Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Allergy ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727640

ABSTRACT

BACKGROUND: Meteorin-like protein (METRNL)/Interleukin-41 (IL-41) is a novel immune-secreted cytokine/myokine involved in several inflammatory diseases. However, how METRNL exerts its regulatory properties on skin inflammation remains elusive. This study aims to elucidate the functionality and regulatory mechanism of METRNL in atopic dermatitis (AD). METHODS: METRNL levels were determined in skin and serum samples from patients with AD and subsequently verified in the vitamin D3 analogue MC903-induced AD-like mice model. The cellular target of METRNL activity was identified by multiplex immunostaining, single-cell RNA-seq and RNA-seq. RESULTS: METRNL was significantly upregulated in lesions and serum of patients with dermatitis compared to healthy controls (p <.05). Following repeated MC903 exposure, AD model mice displayed elevated levels of METRNL in both ears and serum. Administration of recombinant murine METRNL protein (rmMETRNL) ameliorated allergic skin inflammation and hallmarks of AD in mice, whereas blocking of METRNL signaling led to the opposite. METRNL enhanced ß-Catenin activation, limited the expression of Th2-related molecules that attract the accumulation of Arginase-1 (Arg1)hi macrophages, dendritic cells, and activated mast cells. CONCLUSIONS: METRNL can bind to KIT receptor and subsequently alleviate the allergic inflammation of AD by inhibiting the expansion of immune cells, and downregulating inflammatory gene expression by regulating the level of active WNT pathway molecule ß-Catenin.

2.
Nat Commun ; 15(1): 4120, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750052

ABSTRACT

5q-associated spinal muscular atrophy (SMA) is a motoneuron disease caused by mutations in the survival motor neuron 1 (SMN1) gene. Adaptive immunity may contribute to SMA as described in other motoneuron diseases, yet mechanisms remain elusive. Nusinersen, an antisense treatment, enhances SMN2 expression, benefiting SMA patients. Here we have longitudinally investigated SMA and nusinersen effects on local immune responses in the cerebrospinal fluid (CSF) - a surrogate of central nervous system parenchyma. Single-cell transcriptomics (SMA: N = 9 versus Control: N = 9) reveal NK cell and CD8+ T cell expansions in untreated SMA CSF, exhibiting activation and degranulation markers. Spatial transcriptomics coupled with multiplex immunohistochemistry elucidate cytotoxicity near chromatolytic motoneurons (N = 4). Post-nusinersen treatment, CSF shows unaltered protein/transcriptional profiles. These findings underscore cytotoxicity's role in SMA pathogenesis and propose it as a therapeutic target. Our study illuminates cell-mediated cytotoxicity as shared features across motoneuron diseases, suggesting broader implications.


Subject(s)
Brain , Killer Cells, Natural , Motor Neurons , Muscular Atrophy, Spinal , Oligonucleotides , Humans , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/pathology , Muscular Atrophy, Spinal/genetics , Motor Neurons/drug effects , Motor Neurons/pathology , Motor Neurons/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Brain/pathology , Brain/drug effects , Female , Male , Survival of Motor Neuron 2 Protein/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism , Single-Cell Analysis , Cytotoxicity, Immunologic/drug effects , Infant , Child, Preschool , Child , Transcriptome
3.
Cancer Lett ; 457: 98-109, 2019 08 10.
Article in English | MEDLINE | ID: mdl-31100412

ABSTRACT

ATP-binding cassette (ABC) transporters mediate multidrug resistance and cancer stem cell properties in various model systems. Yet, their biological significance in cancers, especially in hepatocellular carcinoma (HCC), remains unclear. In this study, we investigated the function of ABCF1 in HCC and explored its potential as a therapeutic target. ABCF1 was highly expressed in fetal mouse livers but not in normal adult livers. ABCF1 expression was upregulated in HCCs. These results demonstrate that ABCF1 functions as a hepatic oncofetal protein. We further demonstrated elevated ABCF1 expression in HCC cells upon acquiring chemoresistance. Suppression of ABCF1 by siRNA sensitized both parental cells and chemoresistant cells to chemotherapeutic agents. Reversely, ABCF1 overexpression promoted chemoresistance and drug efflux. In addition, overexpression of ABCF1 enhanced migration, spheroid and colony formation and epithelial-mesenchymal transition (EMT) induction. RNA sequencing analysis revealed EMT inducers HIF1α/IL8 and Sox4 as potential mediators for the oncogenic effect of ABCF1 in HCC progression. Together, this study illustrates that ABCF1 is a novel potential therapeutic target for HCC treatment.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Carcinoma, Hepatocellular/metabolism , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Liver Neoplasms/metabolism , Neoplastic Stem Cells/drug effects , ATP-Binding Cassette Transporters/genetics , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Movement , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice, Inbred ICR , Mice, Nude , Neoplasm Invasiveness , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism , Signal Transduction , Xenograft Model Antitumor Assays
4.
Mol Cancer Res ; 17(1): 310-320, 2019 01.
Article in English | MEDLINE | ID: mdl-30224540

