Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Commun Biol ; 7(1): 1145, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39277660

ABSTRACT

Pathogenic changes in gut microbial composition precede the onset of HIV-1 infection in men who have sex with men (MSM). This process is associated with increased levels of systemic inflammatory biomarkers and risk for AIDS development. Using mediation analysis framework, in this report we link the effects of unprotected receptive intercourse among MSM prior to primary HIV-1 infection to higher levels of proinflammatory cytokines sCD14 and sCD163 in plasma and a significant decrease in the abundance of A. muciniphila, B. caccae, B. fragilis, B. uniformis, Bacteroides spp., Butyricimonas spp., and Odoribacter spp., and a potential increase in the abundance of Dehalobacterium spp. and Methanobrevibacter spp. in stools of MSM with the highest number of sexual partners. These differences in microbiota, together with a reduction in the pairwise correlations among commensal and short-chain fatty acid-producing bacteria with a number of sexual partners, support an increase in gut dysbiosis with the number of sexual partners. These results demonstrate the interconnectedness of sexual behavior, immune response, and microbiota composition, notably among MSM participating in high-risk sexual behaviors.


Subject(s)
Gastrointestinal Microbiome , HIV Infections , HIV-1 , Homosexuality, Male , Inflammation , Sexual Behavior , Male , Humans , HIV Infections/microbiology , HIV Infections/immunology , HIV Infections/virology , Adult , Inflammation/microbiology , HIV-1/physiology , Dysbiosis/microbiology , Middle Aged
2.
Ann Intern Med ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39348691

ABSTRACT

DESCRIPTION: In March 2020, the White House Coronavirus Task Force determined that clinicians in the United States needed expert treatment guidelines to optimally manage patients with COVID-19, a potentially life-threatening disease caused by a new pathogen for which no specific treatments were known to be effective. METHODS: The U.S. Department of Health and Human Services requested that the National Institutes of Health (NIH) take the lead in expeditiously convening a panel of experts to create "living" guidelines that would be widely accessible and capable of frequent updating as important new information became available. RECOMMENDATIONS: The purpose of this article is to expand on the experiences of the NIH COVID-19 Treatment Guidelines Panel (the Panel) over the past 4 years, summarize the Panel's final recommendations for COVID-19, highlight some challenges and unanswered questions about COVID-19 management, and inform future responses to public health emergencies. The Panel was formed in March 2020, and the first iteration of the guidelines was released in April 2020. Now that the public health emergency has ended, the NIH COVID-19 Treatment Guidelines have sunsetted. This role will now fall to professional societies and organizations, such as the American College of Physicians, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the World Health Organization, all of which have been active in this area.

3.
Pathog Immun ; 9(2): 79-93, 2024.
Article in English | MEDLINE | ID: mdl-39247686

ABSTRACT

Background: Anti-SARS-CoV-2 monoclonal antibodies (mAbs) have played a key role as an anti-viral against SARS-CoV-2, but there is a potential for resistance to develop. The interplay between host antibody responses and the development of monoclonal antibody (mAb) resistance is a critical area of investigation. In this study, we assessed host neutralizing antibody (nAb) responses against both ancestral virus and those with treatment-emergent E484K bamlanivimab resistance mutations. Methods: Study participants were enrolled in the ACTIV-2/Advancing Clinical Therapeutics Globally (ACTG) A5401 phase 2 randomized, placebo-controlled trial of bamlanivimab 700 mg mAb therapy (NCT04518410). Anterior nasal and nasopharyngeal swabs were collected for SARS-CoV-2 RNA testing and S gene next-generation sequencing to identify the E484K bamlanivimab resistance mutation. Serum nAb titers were assessed by pseudovirus neutralization assays. Results: Higher baseline (pre-treatment) nAb titers against either ancestral or E484K virus was associated with lower baseline viral load. Participants with emerging resistance had low levels of nAb titers against either ancestral or E484K nAb at the time of study entry. Participants with emergent E484K resistance developed significantly higher levels of E484K-specific nAb titers compared to mAb-treated individuals who did not develop resistance. All participants who developed the E484K mAb resistance mutation were eventually able to clear the virus. Conclusion: Emerging drug resistance after SARS-CoV-2-specific mAb therapy led to a heightened host neutralizing antibody response to the mAb-resistant variant that was associated with eventual viral clearance. This demonstrates the interplay between the antiviral treatment-directed viral evolution and subsequent host immune response in viral clearance.

