Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Vision Res ; 222: 108439, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38896923

ABSTRACT

It is important to understand the development of meridional anisotropies in neurotypical children since those with poor visual development, such as amblyopia, can have different patterns of meridional anisotropies. While the oblique effect is usually observed in adults, neurotypical children who have normal 20/20 visual acuity tend to demonstrate a horizontal effect electrophysiologically. In this longitudinal study, orientation-specific visual evoked potentials (osVEPs) and psychophysical grating acuity were used to investigate the changes in the meridional anisotropies in children aged 3.8 to 9.2 years over two visits averaging four months apart. While it was hypothesized that the electrophysiological horizontal effect may shift towards an oblique effect, it was found that the electrophysiological horizontal effect persisted to be present in response to the suprathreshold moderate contrast 4 cycles-per-degree grating stimuli. Psychophysical grating acuity, however, demonstrated an oblique effect when assessed binocularly. In addition, a significant effect of visit, representing an increase in the average age over this period, was observed in the average osVEP C3 amplitudes (4.5 µV) and psychophysical grating acuity (0.28 octaves or approximately 1-line on the logMAR chart). These findings are relevant when evaluating amblyopia treatments and interventions, as it confirms the necessity to take into account of the effect of normal maturation and learning effects when evaluating young children. Special attention should also be given to children with early-onset myopia and high astigmatism even when their visual acuity is 20/20 as the electrophysiological findings are suggestive of poor visual development, which warrants further investigation.

2.
Eye Vis (Lond) ; 11(1): 21, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831465

ABSTRACT

BACKGROUND: Myopia affects 1.4 billion individuals worldwide. Notably, there is increasing evidence that choroidal thickness plays an important role in myopia and risk of developing myopia-related conditions. With the advancements in artificial intelligence (AI), choroidal thickness segmentation can now be automated, offering inherent advantages such as better repeatability, reduced grader variability, and less reliance for manpower. Hence, we aimed to evaluate the agreement between AI-automated and manual segmented measurements of subfoveal choroidal thickness (SFCT) using two swept-source optical coherence tomography (OCT) systems. METHODS: Subjects aged ≥ 16 years, with myopia of ≥ 0.50 diopters in both eyes, were recruited from the Prospective Myopia Cohort Study in Singapore (PROMYSE). OCT scans were acquired using Triton DRI-OCT and PLEX Elite 9000. OCT images were segmented both automatically with an established SA-Net architecture and manually using a standard technique with adjudication by two independent graders. SFCT was subsequently determined based on the segmentation. The Bland-Altman plot and intraclass correlation coefficient (ICC) were used to evaluate the agreement. RESULTS: A total of 229 subjects (456 eyes) with mean [± standard deviation (SD)] age of 34.1 (10.4) years were included. The overall SFCT (mean ± SD) based on manual segmentation was 216.9 ± 82.7 µm with Triton DRI-OCT and 239.3 ± 84.3 µm with PLEX Elite 9000. ICC values demonstrated excellent agreement between AI-automated and manual segmented SFCT measurements (PLEX Elite 9000: ICC = 0.937, 95% CI: 0.922 to 0.949, P < 0.001; Triton DRI-OCT: ICC = 0.887, 95% CI: 0.608 to 0.950, P < 0.001). For PLEX Elite 9000, manual segmented measurements were generally thicker when compared to AI-automated segmented measurements, with a fixed bias of 6.3 µm (95% CI: 3.8 to 8.9, P < 0.001) and proportional bias of 0.120 (P < 0.001). On the other hand, manual segmented measurements were comparatively thinner than AI-automated segmented measurements for Triton DRI-OCT, with a fixed bias of - 26.7 µm (95% CI: - 29.7 to - 23.7, P < 0.001) and proportional bias of - 0.090 (P < 0.001). CONCLUSION: We observed an excellent agreement in choroidal segmentation measurements when comparing manual with AI-automated techniques, using images from two SS-OCT systems. Given its edge over manual segmentation, automated segmentation may potentially emerge as the primary method of choroidal thickness measurement in the future.

