Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 266
Filter
1.
Plant Dis ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971963

ABSTRACT

Siegesbeckia orientalis L., belonging to the family of Asteraceae and also known as 'Xi-Xian Cao' or Herba Siegesbeckiae, has been an important traditional Chinese medicine since the Tang Dynasty (Wang et al., 2021). As the dried aerial parts have medicinal values, S. orientalis is widely grown in China, Japan, Korea, and Vietnam. One almost 600 m2 block of S. orientalis plants with stunting and leaf withering symptoms was found in Luonan County (110.26 E, 34.06 N), Shaanxi Province, in August 2022. Many galls were observed on the roots of these plants, and densities of second-stage juveniles (J2s) were 260~370 per 100 cm3 of soil. Females and eggs were dissected from infected roots, and J2s and males were extracted from the soil for species identification. The perineal patterns of females (n=20) were oval-shaped, with minor dorsal arches, distinct lateral fields, and tiny punctations around anus. The head caps of males were high and obviously narrower than head region which broadened out of the first body annuli. Morphological measurements of females (n=20) were: body length (L) = 897.66 ± 50.89 (860.96-949.74) µm, body width (BW) = 577.69 ± 51.01 (489.91-638.65) µm, stylet length (ST) = 14.03 ± 0.63 (13.25-14.97) µm, dorsal pharyngeal gland orifice to stylet base (DGO) = 4.96 ± 0.47 (4.08-5.37) µm, vulval slit length = 18.82 ± 1.97 (17.24-22.02) µm, vulval slit to anus distance = 13.62 ± 1.22 (12.34-16.18) µm. Measurements of males (n=10) were: L = 1298.73 ± 95.96 (1202.77-1394.69) µm, BW = 28.24 ± 2.38 (25.93-30.55) µm, ST = 20.23 ± 0.78 (19.42-21.04) µm, DGO = 4.89 ± 0.44 (4.56-5.22) µm, spicule length = 28.98 ± 1.68 (26.94-31.02) µm. Measurements of J2s: L = 375.35 ± 14.02 (341.01-400.46) µm, BW = 15.09 ± 1.47 (12.02-16.82) µm, ST = 12.74 ± 0.61(11.46-13.84) µm, DGO = 2.58 ± 0.59 (1.61-3.7) µm, tail length= 74.15 ± 13.73 (50.92-95.09) µm, hyaline tail terminus= 11.36 ± 2.27 (9.53-17.85) µm. These morphological characteristics were consistent with those of Meloidogyne hapla Chitwood, 1949 as described by Whitehead (1968). The DNA of single females (n=10) was isolated using the Proteinase K method for molecular identification (Kumari and Subbotin, 2012). The sequence of rDNA-ITS region was amplified and sequenced with the primers rDNA-F/R (TTGATTACGTCCCTGCCCTTT/TTTCACTCGCCGTTACTAAGG) (Vrain et al., 1992). The 768 bp sequence (GenBank OP542552) was 99.74% identical to the rDNA-ITS sequences of M. hapla (JX024147 and OQ269692). Then the D2/D3 fragments of the 28S rRNA were amplified and sequenced with the primers D2A/D3B (ACAAGTACCGTGAGGGAAAGTTG/TCGGAAGGAACCAGCTACTA) (McClure et al., 2012). The 762 bp fragment (OP554218) showed 100% identical to sequences of M. hapla (MN752204 and OM744204). To confirm the pathogenicity of the population, six 2-week-old healthy S. orientalis seedlings cultured in sterilized sand were each inoculated with 2,000 J2s hatched from egg masses. Four non-inoculated seedlings served as negative controls. After maintenance at 25°C for 60 days, galls appeared on the roots of inoculated plants, being consistent with the symptoms observed in field, while the negative controls showed no symptoms. Females collected from inoculated plants were identified as M. hapla with species-specific primer JWV1/ JWV (Adam et al., 2007), which amplified a fragment of 440 bp. Parasitism was also confirmed by the average recovery of 3,814 J2s per inoculated plant with the reproductive factor of 1.91. This is the first report of S. orientalis being a host of M. hapla. The disease reduces the quality and yield of S. orientalis, and much more efforts would be made for its control in production.