4.
EClinicalMedicine ; 75: 102787, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39252866

ABSTRACT

Background: It is unknown if early COVID-19 monoclonal antibody (mAb) therapy can reduce risk of Long COVID. The mAbs amubarvimab/romlusevimab were previously demonstrated to reduce risk of hospitalization/death by 79%. This study assessed the impact of amubarvimab/romlusevimab on late outcomes, including Long COVID. Methods: Non-hospitalized high-risk adults within 10 days of COVID-19 symptom onset enrolled in a randomized, double-blind, placebo-controlled phase 2/3 trial of amubarvimab/romlusevimab for COVID-19 treatment. Late symptoms, assessed using a participant-completed symptom diary, were a pre-specified exploratory endpoint. The primary outcome for this analysis was the composite of Long COVID by participant self-report (presence of COVID-19 symptoms as recorded in the diary at week 36) or hospitalization or death by week 36. Inverse probability weighting (IPW) was used to address incomplete outcome ascertainment, giving weighted risk ratios (wRR) comparing amubarvimab/romlusevimab to placebo. Findings: Participants received amubarvimab/romlusevimab (n = 390) or placebo (n = 390) between January and July 2021. Median age was 49 years, 52% were female, 18% Black/African American, 49% Hispanic/Latino, and 9% COVID-19-vaccinated at entry. At week 36, 103 (13%) had incomplete outcome ascertainment, and 66 (17%) on amubarvimab/romlusevimab and 92 (24%) on placebo met the primary outcome (wRR = 0.70, 95% confidence interval (CI) 0.53-0.93). The difference was driven by fewer hospitalizations/deaths with amubarvimab/romlusevimab (4%) than placebo (13%). Among 652 participants with available diary responses, 53 (16%) on amubarvimab/romlusevimab and 44 (14%) on placebo reported presence of Long COVID. Interpretation: Amubarvimab/romlusevimab treatment, while highly effective in preventing hospitalizations/deaths, did not reduce risk of Long COVID. Additional interventions are needed to prevent Long COVID. Funding: National Institute of Allergy and Infectious Diseases of the National Institutes of Health. Amubarvimab and romlusevimab supplied by Brii Biosciences.

5.
Pathog Immun ; 9(2): 58-78, 2024.
Article in English | MEDLINE | ID: mdl-39165724

ABSTRACT

Background: Assessing the breadth and duration of antigen-specific binding antibodies provides valuable information for evaluating interventions to treat or prevent SARS-CoV-2 infection. Multiplex immunoassays are a convenient method for rapid measurement of antibody responses but can sometimes provide discordant results, and antibody positive percent agreement for COVID-19 diagnosis can vary depending on assay type, disease severity, and population sampled. Therefore, we compared two assays marked for research applications, MSD and Bio-Plex Pro, to evaluate qualitative interpretation of serostatus and quantitative detection of antibodies of varying isotypes (IgG, IgM, and IgA) against receptor binding domain (RBD) and nucleocapsid (N) antigens. Methods: Specimens from ACTIV-2/A5401, a placebo-controlled clinical trial of the SARSCoV-2 monoclonal antibody (mAb) bamlanivimab to prevent COVID-19 disease progression, were used to evaluate the concordance of the Bio-Rad Bio-Plex Pro Human SARS-CoV-2 Serology Assay and the Meso Scale Discovery (MSD) V-PLEX COVID-19 Panel 1 serology assay in detecting and quantifying IgG, IgA, and IgM binding anti-SARS-CoV-2 antibody responses against the RBD and N antigens. Data were disaggregated by study arm, bamlanivimab dose, days post-enrollment, and presence of emerging resistance. Results: We observed 90.5% (412 of 455 tests) concordance for anti-RBD IgG and 87% (396 of 455) concordance for anti-N IgG in classifying samples as negative or positive based on assay-defined cutoffs. Antibody levels converted to the WHO standard BAU/mL were significantly correlated for all isotypes (IgG, IgM, and IgA) and SARS-CoV-2 antigen targets (RBD and N) tested that were common between the two assays (Spearman r 0.65 to 0.92, P < 0.0001). Both assays uncovered evidence of diminished host-derived IgG immune responses in participants treated with bamlanivimab compared to placebo. Assessment of immune responses in the four individuals treated with the 700 mg of bamlanivimab with emerging mAb resistance demonstrated a stronger anti-N IgG response (MSD) at day 28 (median 2.18 log BAU/mL) compared to participants treated with bamlanivimab who did not develop resistance (median 1.55 log BAU/mL). Conclusions: These data demonstrate the utility in using multiplex immunoassays for characterizing the immune responses with and without treatment in a study population and provide evidence that monoclonal antibody treatment in acute COVID-19 may have a modest negative impact on development of host IgG responses.