3.
J Cardiothorac Surg ; 19(1): 85, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341594

ABSTRACT

BACKGROUND: Video-assisted thoracoscopic (VATS) lung resections are increasingly popular and localization techniques are necessary to aid resection. We describe our experience with hybrid operating room (OR) cone-beam computed tomography (CT) assisted pre-operative and intra-operative lesion localization of lung nodules for VATS wedge resections, including our novel workflow using the hybrid OR cone-beam CT to re-evaluate patients who have undergone pre-operative localization for those who are unsuitable for intra-operative localization. METHODS: Retrospective analysis of all consecutive patients with small (≤ 20 mm), deep (≥ 10 mm distance from pleura) and/or predominantly ground-glass nodules selected for lesion localization in the Interventional Radiology suite followed by re-evaluation with cone-beam CT in the hybrid OR (pre-operative), or in the hybrid OR alone (intra-operative), prior to intentional VATS wedge performed by a single surgeon at our centre from January 2017 to December 2021. RESULTS: 30 patients with 36 nodules underwent localization. All nodules were successfully resected with a VATS wedge resection, although 10% of localizations had hookwire or coil dislodgement. The median effective radiation dose in the pre-operative group was 10.4 mSV including a median additional radiation exposure of 0.9 mSV in the hybrid OR for reconfirmation of hookwire or coil position prior to surgery (p = 0.87). The median effective radiation dose in the intra-operative group was 3.2 mSV with a higher mean rank than the intra-operative group, suggesting a higher radiation dose (p = 0.01). CONCLUSIONS: We demonstrate that our multidisciplinary approach utilizing the hybrid OR is safe and effective. Intra-operative localization is associated with lower radiation doses. Routine use of cone-beam CT to confirm the position of the physical marker prior to surgery in the hybrid OR helps mitigate consequences of localization failure with only a modest increase in radiation exposure.


Subject(s)
Lung Neoplasms , Solitary Pulmonary Nodule , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/surgery , Retrospective Studies , Operating Rooms , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/surgery , Tomography, X-Ray Computed/methods , Thoracic Surgery, Video-Assisted/methods , Lung/surgery
4.
J AAPOS ; 28(1): 103803, 2024 02.
Article in English | MEDLINE | ID: mdl-38216117

ABSTRACT

BACKGROUND: Pediatric papilledema often reflects an underlying severe neurologic disorder and may be difficult to appreciate, especially in young children. Ocular fundus photographs are easy to obtain even in young children and in nonophthalmology settings. The aim of our study was to ascertain whether an improved deep-learning system (DLS), previously validated in adults, can accurately identify papilledema and other optic disk abnormalities in children. METHODS: The DLS was tested on mydriatic fundus photographs obtained in a multiethnic pediatric population (<17 years) from three centers (Atlanta-USA; Bucharest-Romania; Singapore). The DLS's multiclass classification accuracy (ie, normal optic disk, papilledema, disks with other abnormality) was calculated, and the DLS's performance to specifically detect papilledema and normal disks was evaluated in a one-vs-rest strategy using the AUC, sensitivity and specificity, with reference to expert neuro-ophthalmologists. RESULTS: External testing was performed on 898 fundus photographs: 447 patients; mean age, 10.33 (231 patients ≤10 years of age; 216, 11-16 years); 558 normal disks, 254 papilledema, 86 other disk abnormalities. Overall multiclass accuracy of the DLS was 89.6% (range, 87.8%-91.6%). The DLS successfully distinguished "normal" from "abnormal" optic disks (AUC 0.99 [0.98-0.99]; sensitivity, 87.3% [84.9%-89.8%]; specificity, 98.5% [97.6%-99.6%]), and "papilledema" from "normal and other" (AUC 0.99 [0.98-1.0]; sensitivity, 98.0% [96.8%-99.4%]; specificity, 94.1% (92.4%-95.9%)]. CONCLUSIONS: Our DLS reliably distinguished papilledema from normal optic disks and other disk abnormalities in children, suggesting it could be utilized as a diagnostic aid for the assessment of optic nerve head appearance in the pediatric age group.


