Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(15)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39124964

ABSTRACT

An efficient and operationally simple method for the synthesis of ß-keto sulfones through the BF3·OEt2-promoted reaction of alkynes and sodium sulfinates is developed. With its facile and selective access to the targets, it features good functional group compatibility, mild conditions, easily available starting materials, and good yields. Notably, the reaction does not require metal catalysts or chemical reagents with pungent odors.

2.
iScience ; 27(7): 110024, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38979010

ABSTRACT

Pyrrolidine (PyD) has an important impact on the environment and human health. However, there is currently no method for trace detection of PyD. Here, we successfully designed diaminomethylene-4H-pyran (1) as the first specific fluorescent probe for PyD. Only by adding PyD to probe 1, there is blue fluorescence at 455 nm, and the color of the solution changes from colorless to yellow. The detection limit is 1.12 × 10-6 M, and the response time is less than 5 min. Meanwhile, probe 1 can also sense the gaseous PyD and detect PyD in actual water samples. Moreover, due to the low biological toxicity, probe 1 can detect the exogenous PyD in zebrafish. The preliminary mechanism shows that probe 1 and PyD undergo a combination-type chemical reaction to generate a new substance 1-PyD. Therefore, the 100% atom utilization reaction enables probe 1 to exhibit specific adsorption and removal of PyD.

3.
Curr Drug Metab ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38797896

ABSTRACT

BACKGROUND: Cytochrome P450 (CYP) 46A1, also known as cholesterol 24S-hydroxylase, is essential for maintaining the homeostasis of cholesterol in the brain and serves as a therapeutic target of neurodegenerative disorders and excitatory neurotoxicity. N-methyl-d-aspartate receptor (NMDAR) is a prototypical receptor for the excitatory neurotransmitter glutamate and can be specifically regulated by 24S-hydroxycholesterol (24S-HC). Glycyrrhiza is one of the most widely used herbs with broad clinical applications. It has several pharmacological activities, such as clearing heat and detoxifying, moistening the lung and relieving cough, analgesic, neuroprotective outcomes, and regulating a variety of drug activities. Glycyrrhiza is a commonly used herb for the treatment of epileptic encephalopathy. However, whether glycyrrhiza can interfere with the activity of CYP46A1 remains unknown. OBJECTIVE: This study aimed to investigate the regulating effects of glycyrrhiza polysaccharides (GP) on CYP46A1-mediated cholesterol conversion, as well as in the modulation of related proteins. MATERIALS AND METHODS: The effects of glycyrrhiza polysaccharide (GP) on the activity of CYP46A1 were investigated in vivo and in vitro. Moreover, the potential regulatory effects of GP on the expressions of CYP46A1, HMG-CoA reductase (HMGCR), and NMDAR were also detected. RESULTS: The in vitro results demonstrated that glycyrrhiza polysaccharide (GP), as the main water-soluble active component of glycyrrhiza, remarkably inhibited the activity of CYP46A1 in a non-competitive mode with a Ki value of 0.7003 mg/ml. Furthermore, the in vivo experiments verified that GP markedly decreased the contents of 24S-HC in rat plasma and brain tissues as compared to the control. More importantly, the protein expressions of CYP46A1, GluN2A, GluN2B, and HMG-CoA reductase (HMGCR) in rat brains were all downregulated, whereas the mRNA expressions of CYP46A1 and HMGCR were not significantly changed after treatment with GP. CONCLUSION: GP exhibits a significant inhibitory effect on CYP46A1 activity in vitro and in vivo, and the protein expressions of CYP46A1, HMGCR, and NMDAR are also inhibited by GP, which are of considerable clinical significance for GP's potential therapeutic role in treating neurological diseases.

4.
Org Biomol Chem ; 21(38): 7776-7781, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37701943

ABSTRACT

A highly efficient and operationally simple method for the synthesis of ß-sulfinyl alkenylsulfones through a BF3·OEt2-promoted reaction of alkynes and sodium sulfinates is developed, successfully avoiding the complicated anhydrous treatment before the reaction and greatly simplifying the reaction conditions. As a facile and selective route to the targets, it features good functional group compatibility, mild conditions, easily available starting materials, and excellent yields. Notably, the trace water in solvent plays a key role in promoting the reaction, which provides a more practical pathway for the utilization of the BF3·OEt2 catalytic system.

5.
Molecules ; 28(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37570605

ABSTRACT

Organic thioethers play an important role in the discovery of drugs and natural products. However, the green synthesis of organic sulfide compounds remains a challenging task. The convenient and efficient synthesis of 5-alkoxy-3-halo-4-methylthio-2(5H)-furanones from DMSO is performed via the mediation of 1,3-dibromo-5,5-dimethylhydantoin (DBDMH), affording a facile route for the sulfur-functionalization of 3,4-dihalo-2(5H)-furanones under transition metal-free conditions. This new approach has demonstrated the functionalization of non-aromatic Csp2-X-type halides with unique structures containing C-X, C-O, C=O and C=C bonds. Compared with traditional synthesis methods using transition metal catalysts with ligands, this reaction has many advantages, such as the lower temperature, the shorter reaction time, the wide substrate range and good functional group tolerance. Notably, DMSO plays multiple roles, and is simultaneously used as an odorless methylthiolating reagent and safe solvent.

6.
Front Pharmacol ; 13: 1046814, 2022.
Article in English | MEDLINE | ID: mdl-36483743

ABSTRACT

CYP46A1 is a brain-specific enzyme responsible for cholesterol homeostasis. Inhibition of CYP46A1 activity serves as a therapeutic target for excitatory neurotoxicity. Sesame is a common medicine and food resource; its component lignans possess various pharmacological activities. In this study, the inhibitory effects of sesame lignans on CYP46A1 activity were investigated. Inhibition kinetics analyses revealed that sesamin and sesamolin produce mixed partial competitive inhibition of CYP46A1, while sesamol produces non-competitive inhibition. Notably, molecular simulations revealed that the sesame lignans have excellent orientations within the active cavity of CYP46A1. Importantly, the sesame lignans had high permeability coefficients and low efflux ratios. Furthermore, sesamin significantly reduced the levels of 24S-hydroxycholesterol in rat plasma and brain tissues, and down-regulated the protein expressions of CYP46A1, NMDAR2A, NMDAR2B, and HMGCR. Collectively, sesame lignans exhibit significant inhibitory effects on CYP46A1 activity, highlighting their potential therapeutic role in treating excitatory neurotoxicity.

SELECTION OF CITATIONS
SEARCH DETAIL