it may serve as an early indicator of the invasion capability of the HNSCC spheroids.


Head and Neck Neoplasms , Neoplasm Proteins/metabolism , Spheroids, Cellular , Squamous Cell Carcinoma of Head and Neck , Tumor Microenvironment , Collagen , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Humans , Neoplasm Invasiveness , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology
15.
J Cell Mol Med ; 22(8): 3837-3846, 2018 Aug.
Article En | MEDLINE | ID: mdl-29726584

The biological impact and signalling of epithelial-mesenchymal transition (EMT) during cancer metastasis has been established. However, the changes in biophysical properties of cancer cells undergoing EMT remain elusive. Here, we measured, via video particle tracking microrheology, the intracellular stiffness of head and neck cancer cell lines with distinct EMT phenotypes. We also examined cells migration and invasiveness in different extracellular matrix architectures and EMT-related signalling in these cell lines. Our results show that when cells were cultivated in three-dimensional (3D) environments, the differences in cell morphology, migration speed, invasion capability and intracellular stiffness were more pronounced among different head and neck cancer cell lines with distinct EMT phenotypes than those cultivated in traditional plastic dishes and/or seated on top of a thick layer of collagen. An inverse correlation between intracellular stiffness and invasiveness in 3D culture was revealed. Knock-down of the EMT regulator Twist1 or Snail or inhibition of Rac1 which is a downstream GTPase of Twist1 increased intracellular stiffness. These results indicate that the EMT regulators, Twist1 and Snail and the mediated signals play a critical role in reducing intracellular stiffness and enhancing cell migration in EMT to promote cancer cells invasion.

16.
J Chin Med Assoc ; 81(5): 475-481, 2018 May.
Article En | MEDLINE | ID: mdl-29133160

BACKGROUND: In endurance sports, stress, dehydration and release of chemical factors have been associated with red blood cell (RBC) alterations of structure and function, which may contribute to sports anemia, a well-observed phenomenon during long-distance running. Until now, the investigation of the changes of viscoelastic properties of RBC membrane, a decisive factor of RBC deformability to avoid hemolysis, is lacking, especially in an Oriental population. METHODS: nineteen runners were prospectively recruited into our study. Hematological parameters were analyzed before and immediately after the 2015 Taipei 24H Ultra-Marathon Festival, Taiwan. Video particle tracking microrheology was used to determine viscoelastic properties of each RBC sample by calculating the dynamic elastic modulus G'(f) and the viscous modulus G″(f) at frequency f = 20 Hz. RESULTS: Haptoglobin, RBC count, hemoglobin, hematocrit, mean cell hemoglobin, plasma free hemoglobin and unsaturated iron-binding capacity values of the recruited runners showed a statistically significant drop in the post-race values. Blood concentration of reticulocyte and ferritin were significantly higher at post-race compared with pre-race. 15 out of the 19 runners had a concurrent change in the elastic and the viscous moduli of their RBCs. Changes in the elastic and the viscous moduli were correlated with changes in the RBC count, hemoglobin and hematocrit. CONCLUSION: Viscoelasticity properties, the elastic modulus G'(f) and the viscous modulus G″(f) of RBCs are associated with endurance exercise-induced anemia.


Anemia/etiology , Blood Viscosity , Erythrocytes/physiology , Running , Adult , Anemia/blood , Elasticity , Hematocrit , Hemoglobins/analysis , Humans , Male , Middle Aged
17.
Oncotarget ; 8(41): 70653-70668, 2017 Sep 19.
Article En | MEDLINE | ID: mdl-29050309

Directed cell migration is an important step in effective wound healing and requires the dynamic control of the formation of cell-extracellular matrix interactions. Plasma fibronectin is an extracellular matrix glycoprotein present in blood plasma that plays crucial roles in modulating cellular adhesion and migration and thereby helping to mediate all steps of wound healing. In order to seek safe sources of plasma fibronectin for its practical use in wound dressing, we isolated fibronectin from human (homo) and porcine plasma and demonstrated that both have a similar ability as a suitable substrate for the stimulation of cell adhesion and for directing cell migration. In addition, we also defined the N-glycosylation sites and N-glycans present on homo and porcine plasma fibronectin. These N-glycosylation modifications of the plasma fibronectin synergistically support the integrin-mediated signals to bring about mediating cellular adhesion and directed cell migration. This study not only determines the important function of N-glycans in both homo and porcine plasma fibronectin-mediated cell adhesion and directed cell migration, but also reveals the potential applications of porcine plasma fibronectin if it was applied as a material for clinical wound healing and tissue repair.