Subject(s)
Deep Learning , Papilledema , Adult , Humans , Child , Child, Preschool , Papilledema/diagnosis , Fundus Oculi , Artificial Intelligence , Optic Nerve , Brain
5.
JAMA Ophthalmol ; 142(1): 15-23, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38019503

ABSTRACT

Importance: Clinical trial results of topical atropine eye drops for childhood myopia control have shown inconsistent outcomes across short-term studies, with little long-term safety or other outcomes reported. Objective: To report the long-term safety and outcomes of topical atropine for childhood myopia control. Design, Setting, and Participants: This prospective, double-masked observational study of the Atropine for the Treatment of Myopia (ATOM) 1 and ATOM2 randomized clinical trials took place at 2 single centers and included adults reviewed in 2021 through 2022 from the ATOM1 study (atropine 1% vs placebo; 1999 through 2003) and the ATOM2 study (atropine 0.01% vs 0.1% vs 0.5%; 2006 through 2012). Main Outcome Measures: Change in cycloplegic spherical equivalent (SE) with axial length (AL); incidence of ocular complications. Results: Among the original 400 participants in each original cohort, the study team evaluated 71 of 400 ATOM1 adult participants (17.8% of original cohort; study age, mean [SD] 30.5 [1.2] years; 40.6% female) and 158 of 400 ATOM2 adult participants (39.5% of original cohort; study age, mean [SD], 24.5 [1.5] years; 42.9% female) whose baseline characteristics (SE and AL) were representative of the original cohort. In this study, evaluating ATOM1 participants, the mean (SD) SE and AL were -5.20 (2.46) diopters (D), 25.87 (1.23) mm and -6.00 (1.63) D, 25.90 (1.21) mm in the 1% atropine-treated and placebo groups, respectively (difference of SE, 0.80 D; 95% CI, -0.25 to 1.85 D; P = .13; difference of AL, -0.03 mm; 95% CI, -0.65 to 0.58 mm; P = .92). In ATOM2 participants, the mean (SD) SE and AL was -6.40 (2.21) D; 26.25 (1.34) mm; -6.81 (1.92) D, 26.28 (0.99) mm; and -7.19 (2.87) D, 26.31 (1.31) mm in the 0.01%, 0.1%, and 0.5% atropine groups, respectively. There was no difference in the 20-year incidence of cataract/lens opacities, myopic macular degeneration, or parapapillary atrophy (ß/γ zone) comparing the 1% atropine-treated group vs the placebo group. Conclusions and Relevance: Among approximately one-quarter of the original participants, use of short-term topical atropine eye drops ranging from 0.01% to 1.0% for a duration of 2 to 4 years during childhood was not associated with differences in final refractive errors 10 to 20 years after treatment. There was no increased incidence of treatment or myopia-related ocular complications in the 1% atropine-treated group vs the placebo group. These findings may affect the design of future clinical trials, as further studies are required to investigate the duration and concentration of atropine for childhood myopia control.


Subject(s)
Cataract , Genetic Diseases, X-Linked , Myopia, Degenerative , Myopia , Humans , Female , Infant , Male , Atropine/administration & dosage , Prospective Studies , Ophthalmic Solutions/administration & dosage , Administration, Topical , Refraction, Ocular , Myopia, Degenerative/drug therapy
6.
Asia Pac J Ophthalmol (Phila) ; 12(4): 370-376, 2023.
Article in English | MEDLINE | ID: mdl-37523428

ABSTRACT

PURPOSE: The purpose of this study was to assess the dose-response effects of low-dose atropine on myopia progression and safety in pediatric subjects with mild-to-moderate myopia. METHODS: This phase II, randomized, double-masked, placebo-controlled study compared the efficacy and safety of atropine 0.0025%, 0.005%, and 0.01% with placebo in 99 children, aged 6-11 years, with mild-to-moderate myopia. Subjects received 1 drop in each eye at bedtime. The primary efficacy endpoint was change in spherical equivalent (SE), while secondary endpoints included changes in axial length (AL) and near logMAR (logarithm of the minimum angle of resolution) visual acuity and adverse effects. RESULTS: The mean±SD changes in SE from baseline to 12 months in the placebo and atropine 0.0025%, 0.005%, and 0.01% groups were -0.55±0.471, -0.55±0.337, -0.33±0.473, and -0.39±0.519 D, respectively. The least squares mean differences (atropine-placebo) in the atropine 0.0025%, 0.005%, and 0.01% groups were 0.11 D ( P =0.246), 0.23 D ( P =0.009), and 0.25 D ( P =0.006), respectively. Compared with placebo, the mean change in AL was significantly greater for atropine 0.005% (-0.09 mm, P =0.012) and 0.01% (-0.10 mm, P =0.003). There were no significant changes in near visual acuity in any of the treatment groups. The most common ocular adverse events were pruritus and blurred vision, each occurring in 4 (5.5%) atropine-treated children. Changes in mean pupil size and amplitude of accommodation were minimal. CONCLUSIONS: Atropine doses of 0.005% and 0.01% effectively reduced myopia progression in children but no effect was noted with 0.0025%. All doses of atropine were safe and well tolerated.