2.
Biomaterials ; 311: 122674, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897028

ABSTRACT

Clinical results with photovoltaic subretinal prosthesis (PRIMA) demonstrated restoration of sight via electrical stimulation of the interneurons in degenerated retina, with resolution matching the 100 µm pixel size. Since scaling the pixels below 75 µm in the current bipolar planar geometry will significantly limit the penetration depth of the electric field and increase stimulation threshold, we explore the possibility of using smaller pixels based on a novel 3-dimensional honeycomb-shaped design. We assessed the long-term biocompatibility and stability of these arrays in rats by investigating the anatomical integration of the retina with flat and 3D implants and response to electrical stimulation over lifetime - up to 32-36 weeks post-implantation in aged rats. With both flat and 3D implants, signals elicited in the visual cortex decreased after the day of implantation by more than 3-fold, and gradually recovered over the next 12-16 weeks. With 25 µm high honeycomb walls, the majority of bipolar cells migrate into the wells, while amacrine and ganglion cells remain above the cavities, which is essential for selective network-mediated stimulation of the retina. Retinal thickness and full-field stimulation threshold with 40 µm-wide honeycomb pixels were comparable to those with planar devices - 0.05 mW/mm2 with 10 ms pulses. However, fewer cells from the inner nuclear layer migrated into the 20 µm-wide wells, and stimulation threshold increased over 12-16 weeks, before stabilizing at about 0.08 mW/mm2. Such threshold is still significantly lower than 1.8 mW/mm2 with a previous design of flat bipolar pixels, confirming the promise of the 3D honeycomb-based approach to high resolution subretinal prosthesis.

3.
ACS Appl Mater Interfaces ; 16(26): 34100-34112, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38902890

ABSTRACT

Corrosion-resistant coatings with self-healing capabilities are still a great challenge for metal protection. In this study, a corrosion-resistant coating with intrinsic self-healing capabilities was developed by compounding hydroxy-terminated silicone oil (HTSO) with 2-ureido-4[1H]-pyrimidone (UPy) derivatives. The smooth surface of the coating was shown by scanning electron microscopy (SEM), and good smoothness was also exhibited in the cross-section, which indicated that the coating is very homogeneous from the top to the bottom. Thermogravimetric analysis (TG) was employed to illustrate the temperature-resistant characteristics of the coating, revealing its significant chemical stability up to 360 °C. The corrosion resistance of the coating is assessed through electrochemical impedance spectroscopy (EIS), the typical impedance at 0.01 Hz is 1.70 × 109 and 2.44 × 108 Ω·cm2 before and after exposure to a 3.5 wt % NaCl solution for 70 days. There was no significant change in the water contact angle of the coatings before and after immersion; however, the adhesion strength was reduced. Notably, the coating demonstrates immediate and multiple self-healing properties. The tensile stress of the associated healing sample experiences an augmentation within the temperature range of 30-120 °C, with the critical fracture strain of the healed sample reaching 235% at 120 °C. The self-healing mechanism of the coating is systematically investigated using in situ Raman spectroscopy.