ABSTRACT

The sodium iodide symporter (SLC5A5/NIS) as theranostic gene would allow for non-invasive imaging of functional NIS expression and therapeutic radioiodine application. Genetically engineered mesenchymal stem cells (MSC), based on their tumor-homing abilities, show great promise as tumor-selective NIS gene delivery vehicles for non-thyroidal tumors. As a next step towards clinical application, tumor specificity and efficacy of MSCs were investigated in an advanced genetically engineered mouse model of pancreatic ductal adenocarcinoma (PDAC). Syngeneic murine MSCs were stably transfected with a NIS-expressing plasmid driven by the CMV-promoter (NIS-MSC). In vivo 123I-scintigraphy and 124I-PET revealed significant perchlorate-sensitive NIS-mediated radioiodide accumulation in PDAC after systemic injection of NIS-MSCs. Active MSC recruitment into the tumor stroma was confirmed using NIS immunohistochemistry (IHC). A therapeutic strategy, consisting of three cycles of systemic MSC-mediated NIS delivery, followed by 131I application, resulted in a significant delay and reduction in tumor growth as compared to controls. Furthermore, IHC analysis of α-SMA and Ki67 revealed differences in the amount and behavior of activated fibroblasts in tumors of mice injected with NIS-MSCs as compared with saline-treated mice. Taken together, MSCs as NIS gene delivery vehicles in this advanced endogenous PDAC mouse model demonstrated high stromal targeting of NIS by selective recruitment of NIS-MSCs after systemic application resulting in an impressive 131I therapeutic effect. IMPLICATIONS: These data expand the prospect of MSC-mediated radioiodine imaging-guided therapy of pancreatic cancer using the sodium iodide symporter as a theranostic gene in a clinical setting.


Subject(s)
Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/therapy , Gene Transfer Techniques , Iodine Radioisotopes/administration & dosage , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/physiology , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/therapy , Animals , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/radiotherapy , Cell Line , Cell Line, Tumor , Female , Humans , Male , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/radiotherapy , Positron-Emission Tomography/methods , Transfection
5.
Cancer Cell Int ; 14(1): 103, 2014.
Article in English | MEDLINE | ID: mdl-25349534

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly aggressive and heterogeneous disease. HCC cell lines established from different patients would be useful in elucidating the molecular pathogenesis. However, success of HCC primary culture establishment remains at low rate. We aim to establish and characterize HCC primary culture and the derived cell line. METHODS: Fresh tumor tissues were collected from 30 HCC patients. Culture conditions were optimized for the attachment and growth of the isolated hepatocytes. Granulin-epithelin precursor (GEP), a growth factor reported to associate with cancer stem cell properties, was examined by flow cytometry to elucidate its role on primary culture establishment. The primary cell line was characterized in detail. RESULTS: Cells isolated from 16 out of 30 HCC cases (53%) had viability more than 70% and were subject to subsequent in vitro culture. 7 out of 16 cases (44%) could give rise to cells that were able to attach and grow in culture. GEP expression levels significantly correlated with the viability of isolated hepatocytes and success rate of subsequent primary culture establishment. Cells from HCC patient 21 grew and expanded rapidly in vitro and was selected to be further characterized. The line, designated HCC21, derived from a Hong Kong Chinese female patient with HCC at Stage II. The cells exhibited typical epithelial morphology and expressed albumin, AFP and HBV antigens. The cell line was authenticated by short tandem repeat analysis. Comparative genome hybridization analysis revealed chromosomal loss at 1p35-p36, 1q44, 2q11.2-q24.3, 2q37, 4q12-q13.3, 4q21.21-q35.2, 8p12-p23, 15q11.2-q14, 15q24-q26, 16p12.1-p13.3, 16q, 17p, 22q and gain at 1q21-q43 in both HCC21 cells and the original clinical tumor specimen. Sequence analysis revealed p53 gene mutation. Subcutaneous injection of HCC21 cells into immunodeficient mice showed that the cells were able to form tumors at the primary injection sites and metastatic tumors in the peritoneal cavity. CONCLUSIONS: The newly established cell line could serve as useful in vitro and in vivo models for studying primary HCC that possess metastasis ability.