Subject(s)
Atropine , Myopia , Humans , Child , Administration, Topical , Ophthalmic Solutions/adverse effects , Atropine/therapeutic use , Myopia/drug therapy , Refraction, Ocular , Axial Length, Eye , Disease Progression
7.
Nat Biomed Eng ; 7(8): 986-1000, 2023 08.
Article in English | MEDLINE | ID: mdl-37365268

ABSTRACT

In myopic eyes, pathological remodelling of collagen in the posterior sclera has mostly been observed ex vivo. Here we report the development of triple-input polarization-sensitive optical coherence tomography (OCT) for measuring posterior scleral birefringence. In guinea pigs and humans, the technique offers superior imaging sensitivities and accuracies than dual-input polarization-sensitive OCT. In 8-week-long studies with young guinea pigs, scleral birefringence was positively correlated with spherical equivalent refractive errors and predicted the onset of myopia. In a cross-sectional study involving adult individuals, scleral birefringence was associated with myopia status and negatively correlated with refractive errors. Triple-input polarization-sensitive OCT may help establish posterior scleral birefringence as a non-invasive biomarker for assessing the progression of myopia.


Subject(s)
Myopia , Sclera , Adult , Humans , Animals , Guinea Pigs , Sclera/diagnostic imaging , Sclera/pathology , Birefringence , Cross-Sectional Studies , Myopia/diagnostic imaging , Myopia/pathology , Biomarkers
8.
Invest Ophthalmol Vis Sci ; 64(6): 3, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37126360

ABSTRACT

Purpose: The purpose of this study was to evaluate the epidemiology, etiology, clinical assessment, investigation, management, and visual consequences of high myopia (≤-6 diopters [D]) in infants and young children. Findings: High myopia is rare in pre-school children with a prevalence less than 1%. The etiology of myopia in such children is different than in older children, with a high rate of secondary myopia associated with prematurity or genetic causes. The priority following the diagnosis of high myopia in childhood is to determine whether there is an associated medical diagnosis that may be of greater overall importance to the health of the child through a clinical evaluation that targets the commonest features associated with syndromic forms of myopia. Biometric evaluation (including axial length and corneal curvature) is important to distinguishing axial myopia from refractive myopia associated with abnormal development of the anterior segment. Additional investigation includes ocular imaging, electrophysiological tests, genetic testing, and involvement of pediatricians and clinical geneticists is often warranted. Following investigation, optical correction is essential, but this may be more challenging and complex than in older children. Application of myopia control interventions in this group of children requires a case-by-case approach due to the lack of evidence of efficacy and clinical heterogeneity of high myopia in young children. Conclusions: High myopia in infants and young children is a rare condition with a different pattern of etiology to that seen in older children. The clinical management of such children, in terms of investigation, optical correction, and use of myopia control treatments, is a complex and often multidisciplinary process.