6.
J Infect Dis ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011957

ABSTRACT

Host metabolic dysregulation, especially in tryptophan metabolism, is intricately linked to COVID-19 severity and its post-acute sequelae (Long COVID). People living with HIV (PLWH) experience similar metabolic dysregulation and face an increased risk of developing Long COVID. However, whether pre-existing HIV-associated metabolic dysregulations contribute in predisposing PLWH to severe COVID-19 outcomes remains underexplored. Analyzing pre-pandemic samples from PLWH with documented post-infection outcomes, we found specific metabolic alterations, including increased tryptophan catabolism, predicting an elevated risk of severe COVID-19 and the incidence of Long COVID. These alterations warrant further investigation for their potential prognostic and mechanistic significance in determining COVID-19 complications.

7.
J Infect Dis ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39028902

ABSTRACT

BACKGROUND: To address the need for novel COVID-19 therapies, we evaluated the fully-human polyclonal antibody product SAB-185 in a phase 3 clinical trial. METHODS: Non-hospitalized high-risk adults within 7 days of COVID-19 symptom onset were randomized 1:1 to open-label SAB-185 3,840 units/kg or casirivimab/imdevimab 1200 mg. Non-inferiority comparison was undertaken for the pre-Omicron population (casirivimab/imdevimab expected to be fully active) and superiority comparison for the Omicron population (casirivimab/imdevimab not expected to be active). Primary outcomes were the composite of all-cause hospitalizations/deaths and grade ≥3 treatment-emergent adverse events (TEAEs) through day 28. Secondary outcomes included time to sustained symptom improvement and resolution. RESULTS: Enrollment was terminated early due to low hospitalization/death rates upon Omicron emergence. 733 adults were randomized, 255 included in pre-Omicron and 392 in Omicron analysis populations. Hospitalizations/deaths occurred in 6 (5.0%) and 3 (2.2%) of pre-Omicron SAB-185 and casirivimab/imdevimab arms, respectively (absolute difference [95% CI] 2.7% [-2.3%, 8.6%]), inconclusive for non-inferiority; and 5 (2.5%) versus 3 (1.5%) (absolute difference 1.0% [-2.3%, 4.5%]) for Omicron. Risk ratios for grade ≥3 TEAEs were 0.94 [0.52, 1.71] (pre-Omicron) and 1.71 [0.96, 3.07] (Omicron). Time to symptom improvement and resolution were shorter for SAB-185, median 11 vs 14 (pre-Omicron) and 11 vs 13 days (Omicron) (symptom improvement), and 16 vs 24 days and 18 vs >25 days (symptom resolution), p<0.05 for symptom resolution for Omicron only. CONCLUSIONS: SAB-185 had an acceptable safety profile with faster symptom resolution in the Omicron population. Additional studies are needed to characterize its efficacy for COVID-19.

8.
J Infect Dis ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39036987

ABSTRACT

Therapeutic monoclonal antibodies (mAbs) have been studied in humans, but the impact on immune memory of mAb treatment during an ongoing infection has remained unclear. We evaluated the effect of infusion of the anti-SARS-CoV-2 spike receptor binding domain (RBD) mAb bamlanivimab on memory B cells (MBCs) in SARS-CoV-2-infected individuals. Bamlanivimab treatment skewed the repertoire of memory B cells targeting Spike towards non-RBD epitopes. Furthermore, the relative affinity of RBD memory B cells was weaker in mAb-treated individuals compared to placebo-treated individuals over time. Subsequently, after mRNA COVID-19 vaccination, memory B cell differences persisted and mapped to a specific reduction in recognition of the class II RBD site, the same RBD epitope recognized by bamlanivimab. These findings indicate a substantial role of antibody feedback in regulating memory B cell responses to infection, and single mAb administration can continue to impact memory B cell responses to additional antigen exposures months later.