4.
Microbiol Spectr ; : e0030924, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888361

ABSTRACT

The tumor suppressor p53, primarily functioning as a transcription factor, has exhibited antiviral capabilities against various viruses in chickens, including infectious bursal disease virus (IBDV), avian leukosis virus subgroup J (ALV-J), and avian infectious laryngotracheitis virus (ILTV). Nevertheless, the existence of a universal antiviral mechanism employed by chicken p53 (chp53) against these viruses remains uncertain. This study conducted a comprehensive comparison of molecular networks involved in chp53's antiviral function against IBDV, ALV-J, and ILTV. This was achieved through an integrated analysis of ChIP-seq data, examining chp53's genome-wide chromatin occupancy, and RNA-seq data from chicken cells infected with these viruses. The consistent observation of chp53 target gene enrichment in metabolic pathways, confirmed via ChIP-qPCR, suggests a ubiquitous regulation of host cellular metabolism by chp53 across different viruses. Further genome binding motif conservation analysis and transcriptional co-factor prediction suggest conserved transcriptional regulation mechanism by which chp53 regulates host cellular metabolism during viral infection. These findings offer novel insights into the antiviral role of chp53 and propose that targeting the virus-host metabolic interaction through regulating p53 could serve as a universal strategy for antiviral therapies in chickens.IMPORTANCEThe current study conducted a comprehensive analysis, comparing molecular networks underlying chp53's antiviral role against infectious bursal disease virus (IBDV), avian leukosis virus subgroup J (ALV-J), and avian infectious laryngotracheitis virus (ILTV). This was achieved through a combined assessment of ChIP-seq and RNA-seq data obtained from infected chicken cells. Notably, enrichment of chp53 target genes in metabolic pathways was consistently observed across viral infections, indicating a universal role of chp53 in regulating cellular metabolism during diverse viral infections. These findings offer novel insights into the antiviral capabilities of chicken p53, laying a foundation for the potential development of broad-spectrum antiviral therapies in chickens.

6.
Sci Total Environ ; 938: 173530, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38815818

ABSTRACT

Microbial fuel cells (MFCs), known for their low energy consumption, high efficiency, and environmental friendliness, have been widely utilized for removing antibiotics from wastewater. Compared to conventional wastewater treatment methods, MFCs produce less sludge while exhibiting superior antibiotic removal capacity, effectively reducing the spread of antibiotic resistance genes (ARGs). This study investigates 1) the mechanisms of ARGs generation and proliferation in MFCs; 2) the influencing factors on the fate and removal of antibiotics and ARGs; and 3) the fate and mitigation of ARGs in MFC and MFC-coupled systems. It is indicated that high removal efficiency of antibiotics and minimal amount of sludge production contribute the mitigation of ARGs in MFCs. Influencing factors, such as cathode potential, electrode materials, salinity, initial antibiotic concentration, and additional additives, can lead to the selection of tolerant microbial communities, thereby affecting the abundance of ARGs carried by various microbial hosts. Integrating MFCs with other wastewater treatment systems can synergistically enhance their performance, thereby improving the overall removal efficiency of ARGs. Moreover, challenges and future directions for mitigating the spread of ARGs using MFCs are suggested.


Subject(s)
Anti-Bacterial Agents , Bioelectric Energy Sources , Drug Resistance, Microbial , Waste Disposal, Fluid , Wastewater , Waste Disposal, Fluid/methods , Drug Resistance, Microbial/genetics , Wastewater/microbiology , Water Pollutants, Chemical
7.
BMC Med Genomics ; 17(1): 133, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760670

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative disease with increasing prevalence. Effective diagnostic markers and therapeutic methods are still lacking. Exploring key molecular markers and mechanisms for PD can help with early diagnosis and treatment improvement. METHODS: Three datasets GSE174052, GSE77668, and GSE168496 were obtained from the GEO database to search differentially expressed circRNA (DECs), miRNAs (DEMis), and mRNAs (DEMs). GO and KEGG enrichment analyses, and protein-protein interaction (PPI) network construction were implemented to explore possible actions of DEMs. Hub genes were selected to establish circRNA-related competing endogenous RNA (ceRNA) networks. RESULTS: There were 1005 downregulated DECs, 21 upregulated and 21 downregulated DEMis, and 266 upregulated and 234 downregulated DEMs identified. The DEMs were significantly enriched in various PD-associated functions and pathways such as extracellular matrix organization, dopamine synthesis, PI3K-Akt, and calcium signaling pathways. Twenty-one hub genes were screened out, and a PD-related ceRNA regulatory network was constructed containing 31 circRNAs, one miRNA (miR-371a-3p), and one hub gene (KCNJ6). CONCLUSION: We identified PD-related molecular markers and ceRNA regulatory networks, providing new directions for PD diagnosis and treatment.