Subject(s)
Myopia , Humans , Infant , Child, Preschool , Child , Myopia/diagnosis , Refraction, Ocular , Eye , Vision Tests , Biometry
9.
BMJ ; 380: o2915, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36958735

Subject(s)
Humans , Child
10.
NPJ Digit Med ; 6(1): 10, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36702878

ABSTRACT

Our study aims to identify children at risk of developing high myopia for timely assessment and intervention, preventing myopia progression and complications in adulthood through the development of a deep learning system (DLS). Using a school-based cohort in Singapore comprising of 998 children (aged 6-12 years old), we train and perform primary validation of the DLS using 7456 baseline fundus images of 1878 eyes; with external validation using an independent test dataset of 821 baseline fundus images of 189 eyes together with clinical data (age, gender, race, parental myopia, and baseline spherical equivalent (SE)). We derive three distinct algorithms - image, clinical and mix (image + clinical) models to predict high myopia development (SE ≤ -6.00 diopter) during teenage years (5 years later, age 11-17). Model performance is evaluated using area under the receiver operating curve (AUC). Our image models (Primary dataset AUC 0.93-0.95; Test dataset 0.91-0.93), clinical models (Primary dataset AUC 0.90-0.97; Test dataset 0.93-0.94) and mixed (image + clinical) models (Primary dataset AUC 0.97; Test dataset 0.97-0.98) achieve clinically acceptable performance. The addition of 1 year SE progression variable has minimal impact on the DLS performance (clinical model AUC 0.98 versus 0.97 in primary dataset, 0.97 versus 0.94 in test dataset; mixed model AUC 0.99 versus 0.97 in primary dataset, 0.95 versus 0.98 in test dataset). Thus, our DLS allows prediction of the development of high myopia by teenage years amongst school-going children. This has potential utility as a clinical-decision support tool to identify "at-risk" children for early intervention.

11.
Clin Exp Ophthalmol ; 50(9): 1001-1012, 2022 12.
Article in English | MEDLINE | ID: mdl-36054556

ABSTRACT

BACKGROUND: To test the hypothesis that 0.01% atropine eyedrops are a safe and effective myopia-control approach in Australian children. METHODS: Children (6-16 years; 49% Europeans, 18% East Asian, 22% South Asian, and 12% other/mixed ancestry) with documented myopia progression were enrolled into this single-centre randomised, parallel, double-masked, placebo-controlled trial and randomised to receive 0.01% atropine (n = 104) or placebo (n = 49) eyedrops (2:1 ratio) instilled nightly over 24 months (mean index age = 12.2 ± 2.5 and 11.2 ± 2.8 years, respectively). Outcome measures were the changes in spherical equivalent (SE) and axial length (AL) from baseline. RESULTS: At 12 months, the mean SE and AL change from baseline were -0.31D (95% confidence interval [CI] = -0.39 to -0.22) and 0.16 mm (95%CI = 0.13-0.20) in the atropine group and -0.53D (95%CI = -0.66 to -0.40) and 0.25 mm (95%CI = 0.20-0.30) in the placebo group (group difference p ≤ 0.01). At 24 months, the mean SE and AL change from baseline was -0.64D (95%CI = -0.73 to -0.56) and 0.34 mm (95%CI = 0.30-0.37) in the atropine group, and -0.78D (95%CI = -0.91 to -0.65) and 0.38 mm (95%CI = 0.33-0.43) in the placebo group. Group difference at 24 months was not statistically significant (p = 0.10). At 24 months, the atropine group had reduced accommodative amplitude and pupillary light response compared to the placebo group. CONCLUSIONS: In Australian children, 0.01% atropine eyedrops were safe, well-tolerated, and had a modest myopia-control effect, although there was an apparent decrease in efficacy between 18 and 24 months, which is likely driven by a higher dropout rate in the placebo group.


Subject(s)
Atropine , Myopia , Child , Humans , Adolescent , Ophthalmic Solutions , Australia , Myopia/drug therapy , Refraction, Ocular , Disease Progression
12.
J Med Internet Res ; 24(4): e33680, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35129456

ABSTRACT

BACKGROUND: Social media platforms have numerous potential benefits and drawbacks on public health, which have been described in the literature. The COVID-19 pandemic has exposed our limited knowledge regarding the potential health impact of these platforms, which have been detrimental to public health responses in many regions. OBJECTIVE: This review aims to highlight a brief history of social media in health care and report its potential negative and positive public health impacts, which have been characterized in the literature. METHODS: We searched electronic bibliographic databases including PubMed, including Medline and Institute of Electrical and Electronics Engineers Xplore, from December 10, 2015, to December 10, 2020. We screened the title and abstracts and selected relevant reports for review of full text and reference lists. These were analyzed thematically and consolidated into applications of social media platforms for public health. RESULTS: The positive and negative impact of social media platforms on public health are catalogued on the basis of recent research in this report. These findings are discussed in the context of improving future public health responses and incorporating other emerging digital technology domains such as artificial intelligence. However, there is a need for more research with pragmatic methodology that evaluates the impact of specific digital interventions to inform future health policy. CONCLUSIONS: Recent research has highlighted the potential negative impact of social media platforms on population health, as well as potentially useful applications for public health communication, monitoring, and predictions. More research is needed to objectively investigate measures to mitigate against its negative impact while harnessing effective applications for the benefit of public health.