6.
PLoS One ; 7(12): e52426, 2012.
Article in English | MEDLINE | ID: mdl-23285037

ABSTRACT

Nasopharyngeal carcinoma (NPC) is a unique EBV-associated epithelial malignancy, showing highly invasive and metastatic phenotype. Despite increasing evidence demonstrating the critical role of cancer stem-like cells (CSCs) in the maintenance and progression of tumors in a variety of malignancies, the existence and properties of CSC in EBV-associated NPC are largely unknown. Our study aims to elucidate the presence and role of CSCs in the pathogenesis of this malignant disease. Sphere-forming cells were isolated from an EBV-positive NPC cell line C666-1 and its tumor-initiating properties were confirmed by in vitro and in vivo assays. In these spheroids, up-regulation of multiple stem cell markers were found. By flow cytometry, we demonstrated that both CD44 and SOX2 were overexpressed in a majority of sphere-forming C666-1 cells. The CD44+SOX2+ cells was detected in a minor population in EBV-positive xenografts and primary tumors and considered as potential CSC in NPC. Notably, the isolated CD44+ NPC cells were resistant to chemotherapeutic agents and with higher spheroid formation efficiency, showing CSC properties. On the other hand, microarray analysis has revealed a number of differentially expressed genes involved in transcription regulation (e.g. FOXN4, GLI1), immune response (CCR7, IL8) and transmembrane transport (e.g. ABCC3, ABCC11) in the spheroids. Among these genes, increased expression of CCR7 in CD44+ CSCs was confirmed in NPC xenografts and primary tumors. Importantly, blocking of CCR7 abolished the sphere-forming ability of C666-1 in vitro. Expression of CCR7 was associated with recurrent disease and distant metastasis. The current study defined the specific properties of a CSC subpopulation in EBV-associated NPC. Our findings provided new insights into developing effective therapies targeting on CSCs, thereby potentiating treatment efficacy for NPC patients.


Subject(s)
Herpesvirus 4, Human/physiology , Hyaluronan Receptors/metabolism , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/virology , Neoplastic Stem Cells/pathology , Animals , Biomarkers, Tumor/metabolism , Carcinoma , Cell Membrane/metabolism , Cell Proliferation , Cell Transformation, Neoplastic/pathology , Clone Cells , Drug Resistance, Neoplasm , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Male , Mice , Mice, Nude , Middle Aged , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms/genetics , Neoplastic Stem Cells/metabolism , Neutralization Tests , Receptors, CCR7/metabolism , SOXB1 Transcription Factors/metabolism , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
7.
PLoS One ; 6(12): e28246, 2011.
Article in English | MEDLINE | ID: mdl-22194816

ABSTRACT

BACKGROUND AND AIMS: Increasing evidence has suggested that hepatocellular carcinoma (HCC) might originate from a distinct subpopulation called cancer stem cells (CSCs), which are responsible for the limited efficacy of conventional therapies. We have previously demonstrated that granulin-epithelin precursor (GEP), a pluripotent growth factor, is upregulated in HCC but not in the adjacent non-tumor, and that GEP is a potential therapeutic target for HCC. Here, we characterized its expression pattern and stem cell properties in fetal and cancerous livers. METHODS: Protein expression of GEP in fetal and adult livers was examined in human and mouse models by immunohistochemical staining and flow cytometry. Liver cancer cell lines, isolated based on their GEP and/or ATP-dependent binding cassette (ABC) drug transporter ABCB5 expression, were evaluated for hepatic CSC properties in terms of colony formation, chemoresistance and tumorigenicity. RESULTS: We demonstrated that GEP was a hepatic oncofetal protein that expressed in the fetal livers, but not in the normal adult livers. Importantly, GEP+ fetal liver cells co-expressed the embryonic stem (ES) cell-related signaling molecules including ß-catenin, Oct4, Nanog, Sox2 and DLK1, and also hepatic CSC-markers CD133, EpCAM and ABCB5. Phenotypic characterization in HCC clinical specimens and cell lines revealed that GEP+ cancer cells co-expressed these stem cell markers similarly as the GEP+ fetal liver cells. Furthermore, GEP was shown to regulate the expression of ES cell-related signaling molecules ß-catenin, Oct4, Nanog, and Sox2. Isolated GEP(high) cancer cells showed enhanced colony formation ability and chemoresistance when compared with the GEP(low) counterparts. Co-expression of GEP and ABCB5 better defined the CSC populations with enhanced tumorigenic ability in immunocompromised mice. CONCLUSIONS: Our findings demonstrate that GEP is a hepatic oncofetal protein regulating ES cell-related signaling molecules. Co-expression of GEP and ABCB5 further enriches a subpopulation with enhanced CSC properties. The current data provide new insight into the therapeutic strategy.