Subject(s)
Biomarkers , Computational Biology , Disease Progression , Gene Regulatory Networks , Parkinson Disease , Parkinson Disease/genetics , Humans , Computational Biology/methods , Biomarkers/metabolism , MicroRNAs/genetics , Protein Interaction Maps , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Profiling , RNA, Circular/genetics
9.
Front Neurosci ; 18: 1393206, 2024.
Article in English | MEDLINE | ID: mdl-38784093

ABSTRACT

In recent years, thanks to the development of integrated circuits, clinical medicine has witnessed significant advancements, enabling more efficient and intelligent treatment approaches. Particularly in the field of neuromedical, the utilization of brain-machine interfaces (BMI) has revolutionized the treatment of neurological diseases such as amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal cord injury. The BMI acquires neural signals via recording circuits and analyze them to regulate neural stimulator circuits for effective neurological treatment. However, traditional BMI designs, which are often isolated, have given way to closed-loop brain-machine interfaces (CL-BMI) as a contemporary development trend. CL-BMI offers increased integration and accelerated response speed, marking a significant leap forward in neuromedicine. Nonetheless, this advancement comes with its challenges, notably the stimulation artifacts (SA) problem inherent to the structural characteristics of CL-BMI, which poses significant challenges on the neural recording front-ends (NRFE) site. This paper aims to provide a comprehensive overview of technologies addressing artifacts in the NRFE site within CL-BMI. Topics covered will include: (1) understanding and assessing artifacts; (2) exploring the impact of artifacts on traditional neural recording front-ends; (3) reviewing recent technological advancements aimed at addressing artifact-related issues; (4) summarizing and classifying the aforementioned technologies, along with an analysis of future trends.

10.
Eur J Med Res ; 29(1): 250, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659023

ABSTRACT

OBJECTIVE: There is a growing body of evidence indicating that pyroptosis, a programmed cell death mechanism, plays a crucial role in the exacerbation of inflammation and fibrosis in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Circular RNAs (circRNAs), functioning as vital regulators within NAFLD, have been shown to mediate the process of cell pyroptosis. This study aims to elucidate the roles and mechanisms of circRNAs in NAFLD. METHODS: Utilizing a high-fat diet (HFD)-induced rat model for in vivo experimentation and hepatocytes treated with palmitic acid (PA) for in vitro models, we identified circular RNA SOD2 (circSOD2) as our circRNA of interest through analysis with the circMine database. The expression levels of associated genes and pyroptosis-related proteins were determined using quantitative real-time polymerase chain reaction and Western blotting, alongside immunohistochemistry. Serum liver function markers, cellular inflammatory cytokines, malondialdehyde, lactate dehydrogenase levels, and mitochondrial membrane potential, were assessed using enzyme-linked immunosorbent assay, standard assay kits, or JC-1 staining. Flow cytometry was employed to detect pyroptotic cells, and lipid deposition in liver tissues was observed via Oil Red O staining. The interactions between miR-532-3p/circSOD2 and miR-532-3p/Thioredoxin Interacting Protein (TXNIP) were validated through dual-luciferase reporter assays and RNA immunoprecipitation experiments. RESULTS: Our findings demonstrate that, in both in vivo and in vitro NAFLD models, there was an upregulation of circSOD2 and TXNIP, alongside a downregulation of miR-532-3p. Mechanistically, miR-532-3p directly bound to the 3'-UTR of TXNIP, thereby mediating inflammation and cell pyroptosis through targeting the TXNIP/NLR family pyrin domain containing 3 (NLRP3) inflammasome signaling pathway. circSOD2 directly interacted with miR-532-3p, relieving the suppression on the TXNIP/NLRP3 signaling pathway. Functionally, the knockdown of circSOD2 or TXNIP improved hepatocyte pyroptosis; the deletion of miR-532-3p reversed the effects of circSOD2 knockdown, and the deletion of TXNIP reversed the effects of circSOD2 overexpression. Furthermore, the knockdown of circSOD2 significantly mitigated the progression of NAFLD in vivo. CONCLUSION: circSOD2 competitively sponges miR-532-3p to activate the TXNIP/NLRP3 inflammasome signaling pathway, promoting pyroptosis in NAFLD.