Subject(s)
COVID-19 , Social Media , Artificial Intelligence , COVID-19/prevention & control , Humans , Pandemics/prevention & control , Public Health/methods
13.
Obes Rev ; 23(3): e13378, 2022 03.
Article in English | MEDLINE | ID: mdl-34841626

ABSTRACT

We conducted a scoping review of social ventures in obesity and developed a taxonomy of their interventions and business models. Sources included PubMed, Business Source Premier, ABI Inform, Factiva, Google, Facebook, Twitter, social entrepreneurship networks (Ashoka, Skoll, and Schwab), and social entrepreneurship competitions. Our review identified 512 social ventures in 32 countries; 93% originated from developed countries. Their areas of intervention included diet and nutrition, urban farming, physical activity, access to healthy food, and health literacy. They addressed factors beyond health such as education, affordability, employment, and the built and natural environments. To support their programs of work, social ventures developed various business models with multiple revenue or resource streams. Social ventures designed double-duty interventions that were aligned with additional meaningful social or environmental objectives. This "bundling" of objectives allowed social ventures to appeal to a wider target audience. Most of the social ventures were initiated, supported, or sustained by local communities. Social ventures offer financially self-sufficient approaches to obesity reduction and could potentially relieve the burden on healthcare systems. Policymakers should consider social entrepreneurs as partners in obesity prevention.


Subject(s)
Commerce , Entrepreneurship , Employment , Humans , Obesity/prevention & control , Social Networking
14.
J Hand Microsurg ; 13(3): 173-177, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34511834

ABSTRACT

Periungual fibromas are benign nodules commonly found on acral digital areas that are commonly associated with tuberous sclerosis. They vary in size and are challenging to treat, with a high recurrence rate. We present a case of a patient with a periungual fibroma, which by virtue of its size, was of functional concern. The intraoperative findings and their implications on the clinical outcome, together with a literature review on other treatment modalities, are also presented.

15.
Lancet Digit Health ; 3(5): e317-e329, 2021 05.
Article in English | MEDLINE | ID: mdl-33890579

ABSTRACT

BACKGROUND: By 2050, almost 5 billion people globally are projected to have myopia, of whom 20% are likely to have high myopia with clinically significant risk of sight-threatening complications such as myopic macular degeneration. These are diagnoses that typically require specialist assessment or measurement with multiple unconnected pieces of equipment. Artificial intelligence (AI) approaches might be effective for risk stratification and to identify individuals at highest risk of visual loss. However, unresolved challenges for AI medical studies remain, including paucity of transparency, auditability, and traceability. METHODS: In this retrospective multicohort study, we developed and tested retinal photograph-based deep learning algorithms for detection of myopic macular degeneration and high myopia, using a total of 226 686 retinal images. First we trained and internally validated the algorithms on datasets from Singapore, and then externally tested them on datasets from China, Taiwan, India, Russia, and the UK. We also compared the performance of the deep learning algorithms against six human experts in the grading of a randomly selected dataset of 400 images from the external datasets. As proof of concept, we used a blockchain-based AI platform to demonstrate the real-world application of secure data transfer, model transfer, and model testing across three sites in Singapore and China. FINDINGS: The deep learning algorithms showed robust diagnostic performance with areas under the receiver operating characteristic curves [AUC] of 0·969 (95% CI 0·959-0·977) or higher for myopic macular degeneration and 0·913 (0·906-0·920) or higher for high myopia across the external testing datasets with available data. In the randomly selected dataset, the deep learning algorithms outperformed all six expert graders in detection of each condition (AUC of 0·978 [0·957-0·994] for myopic macular degeneration and 0·973 [0·941-0·995] for high myopia). We also successfully used blockchain technology for data transfer, model transfer, and model testing between sites and across two countries. INTERPRETATION: Deep learning algorithms can be effective tools for risk stratification and screening of myopic macular degeneration and high myopia among the large global population with myopia. The blockchain platform developed here could potentially serve as a trusted platform for performance testing of future AI models in medicine. FUNDING: None.