9.
Clin Infect Dis ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018444

ABSTRACT

BACKGROUND: Reliable biomarkers of coronavirus disease 2019 (COVID-19) outcomes are critically needed. We evaluated associations of spike antibody (Ab) and plasma nucleocapsid antigen (N Ag) with clinical outcomes in nonhospitalized persons with mild-to-moderate COVID-19. METHODS: Participants were nonhospitalized adults with mild-to-moderate COVID-19 enrolled in ACTIV-2 between January and July 2021 and randomized to placebo. We used quantitative assays for severe acute respiratory syndrome coronavirus 2 spike Ab and N Ag in blood and determined numbers of hospitalization/death events within 28 days and time to symptom improvement. RESULTS: Of 209 participants, 77 (37%) had quantifiable spike Ab and 139 (67%) quantifiable N Ag. Median age was 50 years; 111 (53%) were female, 182 (87%) White, and 105 (50%) Hispanic/Latino. Higher risk of hospitalization/death was seen with unquantifiable (22/132 [16.7%]) versus quantifiable (1/77 [1.3%]) spike Ab (risk ratio [RR], 12.83 [95% confidence interval {CI}, 1.76-93.34]) and quantifiable (22/139 [15.8%]) vs unquantifiable (1/70 [1.4%]) N Ag (RR, 11.08 [95% CI, 1.52-80.51]). Increasing risk of hospitalizations/deaths was seen with increasing N Ag levels. Time to symptom improvement was longer with unquantifiable versus quantifiable spike Ab (median, 14 [interquartile range {IQR}, 8 to >27] vs 8 [IQR, 4-22] days; adjusted hazard ratio [aHR], 0.66 [95% CI, .45-.96]) and with quantifiable versus unquantifiable N Ag (median, 12 [7 to >27] vs 10 [5-22] days; aHR, 0.79 [95% CI, .52-1.21]). CONCLUSIONS: Absence of spike Ab and presence of plasma N Ag predicted hospitalization/death and delayed symptom improvement in COVID-19 outpatients.

10.
J Infect Dis ; 230(2): 394-402, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38716969

ABSTRACT

BACKGROUND: Monoclonal antibodies (mAbs) represent a crucial antiviral strategy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but it is unclear whether combination mAbs offer a benefit over single-active mAb treatment. Amubarvimab and romlusevimab significantly reduced the risk of hospitalizations or death in the ACTIV-2/A5401 trial. Certain SARS-CoV-2 variants are intrinsically resistant against romlusevimab, leading to only single-active mAb therapy with amubarvimab in these variants. We evaluated virologic outcomes in individuals treated with single- versus dual-active mAbs. METHODS: Participants were nonhospitalized adults at higher risk of clinical progression randomized to amubarvimab plus romlusevimab or placebo. Quantitative SARS-CoV-2 RNA levels and targeted S-gene next-generation sequencing was performed on anterior nasal samples. We compared viral load kinetics and resistance emergence between individuals treated with effective single- versus dual-active mAbs depending on the infecting variant. RESULTS: Study participants receiving single- or dual-active mAbs had similar demographics, baseline nasal viral load, symptom score, and symptom duration. Compared with single-active mAb treatment, treatment with dual-active mAbs led to faster viral load decline at study days 3 (P < .001) and 7 (P < .01). Treatment-emergent resistance mutations were more likely to be detected after amubarvimab plus romlusevimab treatment than with placebo (2.6% vs 0%; P < .001) and were more frequently detected in the setting of single-active compared with dual-active mAb treatment (7.3% vs 1.1%; P < .01). Single-active and dual-active mAb treatment resulted in similar decrease in rates of hospitalizations or death. CONCLUSIONS: Compared with single-active mAb therapy, dual-active mAbs led to similar clinical outcomes but significantly faster viral load decline and a lower risk of emergent resistance.


Subject(s)
Antibodies, Monoclonal, Humanized , COVID-19 Drug Treatment , SARS-CoV-2 , Viral Load , Humans , SARS-CoV-2/immunology , SARS-CoV-2/drug effects , Female , Male , Middle Aged , Viral Load/drug effects , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Drug Resistance, Viral , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , COVID-19/immunology , COVID-19/virology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/immunology , Aged , Adult , Drug Therapy, Combination
11.
Pathog Immun ; 9(1): 138-155, 2024.
Article in English | MEDLINE | ID: mdl-38746756