Subject(s)
Cell Cycle Proteins , Hepatocytes , MicroRNAs , NLR Family, Pyrin Domain-Containing 3 Protein , Non-alcoholic Fatty Liver Disease , Pyroptosis , RNA, Circular , Animals , Humans , Male , Rats , Carrier Proteins/metabolism , Carrier Proteins/genetics , Diet, High-Fat/adverse effects , Disease Models, Animal , Hepatocytes/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Pyroptosis/genetics , Rats, Sprague-Dawley , RNA, Circular/genetics , RNA, Circular/metabolism , Signal Transduction , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Thioredoxins/metabolism , Thioredoxins/genetics
11.
Photoacoustics ; 38: 100606, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38665366

ABSTRACT

Background: The differentiation between benign and malignant breast tumors extends beyond morphological structures to encompass functional alterations within the nodules. The combination of photoacoustic (PA) imaging and radiomics unveils functional insights and intricate details that are imperceptible to the naked eye. Purpose: This study aims to assess the efficacy of PA imaging in breast cancer radiomics, focusing on the impact of peritumoral region size on radiomic model accuracy. Materials and methods: From January 2022 to November 2023, data were collected from 358 patients with breast nodules, diagnosed via PA/US examination and classified as BI-RADS 3-5. The study used the largest lesion dimension in PA images to define the region of interest, expanded by 2 mm, 5 mm, and 8 mm, for extracting radiomic features. Techniques from statistics and machine learning were applied for feature selection, and logistic regression classifiers were used to build radiomic models. These models integrated both intratumoral and peritumoral data, with logistic regressions identifying key predictive features. Results: The developed nomogram, combining 5 mm peritumoral data with intratumoral and clinical features, showed superior diagnostic performance, achieving an AUC of 0.950 in the training cohort and 0.899 in validation. This model outperformed those based solely on clinical features or other radiomic methods, with the 5 mm peritumoral region proving most effective in identifying malignant nodules. Conclusion: This research demonstrates the significant potential of PA imaging in breast cancer radiomics, especially the advantage of integrating 5 mm peritumoral with intratumoral features. This approach not only surpasses models based on clinical data but also underscores the importance of comprehensive radiomic analysis in accurately characterizing breast nodules.

12.
Adv Mater ; : e2401568, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682861

ABSTRACT

The development of high-performance electrocatalysts for energy conversion reactions is crucial for advancing global energy sustainability. The design of catalysts based on their electronic properties (e.g., work function) has gained significant attention recently. Although numerous reviews on electrocatalysis have been provided, no such reports on work function-guided electrocatalyst design are available. Herein, a comprehensive summary of the latest advancements in work function-guided electrocatalyst design for diverse electrochemical energy applications is provided. This includes the development of work function-based catalytic activity descriptors, and the design of both monolithic and heterostructural catalysts. The measurement of work function is first discussed and the applications of work function-based catalytic activity descriptors for various reactions are fully analyzed. Subsequently, the work function-regulated material-electrolyte interfacial electron transfer (IET) is employed for monolithic catalyst design, and methods for regulating the work function and optimizing the catalytic performance of catalysts are discussed. In addition, key strategies for tuning the work function-governed material-material IET in heterostructural catalyst design are examined. Finally, perspectives on work function determination, work function-based activity descriptors, and catalyst design are put forward to guide future research. This work paves the way to the work function-guided rational design of efficient electrocatalysts for sustainable energy applications.