Subject(s)
Algorithms , Artificial Intelligence , Blockchain , Deep Learning , Macular Degeneration/diagnosis , Myopia/diagnosis , Retina/diagnostic imaging , Area Under Curve , Biomedical Research/instrumentation , Biomedical Research/methods , Cohort Studies , Datasets as Topic , Humans , Proof of Concept Study , ROC Curve , Reproducibility of Results , Retrospective Studies
16.
BMJ ; 373: n920, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33910919
17.
Doc Ophthalmol ; 142(2): 197-211, 2021 04.
Article in English | MEDLINE | ID: mdl-32968834

ABSTRACT

PURPOSE: An orientation-specific visual evoked potential (osVEP) protocol was developed to probe meridional anisotropies in children with refractive amblyopia. The aim was to characterise the osVEP response in children with bilateral refractive amblyopia, evaluate the intra-session repeatability of the main osVEP components (C1, C2 and C3), coefficient of repeatability (CoR) of the response to gratings in different meridians and determine if refractive amblyopes have poorer repeatability as compared with non-amblyopic controls. METHODS: Children aged 4-7 years with newly diagnosed and untreated bilateral refractive amblyopia and non-amblyopic controls were recruited. Orientation-specific pattern-onset VEPs were recorded in response to an achromatic sinewave grating stimulus of 4 cycles per degree under monocular and binocular stimulation. The grating lines used for monocular stimulation were parallel with the subjects' most positive and negative astigmatic meridians when considered in sphero-minus cylinder form (Meridians 1 and 2, respectively). In subjects without astigmatism, meridians 1 and 2 were designated horizontal and vertical gratings, respectively. Binocular stimuli were presented with grating lines parallel to meridians 45, 90, 135 and 180°. The repeatability of latencies of the main osVEP components (C1, C2 and C3) were investigated using two successive osVEPs recordings for each stimulus meridian and the CoR for each component's latencies were assessed. RESULTS: Seven amblyopic children (Visual acuity (VA) ranging from 0.08 to 0.40 LogMAR in the less amblyopic eye and 0.26-0.52 LogMAR in the more amblyopic eye) and 7 non-amblyopic controls (VA ranging from 0.00 to 0.02 LogMAR in either eye), with a median age of 4.6 and 7.0 years, respectively, completed the study. C1 had the highest CoR for most conditions assessed. Ratio of CoRs C1:C2 was > 2 for all binocular meridians in controls and the 90 and 180 meridians in the amblyopes; C1:C3 was > 2 for the binocularly assessed 45, 90 and 135 meridians in the controls and the 90 and 180 meridians in the amblyopes; C2:C3 were all < 2 for all meridians assessed in both groups. CONCLUSIONS: The osVEP waveforms are reliable and useful for future investigations into the meridional anisotropies in children with refractive amblyopia, particularly the C3 component. Component C1 had the poorest repeatability, which consequentially affected C2 amplitude estimation. Only C3 amplitude and latency could be consistently estimated as C2 and C3 latencies were similarly repeatable. Coefficients of repeatability of osVEP latencies did not appear to systematically differ between non-amblyopic and amblyopic children.