ABSTRACT

Background: Outpatient COVID-19 monoclonal antibody (mAb) treatment via subcutaneous delivery, if effective, overcomes the logistical burdens of intravenous administration. Methods: ACTIV-2/A5401 was a randomized, masked placebo-controlled platform trial where participants with COVID-19 at low risk for progression were randomized 1:1 to subcutaneously administered BMS-986414 (C135-LS) 200 mg, plus BMS-986413 (C144-LS) 200 mg, (BMS mAbs), or placebo. Coprimary outcomes were time to symptom improvement through 28 days; nasopharyngeal SARS-CoV-2 RNA below the lower limit of quantification (LLoQ) on days 3, 7, or 14; and treatment-emergent grade 3 or higher adverse events (TEAEs) through 28 days. Results: A total of 211 participants (105 BMS mAbs and 106 placebo) initiated study product. Time to symptom improvement favored the active therapy but was not significant (median 8 vs 10 days, P=0.19). There was no significant difference in the proportion with SARS-CoV-2 RNA

12.
PLoS Pathog ; 20(4): e1011680, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38635853

ABSTRACT

To mitigate the loss of lives during the COVID-19 pandemic, emergency use authorization was given to several anti-SARS-CoV-2 monoclonal antibody (mAb) therapies for the treatment of mild-to-moderate COVID-19 in patients with a high risk of progressing to severe disease. Monoclonal antibodies used to treat SARS-CoV-2 target the spike protein of the virus and block its ability to enter and infect target cells. Monoclonal antibody therapy can thus accelerate the decline in viral load and lower hospitalization rates among high-risk patients with variants susceptible to mAb therapy. However, viral resistance has been observed, in some cases leading to a transient viral rebound that can be as large as 3-4 orders of magnitude. As mAbs represent a proven treatment choice for SARS-CoV-2 and other viral infections, evaluation of treatment-emergent mAb resistance can help uncover underlying pathobiology of SARS-CoV-2 infection and may also help in the development of the next generation of mAb therapies. Although resistance can be expected, the large rebounds observed are much more difficult to explain. We hypothesize replenishment of target cells is necessary to generate the high transient viral rebound. Thus, we formulated two models with different mechanisms for target cell replenishment (homeostatic proliferation and return from an innate immune response antiviral state) and fit them to data from persons with SARS-CoV-2 treated with a mAb. We showed that both models can explain the emergence of resistant virus associated with high transient viral rebounds. We found that variations in the target cell supply rate and adaptive immunity parameters have a strong impact on the magnitude or observability of the viral rebound associated with the emergence of resistant virus. Both variations in target cell supply rate and adaptive immunity parameters may explain why only some individuals develop observable transient resistant viral rebound. Our study highlights the conditions that can lead to resistance and subsequent viral rebound in mAb treatments during acute infection.


Subject(s)
Antibodies, Monoclonal , COVID-19 Drug Treatment , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , SARS-CoV-2/immunology , SARS-CoV-2/drug effects , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/immunology , Spike Glycoprotein, Coronavirus/immunology , COVID-19/immunology , COVID-19/virology , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , Drug Resistance, Viral/immunology , Viral Load/drug effects , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use
13.
J Clin Virol ; 171: 105653, 2024 04.
Article in English | MEDLINE | ID: mdl-38408420

ABSTRACT

BACKGROUND: Developing countries experience limited access to HCV laboratory tests for different reasons. Providing near to real-time HCV testing and results especially to at-risk populations including those in rural settings for timely initiation to treatment is key. Within a rural Myanmar setting, we compared HCV diagnostic detection and quantification of the GeneXpert, and Advanced Biological Laboratories UltraGene-HCV assays against the gold standard and reference method Roche real-time HCV in Myanmar. METHODS: Blood samples from 158 high-risk individuals were assessed using three different methods at baseline. Results were checked for normality and log transformed. Log differences and bias between methods were calculated and correlated. Pearson's correlation coefficient was used to determine the association of HCV viral loads across all methods. The level of agreement with the standard method (Roche real time HCV) was assessed using Bland-Altman analyses. RESULTS: There was a strong positive correlation coefficient between all three methods with GeneXpert and Roche having the strongest, r = 0.96, (p<0.001). Compared to Roche, ABL (mean difference, 95 % limits of agreement; -0.063 and -1.4 to 1.3 Log10IU/mL) and GeneXpert (mean difference, 95 % limits of agreement; -0.28 and -0.7 to 1.8 Log10IU/mL) showed a good level of agreement with the GeneXpert being slightly superior. CONCLUSION: We demonstrate the excellent performance and no-inferiority, in terms of levels of agreements of both GeneXpert and ABL compared to the Roche platform and supporting the use of the POC assays as alternative a cost-effective methods in HCV detection and diagnosis in developing and low resource settings countries.