13.
J Am Chem Soc ; 146(17): 11855-11865, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38634945

ABSTRACT

Creating structural defects in a controlled manner within metal-organic frameworks (MOFs) poses a significant challenge for synthesis, and concurrently, identifying the types and distributions of these defects is also a formidable task for characterization. In this study, we demonstrate that by employing 2-sulfonylterephthalic acid as the ligand for synthesizing Zr (or Hf)-based MOFs, a crystal phase transformation from the common fcu topology to the rare jmt topology can be easily facilitated using a straightforward mixed-solvent strategy. The jmt phase, characterized by an extensively open framework, can be considered a derivative of the fcu phase, generated through the introduction of missing-cluster defects. We have explicitly identified both MOF phases, their intermediate states, and the novel core-shell structures they form using ultralow-dose high-resolution transmission electron microscopy. In addition to facilitating phase engineering, the incorporation of sulfonic groups in MOFs imparts ionic selectivity, making them applicable for osmotic energy harvesting through mixed matrix membrane fabrication. The membrane containing the jmt-phase MOF exhibits an exceptionally high peak power density of 10.08 W m-2 under a 50-fold salinity gradient (NaCl: 0.5 M|0.01 M), which surpasses the threshold of 5 W m-2 for commercial applications and can be attributed to the combination of large pore size, extensive porosity, and abundant sulfonic groups in this novel MOF material.

14.
Sci Total Environ ; 926: 172025, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38554954

ABSTRACT

Adsorption, which is a quick and effective method for phosphate management, can effectively address the crisis of phosphorus mineral resources and control eutrophication. Phosphate management systems typically use iron-containing nanominerals (ICNs) with large surface areas and high activity, as well as modified ICNs (mICNs). This paper comprehensively reviews phosphate management by ICNs and mICNs in different water environments. mICNs have a higher affinity for phosphates than ICNs. Phosphate adsorption on ICNs and mICNs occurs through mechanisms such as surface complexation, surface precipitation, electrostatic ligand exchange, and electrostatic attraction. Ionic strength influences phosphate adsorption by changing the surface potential and isoelectric point of ICNs and mICNs. Anions exhibit inhibitory effects on ICNs and mICNs in phosphate adsorption, while cations display a promoting effect. More importantly, high concentrations and molecular weights of natural organic matter can inhibit phosphate adsorption by ICNs and mICNs. Sodium hydroxide has high regeneration capability for ICNs and mICNs. Compared to ICNs with high crystallinity, those with low crystallinity are less likely to desorb. ICNs and mICNs can effectively manage municipal wastewater, eutrophic seawater, and eutrophic lakes. Adsorption of ICNs and mICNs saturated with phosphate can be used as fertilizers in agricultural production. Notably, mICNs and ICNs have positive and negative effects on microorganisms and aquatic organisms in soil. Finally, this study introduces the following: trends and prospects of machine learning-guided mICN design, novel methods for modified ICNs, mICN regeneration, development of mICNs with high adsorption capacity and selectivity for phosphate, investigation of competing ions in different water environments by mICNs, and trends and prospects of in-depth research on the adsorption mechanism of phosphate by weakly crystalline ferrihydrite. This comprehensive review can provide novel insights into the research on high-performance mICNs for phosphate management in the future.

15.
Comput Biol Med ; 173: 108311, 2024 May.
Article in English | MEDLINE | ID: mdl-38513395

ABSTRACT

COVID-19 is a global pandemic that has caused significant global, social, and economic disruption. To effectively assist in screening and monitoring diagnosed cases, it is crucial to accurately segment lesions from Computer Tomography (CT) scans. Due to the lack of labeled data and the presence of redundant parameters in 3D CT, there are still significant challenges in diagnosing COVID-19 in related fields. To address the problem, we have developed a new model called the Cascaded 3D Dilated convolutional neural network (CD-Net) for directly processing CT volume data. To reduce memory consumption when cutting volume data into small patches, we initially design a cascade architecture in CD-Net to preserve global information. Then, we construct a Multi-scale Parallel Dilated Convolution (MPDC) block to aggregate features of different sizes and simultaneously reduce the parameters. Moreover, to alleviate the shortage of labeled data, we employ classical transfer learning, which requires only a small amount of data while achieving better performance. Experimental results conducted on the different public-available datasets verify that the proposed CD-Net has reduced the negative-positive ratio and outperformed other existing segmentation methods while requiring less data.