Subject(s)
Amblyopia , Evoked Potentials, Visual , Child , Child, Preschool , Electroretinography , Humans , Time Factors , Visual Acuity
18.
Br J Ophthalmol ; 105(9): 1196-1202, 2021 09.
Article in English | MEDLINE | ID: mdl-32816799

ABSTRACT

Myopia is an emerging public health issue with potentially significant economic and social impact, especially in East Asia. However, many uncertainties about myopia and its clinical management remain. The International Myopia Summit workgroup was convened by the Singapore Eye Research Institute, the WHO Regional Office for the Western Pacific and the International Agency for the Prevention of Blindness in 2019. The aim of this workgroup was to summarise available evidence, identify gaps or unmet needs and provide consensus on future directions for clinical research in myopia. In this review, among the many 'controversies in myopia' discussed, we highlight three main areas of consensus. First, development of interventions for the prevention of axial elongation and pathologic myopia is needed, which may require a multifaceted approach targeting the Bruch's membrane, choroid and/or sclera. Second, clinical myopia management requires co-operation between optometrists and ophthalmologists to provide patients with holistic care and a tailored approach that balances risks and benefits of treatment by using optical and pharmacological interventions. Third, current diagnostic technologies to detect myopic complications may be improved through collaboration between clinicians, researchers and industry. There is an unmet need to develop new imaging modalities for both structural and functional analyses and to establish normative databases for myopic eyes. In conclusion, the workgroup's call to action advocated for a paradigm shift towards a collaborative approach in the holistic clinical management of myopia.


Subject(s)
Myopia, Degenerative/physiopathology , Refraction, Ocular/physiology , Congresses as Topic , Disease Progression , Humans , Prognosis
19.
Transl Vis Sci Technol ; 9(13): 12, 2020 12.
Article in English | MEDLINE | ID: mdl-33344056

ABSTRACT

Purpose: To investigate the association between 1-year myopia progression and subsequent 2-year myopia progression among myopic children in the Singapore Cohort Study of the Risk Factors for Myopia. Methods: This retrospective analysis included 618 myopic children (329 male), 7 to 9 years of age (mean age, 8.0 ± 0.8) at baseline with at least two annual follow-up visits. Cycloplegic autorefraction was performed at every visit. Receiver operating characteristic (ROC) curves from multiple logistic regressions were derived for future fast 2-year myopia progression. Results: Children with slow progression during the first year (slower than -0.50 diopter [D]/y) had the slowest mean subsequent 2-year myopia progression (-0.41 ± 0.33 D/y), whereas children with fast progression (faster than -1.25 D/y) in year 1 had the fastest mean subsequent 2-year myopia progression (-0.82 ± 0.30 D/y) (P for trend < 0.001). Year 1 myopia progression had the highest area under the curve (AUC) for predicting fast subsequent 2-year myopia progression (AUC = 0.77; 95% confidence interval [CI], 0.73-0.80) compared to baseline spherical equivalent (AUC = 0.70; 95% CI, 0.66-0.74) or age of myopia onset (AUC = 0.66; 95% CI, 0.61-0.70) after adjusting for confounders. Age at baseline alone had an AUC of 0.65 (95% CI, 0.61-0.69). Conclusions: One-year myopia progression and age at baseline were associated with subsequent 2-year myopia progression in children 7 to 9 years of age. Translational Relevance: Myopia progression and age at baseline may be considered by eye care practitioners as two of several factors that may be associated with future myopia progression in children.


Subject(s)
Myopia , Child , Cohort Studies , Disease Progression , Humans , Male , Myopia/diagnosis , Retrospective Studies , Singapore/epidemiology
20.
Nat Rev Dis Primers ; 6(1): 99, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33328468

ABSTRACT

Myopia, also known as short-sightedness or near-sightedness, is a very common condition that typically starts in childhood. Severe forms of myopia (pathologic myopia) are associated with a risk of other associated ophthalmic problems. This disorder affects all populations and is reaching epidemic proportions in East Asia, although there are differences in prevalence between countries. Myopia is caused by both environmental and genetic risk factors. A range of myopia management and control strategies are available that can treat this condition, but it is clear that understanding the factors involved in delaying myopia onset and slowing its progression will be key to reducing the rapid rise in its global prevalence. To achieve this goal, improved data collection using wearable technology, in combination with collection and assessment of data on demographic, genetic and environmental risk factors and with artificial intelligence are needed. Improved public health strategies focusing on early detection or prevention combined with additional effective therapeutic interventions to limit myopia progression are also needed.


Subject(s)
Myopia/etiology , Myopia/genetics , Disease Progression , Environmental Exposure/adverse effects , Eye/anatomy & histology , Eye/physiopathology , Humans , Myopia/epidemiology , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL
...