Subject(s)
Antigens, Neoplasm/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Separation , Cell Transformation, Neoplastic , Drug Resistance, Neoplasm , Granulins , Humans , Liver/metabolism , Liver/pathology , Mice , Phenotype , Progranulins , Tumor Stem Cell Assay
8.
Int Immunol ; 22(6): 453-67, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20410259

ABSTRACT

IL-31 is a novel T(h) type 2 cytokine that can induce pruritus and dermatitis in mice resembling human atopic dermatitis (AD). Eosinophil infiltration in skin lesions is a predominant pathological feature of AD. In the present study, we investigated the effects of IL-31 on the activation of human eosinophils and epidermal keratinocytes. Eosinophils and keratinocytes were cultured either together or separately in the presence or absence of IL-31 stimulation. IL-31 could significantly induce the release of pro-inflammatory cytokines IL-1beta, IL-6 and AD-related chemokines CXCL1, CXCL8, CCL2 and CCL18 from eosinophils, via functional cell surface IL-31 receptor. Such induction was further enhanced upon the co-culture of eosinophils and keratinocytes, in which eosinophils were the main source for releasing pro-inflammatory cytokines and chemokines. The presence of transwell inserts in co-culture system demonstrated that the direct interaction between eosinophils and keratinocytes was required for IL-31-induced cytokine and chemokine release. Cell surface expression of adhesion molecule CD18 on eosinophils and intercellular adhesion molecule-1 on keratinocytes was up-regulated in the co-culture, and levels were further enhanced upon IL-31 stimulation. The interaction between eosinophils and keratinocytes under IL-31 stimulation was differentially mediated through intracellular mitogen-activated protein kinases, nuclear factor-kappaB and phosphatidylinositol 3-kinase-Akt pathways. The above findings suggest a crucial immunopathological role of IL-31 in AD through activation of eosinophils-keratinocytes system.


Subject(s)
Dermatitis, Atopic/immunology , Eosinophils/drug effects , Interleukins/pharmacology , Keratinocytes/drug effects , Apoptosis/drug effects , CD18 Antigens/immunology , CD18 Antigens/metabolism , Cell Communication , Cells, Cultured , Coculture Techniques , Cytokines/biosynthesis , Cytokines/genetics , Cytokines/metabolism , Eosinophils/immunology , Eosinophils/metabolism , Eosinophils/pathology , Epidermis/pathology , Humans , Intercellular Adhesion Molecule-1/immunology , Intercellular Adhesion Molecule-1/metabolism , Keratinocytes/immunology , Keratinocytes/metabolism , Keratinocytes/pathology , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Th2 Cells/immunology
9.
Int Immunol ; 20(3): 353-63, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18182379

ABSTRACT

Bacterial and viral infections often induce the exacerbation of allergic diseases. In this study, we investigated the activation of human eosinophils by different microbial products via Toll-like receptors (TLRs). The underlying intracellular mechanism involving activation of extracellular signal-regulated kinase (ERK) and focal adhesion kinase (FAK), an integrin-associated focal adhesion molecule, was also examined. Seven TLR ligands were studied for their abilities in promoting survival, modulating the expression of adhesion molecules and facilitating chemotactic migration of eosinophils. While peptidoglycan (PGN) (TLR2 ligand) showed the most prominent effects, flagellin (TLR5 ligand) and imiquimod R837 (TLR7 ligand) were also effective in activating eosinophils. However, little or no effect was observed for double-stranded polyinosinic-polycytidylic acid (TLR3 ligand), ultra-purified LPS (TLR4 ligand), single-stranded RNA (ssRNA) (TLR8 ligand) and CpG-DNA (TLR9 ligand). Further investigation confirmed that PGN, flagellin and R837 commonly transmitted signals through ERK activation that required prior phosphorylation of tyrosine 925, but not tyrosine 577, on FAK. Moreover, the inhibition of ERK activation by selective inhibitor PD98059 and FAK expression by FAK-specific RNA interference could significantly abolish the stimulatory effects induced by PGN, flagellin and R837. Taken together, our findings indicate the involvement of FAK-dependent activation of ERK1 in TLR-mediated eosinophil stimulation. A potential role of eosinophils was also suggested in exacerbating allergic inflammation in response to microbial infections.


Subject(s)
Cell Movement/immunology , Eosinophils/immunology , Extracellular Signal-Regulated MAP Kinases/immunology , Focal Adhesion Protein-Tyrosine Kinases/immunology , Gene Expression Regulation , Inflammation/immunology , Adjuvants, Immunologic/pharmacology , Aminoquinolines/pharmacology , Cell Adhesion Molecules/immunology , Cell Survival/drug effects , Eosinophils/cytology , Eosinophils/drug effects , Flagellin/pharmacology , Focal Adhesion Protein-Tyrosine Kinases/genetics , Gene Expression Regulation/drug effects , Humans , Imiquimod , Peptidoglycan/pharmacology , Phosphorylation/immunology , Signal Transduction/drug effects , Toll-Like Receptors/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...