Subject(s)
COVID-19 , Pneumonia , Humans , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Tomography, X-Ray Computed , COVID-19/diagnostic imaging
16.
Article in English | MEDLINE | ID: mdl-38446410

ABSTRACT

Glioblastoma (GBM) is the most common primary intracranial malignancy with a very low survival rate. Exploring key molecular markers for GBM can help with early diagnosis, prognostic prediction, and recurrence monitoring. This study aims to explore novel biomarkers for GBM via bioinformatics analysis and experimental verification. Dataset GSE103229 was obtained from the GEO database to search differentially expressed lncRNA (DELs), mRNAs (DEMs), and miRNAs (DEMis). Hub genes were selected to establish competing endogenous RNA (ceRNA) networks. The GEPIA database was employed for the survival analysis and expression detection of hub genes. Hub gene expression in GBM tissue samples and cell lines was validated using RT-qPCR. Western blotting was employed for protein expression evaluation. SYT1 overexpression vector was transfected in GBM cells. CCK-8 assay and flow cytometry were performed to detect the malignant phenotypes of GBM cells. There were 901 upregulated and 1086 downregulated DEMs identified, which were prominently enriched in various malignancy-related functions and pathways. Twenty-two hub genes were selected from PPI networks. Survival analysis and experimental validation revealed that four hub genes were tightly associated with GBM prognosis and progression, including SYT1, GRIN2A, KCNA1, and SYNPR. The four genes were significantly downregulated in GBM tissues and cell lines. Overexpressing SYT1 alleviated the proliferation and promoted the apoptosis of GBM cells in vitro. We identify four genes that may be potential molecular markers of GBM, which may provide new ideas for improving early diagnosis and prediction of the disease.

17.
J Neural Eng ; 21(1)2024 02 23.
Article in English | MEDLINE | ID: mdl-38364290

ABSTRACT

Objective.Retinal prosthetics offer partial restoration of sight to patients blinded by retinal degenerative diseases through electrical stimulation of the remaining neurons. Decreasing the pixel size enables increasing prosthetic visual acuity, as demonstrated in animal models of retinal degeneration. However, scaling down the size of planar pixels is limited by the reduced penetration depth of the electric field in tissue. We investigated 3-dimensional (3d) structures on top of photovoltaic arrays for enhanced penetration of the electric field, permitting higher resolution implants.Approach.3D COMSOL models of subretinal photovoltaic arrays were developed to accurately quantify the electrodynamics during stimulation and verified through comparison to flat photovoltaic arrays. Models were applied to optimize the design of 3D electrode structures (pillars and honeycombs). Return electrodes on honeycomb walls vertically align the electric field with bipolar cells for optimal stimulation. Pillars elevate the active electrode, thus improving proximity to target neurons. The optimized 3D structures were electroplated onto existing flat subretinal prostheses.Main results.Simulations demonstrate that despite exposed conductive sidewalls, charge mostly flows via high-capacitance sputtered iridium oxide films topping the 3D structures. The 24µm height of honeycomb structures was optimized for integration with the inner nuclear layer cells in the rat retina, whilst 35µm tall pillars were optimized for penetrating the debris layer in human patients. Implantation of released 3D arrays demonstrates mechanical robustness, with histology demonstrating successful integration of 3D structures with the rat retinain-vivo.Significance. Electroplated 3D honeycomb structures produce vertically oriented electric fields, providing low stimulation thresholds, high spatial resolution, and high contrast for pixel sizes down to 20µm. Pillar electrodes offer an alternative for extending past the debris layer. Electroplating of 3D structures is compatible with the fabrication process of flat photovoltaic arrays, enabling much more efficient retinal stimulation.