Subject(s)
Hepatitis C , Laboratories , Humans , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Myanmar , Viral Load/methods , Hepacivirus/genetics , Hepatitis C/diagnosis , RNA, Viral/genetics
14.
Res Sq ; 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38343862

ABSTRACT

The association between HIV-1 seroconversion and gut dysbiosis is well documented, and its association with sexual activity is also widely recognized. However, it is not known whether the gut dysbiosis mediates the effects of high-risk sexual behavior on HIV-1 seroconversion. In this report we focused on men who engaged in high-risk sexual behavior where they had receptive anal intercourse with multiple men. We demonstrate that proinflammatory cytokines, sCD14 and sCD163, and gut microbiota mediate the effects of this high-risk sexual behavior on subsequent HIV seroconversion. We discovered changes in the gut microbial ecology, prior to seroconversion, both in terms of the composition as well as inter-relationships among the commensal species. Furthermore, these changes correlate with future HIV seroconversion. Specifically, as the number of sexual partners increased, we discovered in a "dose-response" manner, a decrease in the abundance of commensal and short-chain fatty acid-producing species, A. muciniphila, B. caccae, B. fragilis, B. uniformis, Bacteroides spp., Butyricimonas spp., and Odoribacter spp, and an increase in proinflammatory species Dehalobacterium spp. and Methanobrevibacter spp. These changes were also observed among subsequent HIV seroconverters. Interestingly, we also discovered a reduction in correlations among these commensal and short-chain fatty acid producing bacteria in a "dose-response" manner with the number of sexual partners. Our mediation analysis not only provides a conceptual model for the disease process but also provides clues for future clinical interventions that will manipulate the gut microbiota to treat high-risk subjects to prevent HIV seroconversion.

16.
AIDS ; 38(3): 317-327, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37788081

ABSTRACT

BACKGROUND: Proprotein convertase subtisilin/kexin 9 (PCSK9) raises low-density lipoprotein cholesterol (LDL-C) levels and is associated with inflammation, which is elevated in HIV and hepatitis C virus (HCV) infection. We compared PCSK9 levels in people with co-occurring HIV and HCV (HIV/HCV) vs. HIV alone, and evaluated the impact of HCV direct-acting antiviral (DAA) therapy on PCSK9. DESIGN: A prospective, observational cohort study. METHODS: Thirty-five adults with HIV/HCV and 37 with HIV alone were evaluated, all with HIV virologic suppression and without documented cardiovascular disease. Circulating PCSK9 and inflammatory biomarkers were measured at baseline and following HCV treatment or at week 52 (for HIV alone) and compared using Wilcoxon tests and Spearman correlations. RESULTS: At baseline, PCSK9 trended higher in HIV/HCV vs. HIV alone (307 vs. 284 ng/ml, P  = 0.06). Twenty-nine participants with HIV/HCV completed DAA therapy with sustained virologic response. PCSK9 declined from baseline to posttreatment 1 (median 7.3 weeks after end of therapy [EOT]) and posttreatment 2 (median 43.5 weeks after EOT), reaching levels similar to HIV alone; median within-person reduction was -60.5 ng/ml ( P  = 0.003) and -55.6 ng/ml ( P  = 0.02), respectively. Decline in PCSK9 correlated with decline in soluble (s)E-selectin and sCD163 ( r  = 0.64, P  = 0.002; r  = 0.58, P  = 0.008, respectively), but not with changes in LDL-C or other biomarkers. No significant change in PCSK9 occurred in the HIV alone group over 52 weeks. CONCLUSION: PCSK9 declined with DAA therapy in participants with HIV/HCV, correlating with declines in several inflammatory biomarkers but not LDL-C. Elevated PCSK9 with HCV may be linked to particular HCV-associated inflammatory pathways more so than cholesterol homeostasis.