18.
Sci Rep ; 6: 31547, 2016 08 16.
Article En | MEDLINE | ID: mdl-27526936

Cellular biophysical properties are novel biomarkers of cell phenotypes which may reflect the status of differentiating stem cells. Accurate characterizations of cellular biophysical properties, in conjunction with the corresponding biochemical properties could help to distinguish stem cells from primary cells, cancer cells, and differentiated cells. However, the correlated evolution of these properties in the course of directed stem cells differentiation has not been well characterized. In this study, we applied video particle tracking microrheology (VPTM) to measure intracellular viscoelasticity of differentiating human mesenchymal stromal/stem cells (hMSCs). Our results showed that osteogenesis not only increased both elastic and viscous moduli, but also converted the intracellular viscoelasticity of differentiating hMSCs from viscous-like to elastic-like. In contrast, adipogenesis decreased both elastic and viscous moduli while hMSCs remained viscous-like during the differentiation. In conjunction with bio- chemical and physical parameters, such as gene expression profiles, cell morphology, and cytoskeleton arrangement, we demonstrated that VPTM is a unique approach to quantify, with high data throughput, the maturation level of differentiating hMSCs and to anticipate their fate decisions. This approach is well suited for time-lapsed study of the mechanobiology of differentiating stem cells especially in three dimensional physico-chemical biomimetic environments including porous scaffolds.


Cell Differentiation , Mesenchymal Stem Cells/cytology , Actins/metabolism , Adipogenesis , Focal Adhesions , Gene Expression Profiling , Humans , Mesenchymal Stem Cells/metabolism , Microscopy, Fluorescence , Osteogenesis , Rheology , Viscosity
19.
Sci Rep ; 5: 18476, 2015 Dec 18.
Article En | MEDLINE | ID: mdl-26681405

Directed cell migration requires dynamical control of the protein complex within focal adhesions (FAs) and this control is regulated by signaling events involving tyrosine phosphorylation. We screened the SH2 domains present in tyrosine-specific kinases and phosphatases found within FAs, including SRC, SHP1 and SHP2, and examined whether these enzymes transiently target FAs via their SH2 domains. We found that the SRC_SH2 domain and the SHP2_N-SH2 domain are associated with FAs, but only the SRC_SH2 domain is able to be regulated by focal adhesion kinase (FAK). The FAK-dependent association of the SRC_SH2 domain is necessary and sufficient for SRC FA targeting. When the targeting of SRC into FAs is inhibited, there is significant suppression of SRC-mediated phosphorylation of paxillin and FAK; this results in an inhibition of FA formation and maturation and a reduction in cell migration. This study reveals an association between FAs and the SRC_SH2 domain as well as between FAs and the SHP2_N-SH2 domains. This supports the hypothesis that the FAK-regulated SRC_SH2 domain plays an important role in directing SRC into FAs and that this SRC-mediated FA signaling drives cell migration.


Focal Adhesion Protein-Tyrosine Kinases/metabolism , Cell Adhesion , Cell Line, Tumor , Cell Movement , Fluorescence Recovery After Photobleaching , Focal Adhesion Protein-Tyrosine Kinases/chemistry , Focal Adhesions/metabolism , Genes, Reporter , Humans , Microscopy, Fluorescence , Paxillin/metabolism , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Signal Transduction , Time-Lapse Imaging , src Homology Domains
20.
J Cell Mol Med ; 19(5): 934-47, 2015 May.
Article En | MEDLINE | ID: mdl-25683605

Cancer metastasis occurs via a progress involving abnormal cell migration. Cell migration, a dynamic physical process, is controlled by the cytoskeletal system, which includes the dynamics of actin organization and cellular adhesive organelles, focal adhesions (FAs). However, it is not known whether the organization of actin cytoskeletal system has a regulatory role in the physiologically relevant aspects of cancer metastasis. In the present studies, it was found that lung adenocarcinoma cells isolated from the secondary lung cancer of the lymph nodes, H1299 cells, show specific dynamics in terms of the actin cytoskeleton and FAs. This results in a higher level of mobility and this is regulated by an immature FA component, ß-PIX (PAK-interacting exchange factor-ß). In H1299 cells, ß-PIX's activity was found not to be down-regulated by sequestration onto stress fibres, as the cells did not bundle actin filaments into stress fibres. Thus, ß-PIX mainly remained localized at FAs, which allowed maturation of nascent adhesions into focal complexes; this resulted in actin polymerization, increased actin network integrity, changes in the intracellular microrheology at the peripheral of the cell, and cell polarity, which in turn regulated cell migration. Perturbation of ß-PIX caused an inhibition of cell migration, including migration velocity, accumulated distance and directional persistence. Our results demonstrate the importance of ß-PIX to the regulation of high mobility of lung adenocarcinoma cell line H1299 and that this occurs via regulation of FA dynamics, changes in actin cytoskeleton organization and cell polarity.


Actin Cytoskeleton/metabolism , Cell Movement , Cytoplasm/metabolism , Focal Adhesions/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Cell Line, Tumor , Cell Polarity , Down-Regulation , Elasticity , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Microscopy, Confocal , Myosin Type II/metabolism , RNA Interference , Rho Guanine Nucleotide Exchange Factors/genetics , Stress Fibers/metabolism , Time-Lapse Imaging/methods , Viscosity
...