Subject(s)
Artificial Limbs , Retinal Degeneration , Visual Prosthesis , Humans , Rats , Animals , Prostheses and Implants , Retina/physiology , Neurons/physiology , Electric Stimulation , Electrodes, Implanted
18.
Adv Mater ; 36(19): e2312094, 2024 May.
Article in English | MEDLINE | ID: mdl-38320173

ABSTRACT

Intelligent vision necessitates the deployment of detectors that are always-on and low-power, mirroring the continuous and uninterrupted responsiveness characteristic of human vision. Nonetheless, contemporary artificial vision systems attain this goal by the continuous processing of massive image frames and executing intricate algorithms, thereby expending substantial computational power and energy. In contrast, biological data processing, based on event-triggered spiking, has higher efficiency and lower energy consumption. Here, this work proposes an artificial vision architecture consisting of spiking photodetectors and artificial synapses, closely mirroring the intricacies of the human visual system. Distinct from previously reported techniques, the photodetector is self-powered and event-triggered, outputting light-modulated spiking signals directly, thereby fulfilling the imperative for always-on with low-power consumption. With the spiking signals processing through the integrated synapse units, recognition of graphics, gestures, and human action has been implemented, illustrating the potent image processing capabilities inherent within this architecture. The results prove the 90% accuracy rate in human action recognition within a mere five epochs utilizing a rudimentary artificial neural network. This novel architecture, grounded in spiking photodetectors, offers a viable alternative to the extant models of always-on low-power artificial vision system.


Subject(s)
Neural Networks, Computer , Vision, Ocular , Humans , Artificial Intelligence , Algorithms , Synapses/physiology , Image Processing, Computer-Assisted
19.
Chem Commun (Camb) ; 60(17): 2397-2400, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38323363

ABSTRACT

Herein, we report the synthesis of a two-dimensional metal-organic framework (MOF), assembled from octahedral metal-organic cages featuring phenanthroline-based carboxylate linkers and µ3-oxo-centered trinuclear Sc(III) inorganic building blocks. We study the performance of this MOF towards the capture of sulfur hexafluoride (SF6). On account of its structural features and porous nature, this MOF displays an SF6 uptake capacity of 0.92 mmol g-1 at 0.1 bar and an isosteric heat of adsorption of about 30.7 kJ mol-1 for SF6, illustrating its potential application for the selective capture of SF6 from N2. In addition, we study the adsorptive binding mechanism of SF6 and N2 inside this MOF via molecular simulations.

20.
Heliyon ; 10(2): e24778, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38304845

ABSTRACT

In this study, the therapeutic effect and possible mechanism of the total biflavonoid extract of Selaginella doederleinii Hieron (SDTBE) against cervical cancer were originally investigated in vitro and in vivo. First, the inhibition of SDTBE on proliferation of cervical cancer HeLa cells was evaluated, followed by morphological observation with AO/EB staining, Annexin V/PI assay, and autophagic flux monitoring to evaluate the possible effect of SDTBE on cell apoptosis and autophagy. Cell cycle, as well as mitochondrial membrane potential (ΔÑ°m), was detected with flow cytometry. Further, the apoptosis related protein expression and the autophagy related gene LC3 mRNA transcription level were analyzed by Western blot (WB) and real-time quantitative polymerase chain reaction (RT-qPCR), respectively. Finally, the anti-cervical cancer effect of the SDTBE was also validated in vivo in HeLa cells grafts mice. As results, SDTBE inhibited HeLa cells proliferation with the IC50 values of 49.05 ± 6.76 and 44.14 ± 4.75 µg/mL for 48 and 72 h treatment, respectively. The extract caused mitochondrial ΔÑ° loss, induced cell apoptosis by upregulating Bax, downregulating Bcl-2, activating Caspase-9 and Caspase-3, promoting cell autophagy and blocking the cell cycle in G0/G1 phase. Furthermore, 100, 200, and 300 mg/kg SDTBE suppressed the growth of HeLa cells xenografts in mice with the mean inhibition rates, 25.3 %, 57.5 % and 62.9 %, respectively, and the change of apoptosis related proteins and microvascular density was confirmed in xenografts by immunohistochemistry analysis. The results show that SDTBE possesses anti-cervical cancer effect, and the mechanism involves in activating Caspase-dependent mitochondrial apoptosis pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...