Subject(s)
HIV Infections , Hepatitis C, Chronic , Hepatitis C , Adult , Humans , Proprotein Convertase 9 , Antiviral Agents/therapeutic use , Hepacivirus , Cholesterol, LDL , Prospective Studies , Hepatitis C, Chronic/complications , Hepatitis C, Chronic/drug therapy , HIV Infections/complications , HIV Infections/drug therapy , Proprotein Convertases/metabolism , Hepatitis C/complications , Hepatitis C/drug therapy , Inflammation/complications , Biomarkers
17.
bioRxiv ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38045374

ABSTRACT

Therapeutic anti-SARS-CoV-2 monoclonal antibodies (mAbs) have been extensively studied in humans, but the impact on immune memory of mAb treatment during an ongoing immune response has remained unclear. Here, we evaluated the effect of infusion of the anti-SARS-CoV-2 spike receptor binding domain (RBD) mAb bamlanivimab on memory B cells (MBCs) in SARS-CoV-2-infected individuals. Bamlanivimab treatment skewed the repertoire of memory B cells targeting Spike towards non-RBD epitopes. Furthermore, the relative affinity of RBD memory B cells was weaker in mAb-treated individuals compared to placebo-treated individuals over time. Subsequently, after mRNA COVID-19 vaccination, memory B cell differences persisted and mapped to a specific defect in recognition of the class II RBD site, the same RBD epitope recognized by bamlanivimab. These findings indicate a substantial role of antibody feedback in regulating human memory B cell responses, both to infection and vaccination. These data indicate that mAb administration can promote alterations in the epitopes recognized by the B cell repertoire, and the single administration of mAb can continue to determine the fate of B cells in response to additional antigen exposures months later.

18.
bioRxiv ; 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37961119

ABSTRACT

T cells are involved in protective immunity against numerous viral infections. Limited data have been available regarding roles of human T cell responses controlling SARS-CoV-2 viral clearance in primary COVID-19. Here, we examined longitudinal SARS-CoV-2 upper respiratory tract viral RNA levels and early adaptive immune responses from 95 unvaccinated individuals with acute COVID-19. Acute SARS-CoV-2-specific CD4 and CD8 T cell responses were evaluated in addition to antibody responses. Most individuals with acute COVID-19 developed rapid SARS-CoV-2-specific T cell responses during infection, and both early CD4 T cell and CD8 T cell responses correlated with reduced upper respiratory tract SARS-CoV-2 viral RNA, independent of neutralizing antibody titers. Overall, our findings indicate a distinct protective role for SARS-CoV-2-specific T cells during acute COVID-19.

19.
EClinicalMedicine ; 65: 102250, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37855026

ABSTRACT

Background: With the emergence of SARS-CoV-2 variants resistant to monoclonal antibody therapies and limited global access to therapeutics, the evaluation of novel therapeutics to prevent progression to severe COVID-19 remains a critical need. Methods: Safety, clinical and antiviral efficacy of inhaled interferon-ß1a (SNG001) were evaluated in a phase II randomized controlled trial on the ACTIV-2/A5401 platform (ClinicalTrials.govNCT04518410). Adult outpatients with confirmed SARS-CoV-2 infection within 10 days of symptom onset were randomized and initiated either orally inhaled nebulized SNG001 given once daily for 14 days (n = 110) or blinded pooled placebo (n = 110) between February 10 and August 18, 2021. Findings: The proportion of participants reporting premature treatment discontinuation was 9% among SNG001 and 13% among placebo participants. There were no differences between participants who received SNG001 or placebo in the primary outcomes of treatment emergent Grade 3 or higher adverse events (3.6% and 8.2%, respectively), time to symptom improvement (median 13 and 9 days, respectively), or proportion with unquantifiable nasopharyngeal SARS-CoV-2 RNA at days 3 (28% [26/93] vs. 39% [37/94], respectively), 7 (65% [60/93] vs. 66% [62/94]) and 14 (91% [86/95] vs. 91% [83/81]). There were fewer hospitalizations with SNG001 (n = 1; 1%) compared with placebo (n = 7; 6%), representing an 86% relative risk reduction (p = 0.07). There were no deaths in either arm. Interpretation: In this trial, SNG001 was safe and associated with a non-statistically significant decrease in hospitalization for COVID-19 pneumonia. Funding: The ACTIV-2 platform study is funded by the NIH. Research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number UM1 AI068634, UM1 AI068636 and UM1 AI106701. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

20.
JAMA ; 330(16): 1519-1520, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37773595

ABSTRACT

In this Viewpoint, the authors summarize the therapeutic landscape for COVID-19, discuss who is most likely to benefit from treatment, provide an update on managing illness in immunocompromised individuals, and highlight how to improve COVID-19 treatment.

SELECTION OF CITATIONS
SEARCH DETAIL